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Abstract

Gene-body methylation (gbM) refers to an increased level of methylated cytosines specifically in a CG sequence context
within genes. gbM is found in plant genes with intermediate expression level, which evolve slowly, and is often broadly
conserved across millions of years of evolution. Intriguingly however, some plants lack gbM, and thus it remains unclear
whether gbM has a function. In animals, there is support for a role of gbM in reducing erroneous transcription and
transcription noise, but so far most studies in plants have tested for an effect of gbM on expression level, not noise. Here, we
therefore tested whether gbM was associated with reduced expression noise in Arabidopsis thaliana, using single-cell
transcriptome sequencing data from root quiescent centre cells. We find that gbM genes have lower expression noise levels
than unmethylated genes. However, an analysis of covariance revealed that, if other genomic features are taken into account,
this association disappears. Nonetheless, gbM genes were more consistently expressed across single-cell samples, supporting
previous inference that gbM genes are constitutively expressed. Finally, we observed that fewer RNAseq reads map to
introns of gbM genes than to introns of unmethylated genes, which indicates that gbM might be involved in reducing
erroneous transcription by reducing intron retention.

Introduction

In angiosperms, three different classes of cytosine methy-
lation can be distinguished based on their sequence context:
methylation in a CG (mCG) context, methylation in a CHG
(mCHG) context and methylation in a CHH (mCHH)
context, where H stands for A, C or T (Cokus et al. 2008;
Lister et al. 2008; Niederhuth and Schmitz 2014;
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Niederhuth et al. 2016; Bewick et al. 2016 and Bewick and
Schmitz 2017). The phenotypic effects of cytosine methy-
lation depend on the class and location of the methylation
(Niederhuth et al. 2016; Bewick and Schmitz 2017). For
example, transcriptional silencing of transposable elements
can be achieved through the RNA-directed DNA methyla-
tion pathway (e.g. Matzke et al. 2015; Fultz et al. 2015) and
is usually associated with an enrichment of mCHH as well
as mCG and mCHG (Matzke et al. 2015; Bewick et al. 2016
and Bewick and Schmitz 2017; Hirsch and Springer 2017).
Enrichment of mCHH as well as mCHG can also occur in
genes and promoter regions, and is usually associated with
gene silencing (Matzke et al. 2015; Neri et al. 2017).
However, despite the fact that mCG is the most common
form of cytosine methylation in the genomes of angios-
perms (Niederhuth et al. 2016; Bewick and Schmitz 2017),
the functional consequence of mCG enrichment in genes is
not well understood.

Gene-body methylation (gbM) refers to the situation
where mCG is enriched within the transcribed regions
(coding and non-coding) of a gene, accompanied by a mCG
depletion at the transcriptional start and termination sites
and an overall mCHG and mCHH depletion within the gene
(Bewick and Schmitz 2017). In plants, gbM is usually
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found in genes with intermediate expression level, which
evolve slowly, and is often broadly conserved over millions
of years of evolution (Zhang et al. 2006; Takuno and Gaut
2012, 2013; Bewick and Schmitz 2017). Genes with gbM
tend to show stable expression both across tissues (Zhang
et al. 2006; Zilberman et al. 2007; Takuno and Gaut 2012)
and in different environmental conditions (Dubin et al.
2015), and a recent study in the outcrossing crucifer Cap-
sella grandiflora identified the presence of gbM as a major
predictor of cis-regulatory constraint (Steige et al. 2017).
These results suggest that genes with gbM generally have a
lower tolerance to variation in gene expression. Indeed,
orthologues with conserved gbM between A. thaliana and
A. lyrata exhibited significantly lower expression diver-
gence than other genes, and changes in gbM levels tended
to have occurred in lowly expressed (presumably func-
tionally less important) genes (Takuno et al. 2017).

The long-term evolutionary conservation of gbM across
orthologues further suggests that gbM might have a func-
tion; however, it is not currently clear what that function
might be. The fact that some plant species lack gbM (e.g.
Bewick et al. 2016) have led researchers to question whe-
ther gbM is essential (Zilberman 2017). Thousands of genes
are the target of heterochromatinization in A. thaliana,
where CG and CHG contexts are heavily methylated in their
gene bodies, but the increase in BONSAI methylation 1
(IBM1) protein removes mCHG and histone H3 lysine 9
methylation (H3K9me) to keep such genes expressed, and
as a consequence, mCG remains in expressed genes (Saze
and Kakutani 2011). Thus, gbM could potentially be a by-
product of this molecular process, which could itself be
subject to evolutionary constraint (Takuno and Gaut 2013;
Bewick and Schmitz 2017).

