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Background: Lung cancer has considerably high mortality and morbidity rate. Lung
adenocarcinoma (LUAD) tissues highly express lamin B1 (LMNB1), compared with normal
tissues. In this study, we knocked down LMNB1 in LUAD cells A549 and NCI-1299 to
explore the effect of its inhibition on the proliferation of cells and the potential mechanism.

Methods: Using bioinformatics methods, we analyzed the specificity of LMNB1 mRNA
expression level in LUAD and its effect on prognosis from TCGA data. SiRNAs were used
to knock down LMNB1 in the A549 cell line, and the knockdown effect was identified by
western blotting and qRT-PCR. Through CCK8 cell proliferation assay, wound healing
assay, TRAP, cloning formation Assay, DNase I-TUNEL assay, ATAC-seq,
immunofluorescence, FISH, in vivo mouse xenograft studies, etc, we evaluated the
influence and mechanism of LMNB1 on LUAD cell line proliferation in vitro and in vivo.

Results: According to bioinformatics analysis, LMNB1 is substantially abundant in LUAD
tissues and is associated with tumor stage and patient survival (P < 0.05). After silencing
LMNB1, the rate of cell growth, wound healing, the number of transwells, and the number
of cell colonies all decreased significantly (P < 0.01). With the decreased LMNB1
expression, H3K9me3 protein expression decreases, chromosome accessibility
increases, P53, P21, P16 and g-H2AX protein expression increases, and the number of
senescence staining positive cells increases. At the same time, in vivo mouse xenograft
experiments showed that the tumor volume of the LMNB1-silenced group was
significantly reduced, compared to that of the control group (P < 0.01), and the
proliferation biomarker Ki-67 level (P < 0.01) was considerably reduced.

Conclusions: Overexpression of LMNB1 in LUAD cells is significant, which has excellent
potential to be an indicator for evaluating the clinical prognosis of LUAD patients and a
target for precise treatment.
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BACKGROUND

Lung cancer is a major human cancer with high morbidity and
mortality (1–3). It can be categorized into small cell lung cancer
(SCLC) and non-small cell lung cancer (NSCLC). Among these,
NSCLC accounts for 85-90% of lung cancer, and lung
adenocarcinoma (LUAD) is the most common type of NSCLC,
accounting for almost half of the lung cancers (4, 5). LUAD is
generally accepted todevelop fromatypical adenomatoushyperplasia
to adenocarcinoma in situ, then to micro-invasive adenocarcinoma,
and finally to overt invasive lung adenocarcinoma (6). Although
LUAD generally grows slower and has smaller masses than the
squamous lung cancer during the same period, LUAD tends to start
metastasizing early (7). In addition, there is a lack of clinically
sensitive and specific screening biomarkers, and the clinical
symptoms in the early stage of onset are not typical. Most of the
patients diagnosed have developed into late-stage or metastatic
LUAD (8, 9).

The nucleus is considered one of the most important organelles
in eukaryotic cells as it houses genome that contains the entire
cellular genetic map (10). The nuclear fiber layer, which is found in
the inner layer of the nuclear envelope, is primarily a protein
network with many proteins, including lamins, which play a role
inmaintaining the physiological balance of the cells (11). Lamins are
of two types - type A and type B. Type A includes lamin A and
lamin C. When the cell lacks A-type nuclear laminins, the cell’s
viability and the expression of mechanically sensitive genes is
reduced, changing the response of the nuclear structure to
mechanical distortion. Type A lamins occupy a vital position in
the process of force transmission (12, 13). LMNB1, LMNB2, and
LMNB3 are all members of type B, with the LMNB1 gene encoding
Lamin B1. LMNB1 is a critical nuclear skeleton component protein
(14). In recent years, research on the activity of B-type proteins,
particularly LMNB1, has received an increasing amount of
attention, particularly in LUAD (15, 16). Through biometric
analysis, we discovered that LMNB1 is substantially abundant in
LUAD and is associated with cancer stage and patient prognosis in
this study. The A549 cell line’s proliferation and migration were
significantly inhibited when LMNB1 was knocked out. The high
expression of P53, P21, P16 protein and the increase of senescence
staining positive cells indicated that the tumor cells had obvious
senescence, and the expression of H3K9me3 protein decreased, and
g- Elevated H2AX expression and DNase I-Tunel experiment
showed that the accessibility of cell chromosomes increased and
DNA damage occurred. In addition, mouse tumor formation
experiments confirmed the effect of LMNB1 on tumor growth.
Therefore, our findings confirm that LMNB1 is an essential
molecule in the incidence and progression of LUAD, and
targeting LMNB1 can be an important strategy for treating LUAD.
METHODS

Cell Culture and Reagents
The 293T human embryonic kidney cell line, A549 and NCI-
1299 cell lines were purchased from ATCC (The American Type
Frontiers in Oncology | www.frontiersin.org 2
Culture Collection, USA) and regularly tested for mycoplasma
infection. Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% fetal bovine serum (Hyclone, China)
was regularly used to cultivate the cells. Cells were cultured in
dedicated cell culture incubators that were maintained at 37°C
with 5% CO2.