While experimental studies seem to exclude a role of
gbM in gene silencing (e.g. Jones 2012; Bewick et al.
2016), it is possible that gbM is associated with changes in
other aspects of transcriptional regulation. For instance, it
has been hypothesised that gbM is associated with reduced
transcriptional noise or erroneous transcription (Bird 1995;
Suzuki et al. 2007; Zilberman et al. 2007, 2008; Huh et al.
2013; Neri et al. 2017). However, a previous study in plants
using expression data from tissue samples found little evi-
dence for an impact of gbM on erroneous transcription
(Bewick et al. 2016), but a reanalysis of the same tissue
samples revealed a small but significant effect of gbM on
gene expression, indicating a potentially homeostatic role of
gbM (Muyle and Gaut 2018). Despite some differences in
the available enzymes and pathways for DNA methylation
in plants and animals, gbM is very similar in plants and
animals regarding the methylation patterns in gbM genes,
and in both, gbM genes tend to have an intermediate
expression level (Zemach and Zilberman 2010; Zilberman
2017). A recent study in humans suggested a possible role
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of gbM in reducing transcriptional noise (Huh et al. 2013).
Additionally, in Arabidopsis thaliana, gbM was also found
to play an important role in preventing the accumulation of
the H2A.Z histone in gene bodies, and such an accumula-
tion was reported to increase the responsiveness of a gene to
the environment (Coleman-Derr and Zilberman 2012; To
and Kim 2014). Hence, gbM could present a way to
maintain a consistent expression of genes by preventing an
increase in their responsiveness. However, so far, no study
has comprehensively tested whether the presence of gbM is
associated with altered expression noise and expression
consistency in plants using single-cell data.

Although gbM could be linked to reduced gene expres-
sion noise, the amount of expression noise tolerated by a
gene could also be affected by other genomic features. For
instance, in yeast, dosage-sensitive and essential genes were
found to tolerate less expression noise than other genes
(Lehner 2008). Hence, to fully understand the relationship
between gbM and gene expression noise, it is crucial to
disentangle direct and indirect effects, which could result
from a “hidden” third genomic feature affecting both gbM
and gene expression noise simultaneously.

In this study, we investigate the potential role of gbM in
reducing gene-specific transcriptional noise and intron
retention as well as in maintaining consistent gene expres-
sion across cells. For this purpose and to avoid artefacts
resulting from comparing cells in different cell stages, we
analyse single-cell RNA-sequencing (RNAseq) data from
root quiescent centre (QC) cells of Arabidopsis thaliana
(Efroni et al. 2015), which are known to have relatively low
mitotic activity (Nawy et al. 2005). We specifically ask if
the observed relationships between gbM and gene expres-
sion noise, expression consistency as well as intron reten-
tion level are due to direct effects, or indirect effects of other
correlated genomic factors.

Materials and Methods
Single-cell RNAseq data

We downloaded single-cell RNAseq data from 20 A.
thaliana Col-0 root QC cells, generated by Efroni et al.
(2015), from the National Center for Biotechnology Infor-
mation (NCBI accession number GSE46226; SRA acces-
sion number: SRX730997-SRX731016). The RNA reads
were trimmed with Trimmomatic 0.36 (Bolger et al. 2014)
and mapped to the TAIR10 A. thaliana reference genome
(https://www.arabidopsis.org/download/index-auto.jsp?

dir=%2Fdownload_files%2FGenes%2FTAIR10_genome_
release, December 2017) with STAR 2.5.3a (Dobin et al.
2013) following the recommended settings modifications
necessary for downstream analyses with Cufflinks. Based
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on the mapped RNAseq reads, gene expression was quan-
tified using Cufflinks 2.2.1 with default settings and treating
each single-cell dataset as an individual sample with no
replicates while running Cuffdiff (Trapnell et al. 2010,
2013; Roberts et al. 2011a, b). These analyses were done
using the A. thaliana TAIR10 genome annotation GFF file
downloaded from the Genome Portal of the Department of
Energy, Joint Genome Institute (Nordberg et al. 2014).

Identification of gbM

To distinguish between gbM and unmethylated genes, we
analysed published whole-genome bisulfite-sequencing
(bisulfite-seq) dataset from two biological replicates of root
samples from A. thaliana Col-0 (Seymour et al. 2014; ENA
accession number: PRIEB6701). The A. thaliana bisulfite-
seq paired-end reads were trimmed with Trimmomatic 0.36
(Bolger et al. 2014) and mapped to the TAIR10 A. thaliana
reference genome, using bismark 0.18.2 (Krueger and
Andrews 2011). The methylation status of each gene was
evaluated by comparing the CG, CHG and CHH DNA
methylation level of the gene-body (from the transcription
start to termination site, including both exons and introns) to
the average DNA methylation level of all genes, based on a
binomial probability distribution as in Takuno and Gaut
(2012) and Takuno et al. (2017). Briefly, because a CHG
and CHH methylation depletion is typical for gbM genes
(Bewick and Schmitz 2017), genes which had a sig-
nificantly higher CHG and/or CHH DNA methylation level
than the genomic average (P value <0.05) were labelled
highly methylated non-gbM genes (Takuno and Gaut 2012
and Takuno et al. 2017) and excluded from further analyses.
The remaining genes were split in the following three
groups: unmethylated genes, gbM genes and ambiguous
genes if their CG DNA methylation level was significantly
lower (P value >0.95), significantly higher (P value <0.05)
or similar to the genomic average, respectively, following
Takuno and Gaut (2012) and Takuno et al. (2017). Only
genes that were identified as gbM or unmethylated in both
replicate bisulfite-seq samples were considered as gbM or
unmethylated in this study, respectively. Overall, out of
21,754 genes with unambiguous methylation status in both
samples, 21,616 showed concordant methylation status.
Additionally, we evaluated if the use of DNA methylation
in the gene body, including introns, had a major impact on
the methylation status assessment by reclassifying all genes
into gbM and unmethylated genes using the method
described above, but this time only using DNA methylation
in exons. A total of 94% of gbM and 96% of unmethylated
genes were classified identically in the second approach.
Furthermore, only 0.1% of gbM and <0.1% of unmethy-
lated genes had a strictly conflicting classification, meaning
that these genes were classified as gbM, unmethylated or