RNA Interference
siRNAs for LMNB1 and corresponding negative controls (si NC)
were purchased from Invitrogen (USA). According to the
manufacturer guidelines, we used RNAiMax (Invitrogen, USA)
for transfections. The target sequences are as follows.

LMNB1 siRNA#1: 5’-GAAGGAAUCUGAUCUUAAU-3’;

LMNB1 siRNA#2: 5’-GAAAGAGUCUAGAGCAUGU-3’.

CBX5 siRNA#1: 5’-CCCAGGGAGAAGUCAGAAATT-3′;
CBX5 siRNA#2: 5’- GGCAAGTGGAATATCTGTTGA-3′.
SUV39H1 siRNA#1: Forward: GAGUACCUGUGCGA

UUACATT, Reverse: UGUAAUCGCACAGGUACUCTT;

SUV39H1 siRNA#2: Forward: CCUUCGUGUACAU
CAAUGATT, Reverse: UCAUUGAUGUACACGAAGGTT.

Lentiviral shRNA vectors of LMNB1 were constructed by
cloning short hairpin RNA fragments into pSIH-H1-Puro
(System Biosciences, USA). Co-transfection of HEK293T cells
with recombinant lentivirus vectors and pPACK Packaging
Plasmid Mix (System Biosciences, USA) in the presence of PEI
reagent (Polyscience, USA) resulted in the generation of
lentiviruses. Lentiviruses were used to infect target cells
according to the manufacturer’s guidelines.

Western Blotting
Western blot analysis was performed according to the standard
procedure. Anti-Lamin B1 (66095), b-actin (01003), P16
(10883), and P21 (10355) were purchased from proteintech
(Wuhan, Hubei, China). Anti-Lamin A/C (SAB4200236) was
purchased from sigma (Shanghai, China). Both g-H2AX
(ab2893) and H3K9me3 (ab8898) were purchased from abcam
(Shanghai, China). P53 (9284S) was purchased from CST
(Shanghai, China). SDS–polyacrylamide gels were used to
separate the samples, and then tansfers were done onto
nitrocellulose (NC) membranes. Corresponding antibodies
were used to incubate the membranes. ECL Luminous Liquid
(Millipore, China) was used to develop the target protein band
and the images were analyzed using Image LabTM software (Bio-
Rad, China).

Assays for CCK8 Cell Proliferation and
Wound Healing
The A549 cells with knocked down LMNB1 were seeded onto
96-well plates (3 × 103 cells per well plate). CCK8 was used to
monitor cell proliferation following the manufacturer’s
recommendations (Dojindo biochemical techniques). In the
ultra-clean workbench, a horizontal lines were drawn on the
back of the 6-well plate with a thin marker pen, each spacing
1 cm across the plate hole. The A549 cells transfected with
May 2022 | Volume 12 | Article 913740
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siLMNB1 and the negative control group were spread on a 6-well
plate. A total of 2 ml of medium was added to each hole to
culture for 20 h, allowing growth to form single-layer cells. A 10
ml pipette was used to draw the vertical, horizontal line. PBS was
slowly added to the wall in each pore cell to wash two times to
remove the damaged cells. 2 ml of serum-free medium was gently
added along the pore wall to avoid dispersing single-layer wall
cells. 6-well plate was moved to the incubator to continue the
culture and continuos pictures were taken using a microscope
after 0 hours, 6 hours, 12 hours and 24 hours.

Transwell Assays
Cells were collected and suspended in serum-free medium. Six
hundred microliters of medium containing 20% FBS was added
to the 24-well plate, and about 200 ml cell suspension was added
to the upper chamber with Matrigel, and cultured for 16 h. The
chamber was fixed in 4% paraformaldehyde and then stained in
0.1% crystal violet solution for 30 minutes, respectively. A cotton
swab was used to wipe the cells and matrigel out of the chamber.
The images were observed under a microscope, and the number
of invasive cells was calculated using the Image J software.

Assay for Cloning Formation
Cells were harvested during their log phase and seeded at a
density of 500, 1000, or 1500 cells per well in a six-well plate.
After a two-week culture period, cells were fixed with 4%
paraformaldehyde and stained with crystal violet (Solarbio,
C8470, China).

DNase I-TUNEL Assay
The cell chromosome accessibility experiment was carried out as
described earlier (17) and modified appropriately. The general
steps are as follows: cells were permeabilized in extraction buffer
(50 mM NaCl; 3 mM MgCl2; 0.5% Tritionx-100; 300 mM
Sucrose dissolved in 25 mM HEPES, pH7.4) for 15 min before
digesting with 0 U, 0.03 U, 0.1 U of DNase I (NEB) respectively.
Cells were then fixed in 4% PFA. TUNEL tests (DeadEnd™

Fluorometric TUNEL System, Promega) were subsequently
performed, as per the manufacturer’s recommendations. The
nuclear area was defined according to DAPI DNA staining.
Confocal images were collected using a Radiance2100 confocal
microscope (Bio-Rad).

ATAC-Seq
A549 shLMNB cells and control group were sent to Beijing
Novogene Co., Ltd. for ATAC-seq assay.

TRAP Assay
The TRAP assay was carried out using the TRAPeze®

Telomerase Detection kit (Millipore, China). In brief,
cultivated cell pellets were lysed for 30 minutes on ice with 1×
CHAPS lysis buffer. Total protein concentration was measured
using the Bio-Rad Protein Assay Kit after centrifugation at
12,000 rpm for 30 minutes. The specified amounts of samples
were combined with 2 µl of TRAP buffer, and final reaction
compounds were mixed with GelRed loading buffer (Generay
Biotech, China) and run on 10% polyacrylamide gel (29:1 acryl/
Frontiers in Oncology | www.frontiersin.org 3
bisacryl) in 0.5×Tris-borate-EDTA (TBE). The gel was operated
at 200V for 50 minutes at room temperature. ChemiDoc™

Imaging System (Bio-Rad) was used to photograph the gel.

Immunofluorescence
50 ml PBS mixed with 500 ml NGS was prepared as a 1% blocking
solution. 10 ml 1% blocking solution mixed with 50 ml TritonX-
100 was prepared as 0.5% previous liquid. Cells grown in a petri
dish were fixed using 4% PFA for fifteen minutes at room
temperature, permeabilized using 0.5% previous liquid for
twenty minutes on ice, rinsed three times with 1% blocking
solution for 10 min. The petri dish was then incubated for two
hours at room temperature with appropriate antibodies, rinsed
three times with blocking solution for 10 minutes, then set in the
dark for one hour with appropriate secondary antibodies. The
cells were rinsed three times with PBS for ten minutes following
incubation. DAPI was used to stain the nuclei. Confocal images
were collected using a LSM 780 confocal microscope (Zeiss).

PCR for Quantitative Reverse
Transcription
TRIzol reagent was used to extract total RNA, and reverse-
transcribed using SuperScript II Reverse Transcriptase according
to the protocol (Invitrogen). On a CFX96 Real-Time PCR
detection technique, real-time quantitative PCR was carried
out using SYBR-green premix (Takara, China). The following
sequences of primers were used for qRT-PCR.

LMNB1 forward: 5’-AAGCAGCTGGAGTGGTTGTT-3’;

LMNB1 reverse: 5’-TTGGATGCTCTTGGGGTTC-3’.

LMNA/C forward: 5’-ACGGCTCTCATCAACTCCACTG-3’;

LMNA/C reverse: 5’-TCCTCATCCTCGTCGTCCTCAA-3’.

p21 forward: 5’-TCGCTCAGGGGAGCAGGCTGAA-3’;

p21 reverse: 5’-CTCGCGCTTCCAGGACTGCAGGCT-3’.

p53 forward: 5’-AGAGTCTATAGGCCCACCCC-3’;

p53 reverse: 5’-GCTCGACGCTAGGATCTGAC-3’.

p16 forward: 5’-CTTCCTGGACACGCTGGT-3’;

p16 reverse: 5’-GGGATGTCTGAGGGACCTT-3’.

b-actin forward: 5’-ATCACCATTGGCAATGAGCG-3’;

b-actin reverse: 5’-TTGAAGGTAGTTTCGTGGAT-3’.

As an internal control, b-Actin was used. The comparative Ct
technique was used to compute the relative expression.