highly methylated non-gbM genes using the second
approach, but their classification differed between our two
approaches. The remaining genes were identified as inter-
mediately methylated using the second approach. We also
examined our expectation that gbM is highly correlated
across different datasets and tissues in A. thaliana by ana-
lysing an additional whole-genome bisulfite-sequencing
dataset from an A. thaliana Col-0 leaf sample generated by
an independent study (Bewick et al. 2016; GEO accession
number: GSE75071). After classifying all genes following
the approach described above, 90% of gbM and 96% of
unmethylated genes were classified identically in the second
dataset, with only 0.6% of gbM and 0.3% of unmethylated
genes having a strictly conflicting classification in the two
datasets, meaning that they were assessed as gbM, unme-
thylated or highly methylated non-gbM genes in the second
dataset, but their classification differed in the two datasets.
The rest of the genes were identified as intermediately
methylated in the second dataset.

Gene expression noise quantification

Gene expression noise was estimated from the fragments per
kilobase of transcripts per million mapped fragments
(FPKM) tracking output from Cufflinks. We used the mea-
sure of stochastic gene expression (F*) defined by Barroso
et al. (2018) as a measure for gene expression noise. This
measure is intended to correct for the fact that expression
level and variance are expected to be correlated (Barroso
et al. 2018). Briefly, stochastic gene expression is defined as
the ratio between the observed variance (¢°) and the
expected variance given the mean (u) expression level of a
given gene over all single cells (Barroso et al. 2018). The
expected variance is given by the lowest degree polynomial
regression modelling log (¢?) as a function of log (x), and as
a result, F* is not correlated with the mean expression level
(Barroso et al. 2018). In our case, the observed correlation
between expression level and variance (Kendall’s rank cor-
relation test 7= 0.887, P value <2.2 x 10716) was removed
when using a polynomial regression of the third degree to
estimate log (02). The correlation between F* and u was
tested using a Kendall’s rank correlation test (Barroso et al.
2018), which revealed no significant correlation between F*
and u (Kendall’s rank correlation test 7=0.0113, NS)
confirming the independence of F* and mean expression
level. Only genes that had an expression level with a log
(FPKM + 1)> 1.5 in at least one sample were used in this
study, as suggested by Barroso et al. (2018). In a second
attempt to quantify gene expression noise without correcting
for the effects of the expression level, we defined tran-
scriptional noise (F”) as the coefficient of variation (standard
deviation/mean) of the gene FPKM tracking following Yin
et al. (2009) and Huh et al. (2013). This was done to control
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for potential artefacts introduced by the expression level
correction of the F* expression noise measure.

Gene expression consistency

To investigate if gbM genes were more consistently expressed
in the root QC cells than unmethylated genes, we defined the
expression consistency of the genes included in this study (see
above) as the number of replicate single cells in which the
gene was detected as expressed (FPKM >0). Hence, the
expression consistency of a gene is high when that gene is
expressed in many samples indicating a consistent expression
of the gene in the root QC cells. Gene expression consistency
as used here provides similar information to the measure of
gene expression noise, but these two metrics are not com-
pletely identical. The main difference is that expression con-
sistency only considers if a gene is expressed or not, meaning
that if two genes are expressed in exactly the same number of
samples they are going to have the same expression con-
sistency regardless of differences in expression levels between
samples. However, gene expression noise discriminates
between genes that are expressed in the same number of
samples, but with varying expression level differences among
samples. Importantly, as defined here, the measure of
expression consistency is expected to be biased toward gen-
erating higher estimates for highly expressed and long genes.
To account for this effect, we included mean expression level
and gene length as explanatory variables in our statistical
analyses of expression consistency.

Statistical analyses of gene expression noise and
consistency

Differences in the expression noise level and other genomic
features between gbM and unmethylated genes were first
examined with a two-sided Mann—Whitney U test and the
relationship between the other genomic features and expres-
sion noise were examined with Spearman’s rank-order cor-
relation tests and Mann—Whitney U tests. We used an
analysis of covariance (ANCOVA) to assess the effect of
gbM after accounting for the effects of other genomic fea-
tures. Similar ANCOVA analyses were done with both
expression noise and expression consistency as response
variables. In these analyses, we log transformed a variable if
the log transformation led to an increase in R?, except for the
mean expression level when predicting F* in order to avoid
introducing correlations between F* and the mean expression
level through transformations. We centred and scaled our
variables before ANCOVA analyses and performed a
Bayesian information criterion (BIC) model averaging model
selection to find the best model. The effect of multi-
collinearity of the variables was investigated using the var-
iance inflation factor (vif) and \vif < 2 was required for each
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variable. These analyses were run in R 3.4.3 (R Core Team
2017) using the “car” (Fox and Weisberg 2011) and
“MuMIn” (Bartori 2018) packages. To further confirm that
our results are robust to multicollinearity, we ran a
linear regression analyses using gbM and the principal
components of the other genomic features of interest identi-
fied by our ANCOVA as predictor variables, following
Drummond et al. (2006). As the principal components are by
definition orthogonal, this reduces problems with multi-
collinearity. For these analyses, we used the “pls” R package
(Mevik et al. 2016).