Assay for SA-b-Gal
SA-b-gal test was carried out using an Aging Staining Kit
(Beyotime, China), according to the manufacturer’s protocol.
After staining, the cells were observed under a fluorescence
microscope. Five fields of vision were taken from each sample
to observe the proportion of cells stained dark blue in each field.

qPCR Assay for Average Telomere
Measurement
Genomic DNA was isolated from the cells using KingFisher Flex
DNA purification instrument (ThermoFisher, USA) with
May 2022 | Volume 12 | Article 913740
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MagMAX™ DNA Multi-Sample Ultra 2.0 Kit (ThermoFisher,
USA). The biomarkers for Telomere PCR were tel1b: 5-CGGTTT
(GTTTGG)5GTT-3, used at a fixed concentration of 300 nM, and
tel2b: 5-GGCTTG(CCTTAC)5CCT-3, used at a final volume of 300
nM. The probes for single-copy gene (36B4) PCR were 36B4u: 5-
CAGCAAGTGGGAAGGTGTAATCC-3, used at a final
concentration of 300 nM, and 36B4d: 5-CCCATTCTAT
CATCAACGGGTACAA-3, used at a desired volume of 500 nM.
The 2×Mix (Qiagen, USA) was used in the qPCR reaction mixture
with 9.2 ng genomic DNA in each tube. qPCR was carried out on
CFX-96 qPCR instrument (Bio-Rad, USA). The Telomere (T) PCR
settings were 95°C for 10 minutes, followed by 20 cycles at 95°C for
15 seconds and 56°C for 1 minute. The 36B4 (S) PCR conditions
were 95°C for 10 minutes and 30 cycles at 95°C for 15 seconds and
60°C for 1 minute. The relative T/S ratio of each sample was
calculated as the relative telomere length. The T/S ratio for each
sample was measured twice.

Animal Experiments
Protocols were agreed upon by the Institutional Animal Care and
Use Committee of the Beijing Institute of Biotechnology. Eight four-
week-old female BALB/c nude mice were randomly divided into
two categories, with four mice in each group. One class was injected
with A549 cells stably knockdown LMNB1, and the other class was
injected with control A549 cells. A mixture of 100 mL of cell
suspension (containing 5×106 cells) and 100 mL of matrix glue
was injected into the back of nude mice. Tumor growth was
measured with a Vernier caliper after seven days, and the volume
of tumors was determined using the following formula: volume =
(longest diameter × shortest diameter2)/2. On day 30 following
implantation, the mice were slaughtered. The weight of nude mice
was measured, and subcutaneous tumors were dissected and
isolated. Tumor size was measured. The tumor tissues were
divided into 4 parts. The qRT-PCR was performed to determine
the transcription of P53, P21 and P16 in the tissues. Secondly,
paraffin-embedded tissues were sectioned. The paraffin slices were
immunohistochemically examined for LMNB1 and Ki-67
expression. Q-FISH was examined for telomere length. The last
tumor tissues were used in TRAP to detect telomerase activity.

Quantitative Fluorescence In-Situ
Hybridization
The paraffin slides containing tissue were incubated in 10 mM
sodium citrate (pH 6.5) at 88°C for 10 minutes, rinsed with PBS
(pH 7.2) at room temperature for 1 minute in a glass slide dyeing
vat, dried with 25%, 50%, and 95% ethanol, and treated with 1%
pepsin solution in a glass slide dyeing vat at 37°C for 2 minutes.
Each slide was incubated with 80 ml 10 mg/ml RnaseA solution
(NanoMagBio, Wuhan), covered with cover glass, and placed in
the heating block at 37°C for 2 h. The cover glasses were
removed, and the slides were rinsed with PBS for 1 minute.
The slides were then briefly immersed in 25%, 50%, and 95%
ethanol and air-dried. Next, each sample was hybridized with a
100 ml telomere probe (TelC-Alexa594, PANAGENE) overnight
in the dark at room temperature (at least 16 hours). After
hybridization, the slides were placed in a Coplin flask with
70% formamide buffer and rinsed for 15 minutes. Then the
Frontiers in Oncology | www.frontiersin.org 4
slides were rinsed with fresh formamide buffer four times, 15
minutes each time, followed by Tween 20 buffer four times for 5
minutes at room temperature. Nuclei were counterstained with
80 ml DAPI(dilution of 1:1000) for 5 minutes at room
temperature. The slides were sealed with a 20-25 ml vent shield
and observed under a fluorescence microscope as soon as
possible or stored in a closed box at -20°C. Image J program
was used to evaluate the fluorescence intensity of Telomere.

Immunohistochemistry
Tissues from tumors were soaked in formalin before being
embedded in paraffin. Tissue sections were 4 mm thick, and
dewaxing, hydration, and antigen healing were performed as per
standard procedures. 3% hydrogen peroxide inhibited catalase
activity. The sections were then treated overnight at 4°C with
LMNB1 and Ki-67 antibodies. They were then treated for 1 hour
at 37°C with a secondary antibody (ZSGB-BIO, PV-6000,
China). After DAB staining (Solarbio, DA1010, China), the
nuclei were stained with hematoxylin (Solarbio, G1120, China).

Statistical Analysis
Assessments between two groups were performed using
Student’s t-test. The data are presented as the means ±
standard deviation (SD); P < 0.05 was found to be significant.
NS means statistically insignificant.
RESULTS

Highly Expressed LMNB1 in LUAD Cells Is
Associated With Tumor Stage and Overall
Survival
Firstly, the profile of LMNB1 expression across all cancer tissues
and associated normal cells was retrieved from the GEPIA
website (http://gepia.cancer-pku.cn/). LMNB1 is highly
expressed in 21 different tumors, including LUAD
(Figure 1A). The data on the transcription of LMNB1 mRNA
in LUAD cancer cells and healthy cells was then obtained using
bioinformatics approaches from the GTEx and TCGA databases.
The analysis included 483 tumors tissues and 347 normal tissues,
as shown in Figure 1B. The concentration of LMNB1 mRNA in
target tissue was much higher in LUAD patients than in normal
tissue, and the difference was found significant (P < 0.05). In
addition, the production level of LMNB1 in LUAD patients
increased with the clinical stages, as shown in Figure 1C. Next,
we used bioinformatics to investigate the survival of LUAD
patients from the database of TCGA. In total, 120 examples of
LMNB1 high expression groups and LMNB1 low expression
groups were obtained, respectively. Then, we compared the two
groups of overall survival (OS). As shown in Figure 1D, there is a
substantial specificity in OS between the two classes (P < 0.05).

LMNB1 Knockdown Inhibits LUAD Cells
Proliferation
To further explore the effects of LMNB1 on LUAD cells, we used
RNA interference in Lung adenocarcinoma cell A549 to
May 2022 | Volume 12 | Article 913740

http://gepia.cancer-pku.cn/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. LMNB1 Knockdown in Lung Cancer
knockdown the expression of LMNB1. WB, immunofluorescence,
and qRT-PCR results showed that both the LMNB1 protein and
RNA levels decreased (Figures 2A–C), while the expression of
LMNA/C protein remained unchanged. The reduction of LMNB1
protein expression had no impact on the expression of LMNA/C.
Then, cloning formation assay, wound healing assay Transwell
assay, and CCK8 test were performed, and all results showed a
slowdown in the growth of A549 cells knocked down LMNB1
(Figures 2D–G). These results further demonstrate that knocking
down LMNB1 inhibits LUAD cell proliferation.
Frontiers in Oncology | www.frontiersin.org 5
Knockdown of LMNB1 Increases
Chromosome Accessibility via Decreases
H3K9me3 Protein Expression
Accompanied by a decrease of LMNB1 in A549 cells, to our
surprise, the expression of chromosomal methylation protein
H3K9me3 decreased. Instead, DNA damage-related protein
markers g-H2AX appeared to be elevated (Figure 3A), as
confirmed by immunofluorescence experiments (Figure 3B).
Immunofluorescence results showed that the cells with low
LMNB1 expression showed more g-H2AX expression. To verify
A

C

D

B

FIGURE 1 | Highly expressed LMNB1 in LUAD cells is associated with tumor stage and overall survival. (A) The LMNB1 expression profile across all tumor samples
and paired normal tissues was obtained on the GEPIA website (http://gepia.cancer-pku.cn/). (B) The expression of LMNB1 in the different pathological stages of
LUAD patients from TCGA dataset by using bioinformatics’ analyses. *p<0.05. (C) The expression of LMNB1 at mRNA level in LUAD patients from TCGA and GTEx
dataset by using bioinformatics’ analyses. (D) Overall survival analysis of LUAD patients from TCGA dataset (P = 0.022).
May 2022 | Volume 12 | Article 913740
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that the loss of DNA methylation increases chromosome
accessibility, we conducted the DNase I-TUNEL assay, with A549
cells knockdown CBX5 and SUV39H1 as positive controls, which
has been proven to increase the chromosomes accessibility.
Surprisingly, the LMNB1 knockdown group had a considerable
increase in chromosome accessibility (Figure 3C). Telomeres are
located in the heterogeneous chromatin region of chromosomes
that are highly methylated. We tested telomere length and
telomerase activity to verify whether the loss of methylation
caused by knocking down LMNB1 affects telomeres. The results
showed no change in them, which may be related to the brief
absence of LMNB1 (Figures 3D–F). Perhaps, the ability of
Telomerase to lengthen telomeres compensates for its shortening.