In our analyses of expression noise and expression
consistency, we included nine additional genomic features,
which could affect the observed expression noise of a gene.
These features are: gene length, mean expression level,
predicted gene lethality, the ratio of non-synonymous and
synonymous divergence (Ka/Ks) between A. thaliana and
A. lyrata, co-expression module size, gene duplicates
retained in the A. thaliana genome from the a and py whole-
genome duplication (WGD), expression breadth and pre-
sence/absence of tandem duplicates, as estimated by Lloyd
et al. (2015). Gene expression noise was previously
described to be negatively correlated with gene length,
lethality and mean expression level (Lehner 2008; Huh et al.
2013; Barroso et al. 2018). Additionally, selection pre-
venting noise propagation within gene networks was iden-
tified to reduce the observed amount of expression noise in
mouse (Barroso et al. 2018); hence, the co-expression
module size of a gene, as a proxy for network centrality,
could also impact the amount of expression noise tolerated
by a gene. Furthermore, genes experiencing strong selection
could also be less tolerant to high expression noise levels.
Here, we regard Ka/Ks value between A. thaliana and A.
lyrata as a proxy for selective constraint, in order to be able
to account for this effect. Similarly, genes that are retained
in duplicate for prolonged periods of time (like duplicates
retained from the a and By WGD) or that can tolerate tan-
dem duplication, likely experience different selective pres-
sures from single-copy genes (Maere et al. 2005; Li et al.
2016), and could also exhibit different expression noise
distributions than other genes. Finally, genes with different
expression breadth show different rates of protein evolution
(Slotte et al. 2011) and thus expression breadth could also
affect variation in the observed amount of expression noise
of a gene. Consequently, we included published information
on gene lethality, Ka/Ks, co-expression module size, gene
duplicates retained in the A. thaliana genome from the «
and Py WGD, expression breadth and presence/absence of
tandem duplications in A. thaliana (Lloyd et al. 2015) in our
analyses. Finally, we compared the evolutionary rate of
gbM and unmethylated genes based on estimates of non-
synonymous divergence (Ka) between A. thaliana and A.
lyrata obtained by Takuno et al. (2017).
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Table 1 Observed differences
between gbM and unmethylated

genes regarding various
genomic features based on a
two-sided Mann—Whitney U test

Genomic features gbM Unmethylated P value
Estimated stochastic gene expression F* 0.96 1.11 <2x10716
Estimated transcriptional noise F’ 2.94 3.10 3.16x 1071
Expression consistency 14 11 <2x1071¢
Mean expression level 8.64 13.85 <2x10716
Gene length (bp) 3450 1783 <2x107'
Lethal gene 23.4% 13.1% <2x10716
A. lyrata homologue Ka/Ks 0.156 0.153 0.179

A. thaliana vs. A. lyrata Ka estimate 0.017 0.019 3.15x107°
Co-expression module size 19 14 <«2x10716
Expression breadth 64 64 <2x1071°
Gene duplicates retained from the « WGD 26.77% 33.06% 229% 10710
Gene duplicates retained from the py WGD 10.29% 13.56% 3.72x107°
Tandem duplicated genes 7.6% 10% 1.05x 1074

The differences are shown as proportions for binary variables and as median values for non-binary variables.
P values were corrected for multiple testing using a Benjamini and Hochberg P value adjustment

Intron retention analyses

To quantify the number of reads mapping to introns, we
modified the A. thaliana genome annotation to mark all
positions of each non-overlapping gene, which were not
part of any exon or UTR, as intron. Then, all gene anno-
tation entries were removed except “gene”, “mRNA” and
“intron”, and all introns were relabelled as “exon” as sug-
gested by Bewick et al. (2016). This modified genome
annotation was then used to map the single-cell RNAseq
reads to the reference genome using STAR 2.5.3a (Dobin
et al. 2013). Then, the Bioconductor package Rsubread
1.28.1 (Liao et al. 2013) was used to count the number of
reads mapping to introns as well as to count the number of
reads that mapped to the respective exons of the gene when
we mapped the RNAseq dataset using the regular annota-
tion file. These counts were then added to generate a total
number of reads mapping to each gene. To test whether
gbM had an effect on the number of reads mapping to
introns, we first calculated the intron FPKM and total
FPKM of each gene based on our count data and only
included genes in our model which fulfilled log (total
FPKM + 1) > 1.5, identically to our gene filtering for the
gene expression noise analyses. We then performed an
ANCOVA as described above with the intron FPKM as the
response variable. We included two additional variables,
total intron length and intron number, which are expected to
influence the observed intron FPKM of a gene.