The Absence of LMNB1 Can Induce LUAD
Cells Senescence
To elucidate the mechanisms underlying the effect of LMNB1 on
LUAD cell proliferation, we conducted WB experiments on A549
cells that knocked down LMNB1. The results showed that the
Frontiers in Oncology | www.frontiersin.org 6
proteins P53, P21 and P16 associated with cell senescence
increased in the knockdown group (Figure 4A). Real-time PCR
results also showed an increase in P53, P21 and P16 mRNA
expression (Figures 4B–D). The lack of LMNB1 may inhibit the
proliferation of LUAD by inducing cell senescence. The LMNB1
protein expression of A549 cells and NCI-1299 cells were knocked
down using siRNAs. WB was used to detect the effect of
knockdown. SA-b-gal assay further showed that cell senescence
appeared in the LMNB1-knockdown cells (Figure 4E).

Long-Term Loss of LMNB1 Can Cause
Telomere Erosion
Previous experiments have shown that the short-term reduction of
LMNB1 increased chromosomal accessibility and DNA damage in
cells, butmadenodifference to telomere lengthor telomerase activity.
We wanted to further investigate the effect of long-term LMNB1
deficiency on telomeres, so that the A549 cells with long-term
knockdown of LMNB1 (A549 shLMNB1) and control cells (A549
shcontrol) were tested for telomere length (Figure 5A). Surprisingly,
A B

D

E

F

G

C

FIGURE 2 | LMNB1 knockdown inhibits LUAD cells proliferation. (A) A549 cells were transfected with LMNB1 siRNAs, and WB detected the expression of protein LMNB1.
(B) Immunofluorescence was used to detect the expression of LMNB1 (red fluorescence), and the relative fluorescence intensity was quantified with Image J (P < 0.05), Scale
bar, 20 mm. (C) RT-qPCR was used to detect the mRNA expression of LMNB1. (D) CCK8 assay was conducted to measure the growth of A549 siLMNB1 cells. The
absorbance value was measured at 490 nm (**P < 0.01). (E) Colony formation assay was conducted to measure the proliferation of A549 cell lines after knockdown of
LMNB1. Histogram was used to analyze the colony numbers. (F) The Transwell assay was used to evaluate the migration ability of A549 cells after knocking down LMNB1.
(G) Wound healing assay was conducted to measure cell migration and cell interactions of A549 siLMNB1. *p<0.05, ****p<0.0001. ns means no significance.
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the telomeres of cells were shortened. Western Blotting was
performed to confirm the low concentration of LMNB1
(Figure 5C). qRT-PCR results showed that the LMNB1 RNA levels
decreased (Figure 5D). In contrast, the long-term loss of LMNB1
caused the telomeres to become shorter but had no effect on
telomerase activity (Figure 5B). It shows that the long-term lack of
LMNB1 does not shorten telomeres by affecting the activity of
telomerase. To explore the reasons for the shortening of telomeres,
we performed immunofluorescence and telo-fish experiments. The
results showed that the co-localization of g-H2AX and telomeres
increased (Figure 5E), and the increased DNA damage of telomeres
Frontiers in Oncology | www.frontiersin.org 7
might be an important reason for its shortening. To investigate
whether telomere damage is caused by the changes in chromosome
accessibility after the persistent deletion of LMNB1, ATAC-seq assay
was performed. Sequencing connectors and the low-quality
fragments of sequencing data were removed by trim. The rest of
the high-quality reads are listed (Figure S1A). The number of reads
obtained can reflect the chromosome accessibility of each group.
Chromosome accessibility increased by 2% in the shLMNB1 group
compared to the control (Figure S1B). To further show the changes
that occurred in the telomere regions, that reads containing at least 6
tandem TTAGGG (or CCCTAA) were used to represent the
A B

D

F

E

C

FIGURE 3 | The knockdown of LMNB1 increases chromosome accessibility by decreasing H3K9me3 protein expression. (A) A549 cells were transfected with
LMNB1 siRNAs, and WB detected the expression of protein LMNB1, H3K9me3, g-H2AX, Actin. (B) Immunofluorescence was performed in A549 siLMNB1 cells to
show g-H2AX (green fluorescence) and LMNB1 (red fluorescence) protein expression, Scale bar, 20 mm. (C) DNase I-TUNEL assay was performed (DNase
concentration used 0 U, 0.03 U, 0.1 U) to detect the difference in chromosome accessibility between A549 siLMNB1 cells and A549 siNC cells. A549 cells of siCBX5
and siSUV39H1 were used as positive controls, Scale bar, 50 mm. (D) The telomerase activity of knockdown of LMNB1 and NC were detected by TRAP in A549
cells. (E) The telomere length of A549 siLMNB1 and siNC were detected by qPCR. (F) The telomere length of A549 siLMNB1 and siNC were detected by Telo-fish.
**p<0.01, ns means no significance.
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accessibility of chromosomes in telomeres. To our surprise, the
chromosomal accessibility in telomere regions increased
significantly by nearly 26.7% compared to the control group
(Figure S1C). Therefore, the cause of telomere shortening is that
the increased chromosomal accessibility of the telomeric regions, and
the accumulation of irreversible DNA damage occurs in the
telomeres. The position of reads, as obtained in the shLMNB1
group, in the genome regions is shown in the Figure S1D. The
results of GO enrichment analysis results showed that, there were
significant differences in Biological Process (immune systemprocess,
cellular response to stimulus, and cell surface receptor signaling, etc.)
between the shLMNB1 group and the control group (Figure S1E).

Knockdown of LMNB1 Inhibits Tumor
Growth in A549 Xenograft Models
To learn more about the involvement of LMNB1 in
tumorigenesis and proliferation in vivo, we injected shcontrol
A549 cells and shLMNB1 A549 cells subcutaneously,
respectively, for establishing a xenograft tumor model in
tumor-bearing mice. After 7 weeks, the weights of the mice
and tumors were measured separately after the mice were
Frontiers in Oncology | www.frontiersin.org 8
euthanized. The tumors volume of the shLMNB1 group was
substantially decreased compared to the shcontrol group, as
illustrated in Figures 6A–C. However, there was no difference
in weight between the two groups. It indicates that the deletion of
LMNB1 could inhibit the growth of cells in vivo. Furthermore,
IHC established that after the knockdown of LMNB1, the protein
levels of Ki-67 and LMNB1 in tumor tissues were considerably
down-regulated (Figure 6D). Consistent with the results of cell
experiments, Telomerase activity did not decrease considerably
following LMNB1 knockdown as it did in vitro (Figure 6E).
Compared with the control group, the shLMNB1 group had
shorter telomeres (Figure 6F), and RT-qPCR outcomes show
that the mRNA levels of P53, P21 and P16 proteins all increased
(Figure 6G), which suggests that the lack of LMNB1 can also
cause telomere shortening and induce cell senescence in vivo.
DISCUSSION

There has been a significant advancement in lung cancer early
detection and minimally invasive treatment in recent years. The
A B

D E

C

FIGURE 4 | The absence of LMNB1 can induce LUAD cells senescence. (A) WB detected the expression of protein LMNB1, P53, P21, P16 and Actin in A549
siLMNB1 and siNC cells. (B-D) The expression of P53, P21 and P16 mRNA in A549 siLMNB1 cells and the control group were detected by RT-qPCR. (E) Proportion of
senescent cells of A549 siLMNB1 cells and A549 siNC cells were detected by SA-b-Gal staining. The percentage of senescence positive cells in each group from five
randomly chosen fields was calculated. *p<0.05. **p<0.01, ***p<0.001, ****p<0.0001.
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development of targeted molecular therapies (such as gefitinib)
has opened up new ideas for treating NSCLC. Recently, new
biological targets such as ALK, ROS1, and PD-L1 have been
evaluated in targeted clinical therapy (18–21). However,
clinically, there is still a lack of effective treatment methods.
According to statistics, the life expectancy for NSCLC remains
low, and the prognosis of LUAD patients is very poor (22).
Therefore, there is an urgent need to have a more profound
knowledge of the biological mechanism of the incidence and
progression of LUAD, in addition to the discovery and study of
Frontiers in Oncology | www.frontiersin.org 9
new biological markers and therapeutic targets to achieve early
diagnosis, precise treatment, and improve patient prognosis.

Lung cancer is the most frequently diagnosed tumor globally,
with suggestions for an increasing trend in younger-onset age
(23). Because of the late detection of lung cancer, early
metastasis, and high fatality rate, the overall prognosis of
patients is poor (2, 24). The incidence of lung cancer in men
ranks first among all types of tumors and lung cancer is also first
in terms of cancer deaths; in women, it is the third most
significant cancer and the second leading cause of tumor
A B
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C

FIGURE 5 | Long-term loss of LMNB1 can cause telomere erosion. (A) WB detected the expression of protein LMNB1, P53, P21, P16 and Actin in A549 siLMNB1
and siNC cells. (B–D) The expression of P53, P21 and P16 mRNA in A549 siLMNB1 cells and the control group were detected by RT-qPCR. (E) The proportion of
senescent cells of A549(NCI-1299) siLMNB1 cells and A549 (NCI-1299) siNC cells were detected by SA-b-Gal staining. The percentage of senescence positive cells
in each group from five randomly chosen fields were calculated. *p<0.05, ns means no significance.
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mortality (25). It is worth noting that lung cancer results from
multiple genes and multiple factors. So far, the serum tumor
markers used in early lung cancer diagnosis and recurrence
monitoring include CEA, secreted protein Dickopf-1 (DKK1),
etc (26). Adenocarcinoma (LUAD) is now the most frequent
lung cancer, accounting for more than half of all cases. As a
result, enhancing the early diagnosis rate of LUAD, discovering
novel prognostic indicators, and discovering new targets for anti-
tumor therapy has been the focus of lung therapeutic strategies.