Results

GbM genes show more consistent expression and
less expression noise than unmethylated genes

We detected a total of 11,659 genes that had an expression
level sufficiently high in at least one of the single-cell

RNAseq samples to be included in this study (see Materials
and methods). Of these, 3799 and 5176 genes were iden-
tified as gbM and unmethylated genes, respectively,
whereas the rest were either highly methylated non-gbM or
ambiguous (see Materials and methods). A total of 13% of
genes were expressed in all 20 single-cell replicates,
whereas only 4.6% of the genes were expressed in only one
replicate.

Comparing gbM to unmethylated genes revealed that
gbM genes had significantly lower expression noise than
unmethylated genes, using both noise measures (F* and F,
Table 1). Considering gene expression consistency (the
number of single cells in which a gene was expressed), gbM
genes had a significantly higher gene expression con-
sistency than unmethylated genes. Sixteen and 58% of the
genes found to be expressed in only one single-cell sample
were gbM and unmethylated, respectively, whereas 34 and
43% of the genes found to be expressed in all single-cell
sample were gbM and unmethylated, respectively (Table 1
and Fig. 1). Additionally, we found gbM genes to be sig-
nificantly longer than unmethylated genes (Table 1) and to
have intermediate expression levels (supplementary Fig.
S1). Finally, significantly fewer gbM genes were retained
from the o and fy WGD or tandem duplicated and gbM
genes had on average a significantly higher co-expression
module size and expression breadth (number of tissues in
which a gene was found expressed; Lloyd et al. 2015), than
unmethylated genes (Table 1). The difference in the gene
expression breadth between gbM and unmethylated genes
was due to a higher proportion of the gbM genes (82.4 vs.
72% unmethylated genes) having a maximal expression
breadth.

However, some of the features for which gbM and
unmethylated genes differ were significantly correlated with
each other (supplementary table S1), as is common for
genomic data. Hence, gbM genes seem to be generally less
noisy with respect to their expression and more consistently
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Fig. 1 Proportion of gbM
(black), unmethylated (white)
and other (highly methylated
non-gbM and ambiguous; grey) —
genes found to be expressed in n
number of single-cell samples of
A. thaliana QC cells

0.8

Proportion
0.6

0.4

0.2

0.0

expressed than unmethylated genes (Table 1 and Fig. 1).
But this could be due to confounding factors that are cor-
related with both gbM and expression noise or consistency.
Furthermore, both gene expression noise measures (F* and
F’) were negatively correlated with expression consistency
(Spearman’s rank-order correlation test, p = —0.36 and p =
—0.59, P value <2.2x107'® and P value<2.2x10°',
respectively).

GbM is indirectly linked to expression noise and
directly linked to expression consistency

To resolve the relationship between gbM and gene
expression noise as well as expression consistency, we
performed an ANCOVA on a set of 5637 genes, for which
information on all the genetic features investigated in this
study were available. If gbM has a direct effect on gene
expression noise and/or expression consistency, then the
observed significant correlation between gbM and gene
expression noise as well as expression consistency should
still be detectable when adjusting for effects of other
genomic features.

The averaged ANCOVA model revealed no significant
effect of gbM on either F* nor F’, a low relative predictor
importance of gbM and a BIC best model selection did not
include gbM as predictor (supplementary table S2 and S3).
Indeed, the best model (selected by BIC model selection)
included only gene length, expression breadth and gene
duplicates retained from the a« WGD as well as expression
level, gene length, expression breadth and gene duplicates
retained from the a WGD as explanatory variables for F*
and F’, respectively (supplementary table S2 and S3). To
investigate if the lack of a relationship between gbM and
expression noise was due to a loss of power resulting from
the downsampling of our data from 8975 genes for which
¢bM information was available to 5637 genes for which
information on all the genomic features were available, we
reran an ANCOV A and a BIC model selection, but this time

SPRINGER NATURE
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only including genomic features for which information was
available for all 8975 genes. This second averaged
ANCOVA model also revealed no significant effect of gbM
on gene expression noise (supplementary table S4); hence,
the lack of a significant effect of gbM on expression noise in
the first averaged ANCOVA model, including all genomic
features studied, was likely not due to a loss of detection
power. Rather, gene length, expression breadth and gene
duplicates retained from the « WGD seem to indirectly link
gbM to gene expression noise through the strong correlation
of gbM with these genomic features. Similar results were
obtained for both the stochastic gene expression F* and the
transcriptional noise F’; hence, this result is not due to the
way in which gene expression noise was estimated. How-
ever, the variance explained by our models was generally
low (R*=0.0261 and R*=0.1016 for F* and F’, respec-
tively). To further confirm our findings, we reanalysed the
dataset using principal components of our genomic features
to avoid multicollinearity. This confirmed that, when con-
sidering the genomic features identified as significantly
correlated with F* as well as F’ by the ANCOVA, gbM was
not significantly correlated with gene expression noise
(supplementary table S5 and supplementary Fig. S2 and
S3). Finally, to investigate potential effects of using a dif-
ferent dataset or tissue sample for classifying genes as gbM,
we reran our analyses with only the genes assessed as gbM
and unmethylated using both the Seymour et al. (2014) and
Bewick et al. (2016) bisulfite-seq datasets. This analysis,
with a stricter gene set of 2236 gbM and 2828 unmethylated
genes, revealed similar results to the previous analyses,
showing no significant effect of gbM on gene expression
noise (supplementary table S6).