The lamins, recognized as intermediate filament protein (IF)
by sequence similarity, were the first proteins located in the
nuclear layer to be biochemically identified (27–32). Lamins,
Frontiers in Oncology | www.frontiersin.org 10
located inside the nuclear membrane, provided a platform for
combining protein and chromatin and impacted mechanical
stability. Besides, they involve many nuclear functions such as
high-order genome organization, chromatin regulation,
transcription, DNA replication, and DNA repair.

Nuclear lamins can be divided into two classes- Type A, and
Type B. Type A and Type B lamins are different in protein
structure, expression, localization mode, and biochemistry (33).
LMNB1 was discovered to display a crucial role in senescence
and proliferation of the cell, DNA replication and gene
expression, chromosomal dispersion and aggregation, DNA
fragmentation, and telomere stability, in addition to preserving
A B
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FIGURE 6 | LMNB1 knockdown inhibits tumor growth in A549 xenograft models. (A–C) A549 cells stably expressing shcontrol or shLMNB1 were injected
subcutaneously in nude mice (n = 4 for each group). Tumor value and mice bodyweight were measured 1 month later. (D) The expression of LMNB1 and Ki-67 in
tumors of two groups were detected by immunohistochemistry. Scale bar, 30 mm. (E) Telomerase activity in tumors of each mice was detected by TRAP. (F) Telomere
length was evaluated in paraffin embedded sections of tumor tissue using Q-FISH. The Image J software was used to analyze the telomere length of tumor sections, as
indicated by fluorescence intensity. Scale bar, 50 mm. (G) The expression of P53, P21 and P16 mRNA in tumors were detected by RT-qPCR. **p<0.01, ****p<0.0001, ns
means no significance.
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the integrity and shape of the cell nucleus. It has been proven that
abnormal LMNB1 expression is linked to neurological diseases
and tumors (16, 34–37). Given that LMNB1 has different and
complex biological functions in other tumor cells, in-depth
research will lay a foundation for studying the pathological
mechanisms of various diseases and exploring innovative
biomarkers and targets for cancer therapy.

The occurrence and development of LUAD is closely related
to lamins. The down-regulation of Lamin A/C expression confers
higher variability in the nuclear morphology of cancer cells and
ultimately promotes tumor metastasis (38, 39). The study by
Pajerowski et al. (40) showed that: the lack of Lamin A/C
enhanced the nuclear deformability in lung adenocarcinoma
cell line A549. However, LMNB1 is required for DNA
replication, gene expression, cell proliferation and senescence,
chromosome dispersion and aggregation, DNA fragmentation,
and telomere homeostasis (41). It has been established that
aberrant LMNB1 expression is linked to the development of
neurological disorders and tumors (15, 42, 43). Furthermore,
researchers have found that LaminB1 is highly expressed in lung
adenocarcinoma and stimulates proliferation in lung tumor cells
via the AKT pathways (44).

Our research established that silencing LMNB1 inhibits the
growth of LUAD cells by inducing cell senescence. Through
multiple experiments, we found that the loss of LMNB1 caused a
decrease in the expression of H3k9me3 protein, thereby
increasing the accessibility of chromosomes, and the DNA
damage standard g-H2AX protein was detected. Hayflick and
Moorhead were the first to describe cell aging as a progressive
and irreversible loss of the proliferation potential of human cells
(45). This phenomenon is characterized by the loss of replication
ability, as well as by several variations of cell morphology, gene
expression, metabolism, epigenetics, etc (46). Thus far, telomeres
shortening optimally accounts for replicable aging, which is a
repeating area of DNA at the end of chromosomes and presents a
high methylation state. It has been reported that telomere regions
are shortened as cells divide, which is correlated with the
induction of cell senescence (47). However, tumor cells
can express telomerase, which resists replication aging
by maintaining telomere length (48). Under normal
circumstances, DNA damage caused by daily cell damage can
be repaired effectively and quickly. However, studies have shown
that damage to telomeres is difficult to repair in vivo and in vitro
(49). Persistent telomere DNA damage under various causes is a
feature of replication, stress and carcinogenic gene-induced
aging, so unrepaired telomeres are considered to provide a
long-lasting source of DDR signals, which is of critical
significance to establishing cell senescence (50). To the best
Frontiers in Oncology | www.frontiersin.org 11
of our knowledge, our study is the first to show that continual
deletion of LMNB1 in LUAD cells induces DNA damage
to telomeres and shortens telomeres. Therefore, we speculate
that targeting LMNB1 may present a new avenue for
LUAD treatment.
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