The ANCOVA analysis of the relationship between gbM
and gene expression consistency revealed a significant
positive effect of gbM on gene expression consistency even
when adjusting for other genomic features and gbM was
kept in the best model (based on a BIC model averaging
model selection), which could explain a substantial fraction
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Table 2 Best ANCOVA model of gene expression consistency based
on a BIC model averaging model selection (RZ=0.55; n =5 637)

Table 3 Best ANCOVA model of log (intron FPKM) based on a BIC
model averaging model selection (R> =0.731; n = 4376)

Genetic features Gene expression consistency

Genetic features Log (intron FPKM)

Coefficients Sum of F value P value Coefficients Sum of F value P value
squares squares
Log (mean 4.222 97,160 63254 <2x107'%  Log (gene FPKM)  1.56 9 974.6 97514 <2x10716
expression level) Log (gene length) —0.83 909.7 8893 <2x10°6
—16

Log (gene length)  1.373 6690 4356 <2x10°"  pog (total inron 046 256.1 2504  <2x107'

gbM 0.457 180 11.7 6.34x10™*  length)

Expression breadth  0.531 1538 100.1  <2x107'®  Log (intron 0.89 973.8 952 <2x10716

Gene duplicates 0.513 312 204 6.61x10°6  number)

retained from the o gbM —0.13 11.8 11.6 6.81x107*

WGD Expression —0.08 295 289 8.17x10°®
breadth

of the observed variation (R>=0.55; Table 2 and supple-
mentary table S7). Hence, gbM is associated with gene
expression consistency even after adjusting for the effects of
other genomic features. In addition to gbM, gene length,
expression level, expression breadth and gene duplicates
retained from the « WGD were kept in our best model and
all had a significantly positive effect on expression con-
sistency (Table 2 and supplementary table S7). Highly
similar results were obtained in a linear regression analyses
using gbM and principal components of the other genomic
features, previously identified as significantly correlated
with expression consistency, as predictor variables (sup-
plementary table S8 and supplementary Fig. S4). Finally,
we reanalysed the relationship between gbM and gene
expression consistency by only using genes assessed as
gbM and unmethylated using two independent bisulfite-seq
datasets (Seymour et al. 2014; Bewick et al. 2016). These
analyses also indicated an effect of gbM on gene expression
consistency after adjusting for the effects of other genomic
features (supplementary table S9).

Fewer RNAseq reads map to gbM gene introns than
to unmethylated gene introns

Previously, Bewick et al. (2016) found no evidence for an
impact of gbM on the level of introns retained in the spliced
RNA molecule, when comparing gbM and unmethylated
genes using tissue RNA samples. To test if the use of a
single-cell RNA dataset could uncover subtle differences in
the intron retention levels of gbM and unmethylated genes,
we estimated the amount of reads mapping to introns
similarly to Bewick et al. (2016; see Materials and methods)
and ran ANCOVA analyses to elucidate which genomic
features could best predict the amount of reads mapping to
introns.

Here, we detected a total of 8133 non-overlapping genes
that had an expression level sufficiently high in at least one

of the single-cell RNAseq samples to be included in the
intron retention analysis (see Materials and methods). Of
these, 3477 and 4656 genes were classified as gbM and
unmethylated genes, respectively, whereas the rest were
either highly methylated non-gbM or ambiguous (see
Materials and methods). The model averaging ANCOVA
model selection revealed a significant negative effect of
gbM on the number of reads mapping to the introns of a
gene (Table 3 and supplementary table S10). Additionally,
the expression level, total intron length and the number of
introns had a significant positive effect, whereas the gene
length and expression breadth had a significant negative
correlation with the number of reads mapping to introns
(Table 3 and supplementary table S10). Similar results were
obtained when using principal components of the genomic
features as well as gbM as predictor variables (supple-
mentary table S11 and supplementary Fig. S5). The results
further remained unchanged when classifying genes as gbM
or unmethylated using two independent bisulfite-seq data-
sets (Seymour et al. 2014; Bewick et al. 2016) (supple-
mentary table S12).

Discussion

GbM is not associated with reduced expression
noise in A. thaliana root QC cells

We first found that gbM genes had lower expression noise
than unmethylated genes, in line with the proposed role of
g¢bM in reducing expression noise (Bird 1995; Suzuki et al.
2007; Huh et al. 2013) and with previous findings in human
brain and blood tissue (Huh et al. 2013). However, gbM and
unmethylated genes also differed with respect to a number
of genomic features. For instance, as previously reported
(Takuno and Gaut 2012, 2013; Bewick and Schmitz 2017),
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gbM genes were significantly longer than unmethylated
genes and had an intermediate expression level (Table 1 and
supplementary Fig. S1). Additionally, we found gbM genes
to have on average a significantly higher expression breadth
and a significantly higher proportion of gbM genes were
lethal (Table 1), which is in concordance with literature
(Zhang et al. 2006; Takuno and Gaut 2012). GbM genes
also differed significantly from unmethylated genes
regarding the presence of tandem duplications and retained
copies from the a and By WGD (Table 1). Surprisingly, we
did not observe a significant difference in the Ka/Ks of gbM
and unmethylated genes despite previous reports of gbM
genes being evolutionarily more constrained than unme-
thylated genes (e.g. Takuno and Gaut 2012). However,
Takuno and Gaut (2012) were more stringent regarding the
estimation of Ka/Ks by requesting the aligned sequences to
include at least 100 synonymous sites, which was not
requested for the Ka/Ks estimation in the dataset used in this
study (Lloyd et al. 2015). Hence, a less precise estimation of
Ka/Ks could have affected our power to detect this corre-
lation in our analyses. Furthermore, although gbM genes do
not seem to be more constrained, they do evolve at a lower
rate in terms of Ka (Table 1), in line with the observations
in Takuno and Gaut (2012).

Correcting for the effects of other genomic features
revealed that gbM genes did not differ from unmethylated
genes with respect to their expression noise. This result was
robust to different expression noise estimation. Addition-
ally, these results were robust to the effect of down-
sampling. However, the variance explained by our models
was generally low (R* = 0.0261 and R* = 0.1016 for F* and
F, respectively), indicating that other features not included
in this study could be important to consider when analysing
variation in expression noise in A. thaliana root QC cells.
Indeed, microRNAs are known to accelerate the mRNA
degradation of targeted genes and were hypothesised to play
a role in increasing gene expression precision trough noise
reduction (e.g. Bartel and Chen 2004; Schmiedel et al.
2015) and, in yeast, dosage sensitivity was also reported to
affect gene expression noise (Lehner 2008).

Nevertheless, our gene expression noise analyses
revealed that genes with a high expression breadth and
genes retained from the « WGD were less noisy than other
genes (supplementary table S4). The observation that genes
with duplicates retained from the younger a« WGD (Bowers
et al. 2003) were less noisy than other genes, but genes with
duplicates retained from the older py WGD (Bowers et al.
2003) did not differ from other genes with respect to their
expression noise, and is in line with the gene balance
hypothesis, which predicts that gene dosage balance has an
important impact on fitness (Birchler and Veitia 2012).
Indeed, in plants, unlike other gene duplicates originating
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from a WGD, duplicates that are dosage sensitive tend to be
retained during intermediate evolutionary periods before
being ultimately lost (Li et al. 2016). Hence, in A. thaliana,
genes retained from the o WGD could harbour dis-
proportionately more dosage-sensitive genes than genes
retained from the fy WGD or tandem duplicated genes.
This could explain why genes with duplicates retained from
the o« WGD were less noisy than other genes, but the
observed expression noise of other duplicated genes was not
reduced. Identically, genes with a high expression breadth
could primarily be key genes, like housekeeping genes, and
could be under selection to minimise their expression noise.

GbM genes are more consistently expressed than
unmethylated genes

Analysing the relationship between gbM and gene expres-
sion consistency revealed that genes with gbM were sig-
nificantly more consistently expressed than unmethylated
genes even after adjusting for effects of other genomic
features (Table 2). This result is in line with previous results
describing a negative correlation between gbM and gene
responsiveness in A. thaliana (Aceituno et al. 2008) and
with observations of Coleman-Derr and Zilberman (2012),
who postulated that gbM could have a function in pre-
venting the accumulation on the H2A.Z histone in the body
of a gene, which is associated with an increase in the
responsiveness of a gene (Coleman-Derr and Zilberman
2012; To and Kim 2014). Additionally, the loss of H2A.Z
histones from the gene body causes a change in the
expression regulation of a gene indicating different reg-
ulatory requirements for responsive and housekeeping
genes (Coleman-Derr and Zilberman 2012). However,
Bewick et al. (2016) investigated a potential function of
gbM in preventing H2A.Z histone from accumulation in
gene bodies using metl mutant A. thaliana plants, in which
gbM was missing, and found no differences in the dis-
tribution patterns of the H2A.Z histone in genes which lost
gbM. Hence, this could indicate that gbM is not causing a
histone H2A.Z depletion and an increased expression con-
sistency, but that gbM is a by-product of a histone H2A.Z
depletion (Bewick et al. 2016). Nevertheless, our results are
compatible with these observations since we found a cor-
relation between gbM and gene expression consistency,
which does not exclude the possibility that gbM is induced
by an increased gene expression consistency through the
depletion of H2A.Z histones.

Additionally, our analyses also revealed that genes with
high expression breadth and gene with duplicates retained
from the o« WGD were significantly more consistently
expressed than other genes (Table 2), as might be expected
for dosage-sensitive genes and housekeeping genes.
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GbM potentially enables a more accurate RNA
splicing trough reduced intron retention

Unlike Bewick et al. (2016), here, we find a correlation
between gbM and the amount of reads mapping to the
introns of a gene, which points to a role of gbM in reducing
RNA mis-splicing in the form of intron retention. In their
study, Bewick et al. (2016) compared wild-type A. thaliana
Col-0 individuals to met! mutant A. thaliana plants, in
which gbM was missing, and found no evidence for an
impact of gbM on intron retention. Eliminating gbM is
indeed a good approach to study such a hypothesis; how-
ever, it is possible that some redundancies in the function of
different epigenetic modifications could compensate for the
absence of gbM in the mutant plants (Bewick et al. 2016).
Indeed, H3K36me3 chromatin modifications, for example,
were previously shown to impact splicing regulation (Lin
and Workman 2011), and Bewick et al. (2016) tried to
account for the effect of H3K36me3 chromatin modifica-
tions on mis-splicing by studying mutants that lacked gbM
and H3K36me3, but found no evidence for differences in
mRNA splicing between mutants and wild-type (Bewick
et al. 2016). Nevertheless, it is still possible that other
epigenetic modifications could compensate for the lack of
gbM in the mutant plants, which resulted in wild-type-like
RNA splicing. However, it is also possible that the observed
differences in the amount of reads mapping to the introns of
gbM and unmethylated genes (Table 3) could be the result
of some other processes and not because of lower intron
retention levels. Indeed, our analysis revealed that the
amount of reads mapping to a gene, the total intron and
gene length as well as the number of introns were sig-
nificantly correlated with the number of reads mapping to
the introns of a gene, which was expected since RNA
samples will inevitably contain un-spliced RNA (La Manno
et al. 2018). Hence, the amount of reads originating from
introns of un-spliced reads is expected to depend on these
characteristics of the gene. But the amount of un-spliced
RNA in a sample is also expected to be affected by tran-
scriptional dynamics (La Manno et al. 2018), and the pro-
portion of un-spliced RNA observed could differ between
genes, for which transcription started shortly before sam-
pling and for those which were continuously expressed
before sampling (La Manno et al. 2018). Hence, the
observation that gbM genes have fewer reads mapping to
their introns than unmethylated genes (Table 3), can either
be explained by a lower level of un-spliced RNA derived
from gbM genes in the QC cells or by a lower level of
introns retained in the spliced RNAs of gbM genes. Dis-
entangling these two explanations is very difficult based
only on RNAseq data. Nevertheless, a lower level of introns
retained in the spliced RNAs of gbM genes would be in line

with previous suggestions that gbM could enable more
accurate transcription (Regulski et al. 2013; Neri et al.
2017). Additionally, genes with a high expression breadth
had fewer reads mapping to their introns than genes with
low expression breadth (Table 3), indicating that selection
could act on reducing intron retention in potentially key
genes.

GbM as result of gene regulation

Lastly, there is also the possibility that gbM itself is driven
by some specificities of gene regulation. For example,
Secco et al. (2015) reported methylation modifications after
stress-induced gene expression changes due to phosphate
deprivation in rice, but most of these methylation mod-
ifications occurred in transposable elements close to upre-
gulated genes and similar experiments showed only a
restricted stress induced methylation modification in Ara-
bidopsis (Secco et al. 2015). Nevertheless, it could be
possible that gbM is induced through regulatory processes,
for instance, affecting gene expression consistency, which
we found to be correlated with gbM. To investigate this
possibility, we used a linear regression model with a BIC
model selection to evaluate which genomic features should
be included in a model predicting gbM. We used all
genomic features as predictor in a single regression analyses
except F’ and the intron number of a gene, which violated
our requirement of \vif < 2. This analysis revealed that the
best model to predict gbM includes gene length, mean
expression level, total intron length, co-expression module
size and expression breadth (supplementary table S13). This
indicates that when it comes to predicting gbM, neither gene
expression noise nor gene expression consistency, nor
indeed the number of reads mapping to the introns of a
gene, are essential genomic features to consider, at least in
our analyses of this dataset. Nevertheless, it is possible that
a histone H2A.Z depletion drives gbM (Bewick et al. 2016)
and an increased gene expression consistency (Coleman-
Derr and Zilberman 2012). Hence, gbM and gene expres-
sion consistency could be indirectly linked together through
the distribution patterns of the H2A.Z histone.

Conclusion

Despite being intensively studied in the recent years, it is
still unclear if gbM has a function. Several hypotheses have
been postulated regarding potential functions of gbM and,
here, we used single-cell RNAseq data from root QC cells
of A. thaliana to test these hypotheses. We investigated a
possible function of gbM in reducing expression noise (Bird
1995; Suzuki et al. 2007; Huh et al. 2013), but found no
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support for this hypothesis. However, our analyses revealed
that gbM genes were expressed on average in more single-
cell replicates than unmethylated genes, even after correct-
ing for the effect of expression level and gene length,
indicating an involvement of gbM in the maintenance of a
consistent gene expression either as antagonist of H2A.Z
histones (Coleman-Derr and Zilberman 2012; To and Kim
2014) or as a by-product of H2A.Z histone depletion
(Bewick et al. 2016). Finally, we investigated the hypoth-
esis that gbM enables more accurate RNA splicing (Reg-
ulski et al. 2013; Neri et al. 2017) and found lower levels of
RNAseq reads originating from introns from gbM genes,
which could be a hint toward a lower intron retention level
in the mRNAs of gbM genes or toward a lower proportion
of un-spliced gbM gene RNAs. Here, we could not disen-
tangle these two explanations, but further studies on intron
retention levels could give new insights on the function of
gbM. Our results are important for an improved under-
standing of the interplay between methylation and gene
expression variation across plant genomes.
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