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Abstract: Task-based functional magnetic resonance imaging is a powerful tool for studying

brain function, but neuroimaging research produces ongoing concerns regarding small-sample

studies and how to interpret them. Although it is well understood that larger samples

are preferable, many situations require researchers to make judgments from small studies,

including reviewing the existing literature, analyzing pilot data, or assessing subsamples.

Quantitative guidance on how to make these judgments remains scarce. To address this, we

leverage the Human Connectome Project’s Young Adult dataset to survey various analyses–

from regional activation maps to predictive models. We find that, for some classic analyses

such as detecting regional activation or cluster peak location, studies with as few as 40

subjects are adequate, although this depends crucially on effect sizes. For predictive modeling,

similar sizes can be adequate for detecting whether features are predictable, but at least an

order of magnitude more (at least hundreds) may be required for developing consistent

predictions. These results offer valuable insights for designing and interpreting fMRI studies,

emphasizing the importance of considering effect size, sample size, and analysis approach

when assessing the reliability of findings. We hope that this survey serves as a reference

for identifying which kinds of research questions can be reliably answered with small-scale

studies.
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Introduction

Considerable attention has been given to problems caused by inadequate sample sizes in task-based

functional magnetic resonance imaging (fMRI) studies (e.g., Button et al., 2013; M. A. Lindquist et al.,

2013; Lohmann et al., 2017; Marek et al., 2022; Poldrack et al., 2017; Thirion et al., 2007; Turner

et al., 2018; Yarkoni, 2009). When individual studies have too few subjects, estimated effects tend to be

noisy, making the studies challenging to interpret because both false positives and false negatives rates

increase (Cremers et al., 2017; Gonzalez-Castillo et al., 2012; Lieberman & Cunningham, 2009), effect

sizes estimated from significant results are inflated (Marek et al., 2022; Reddan et al., 2017; Yarkoni,

2009), and the replicability of significance maps are low (Turner et al., 2018). Together these issues

conspire to impede cumulative research (see also Ottenbacher, 1996; Schmidt, 1996).

To address these issues, several possible solutions have emerged, ranging from the methodological (e.g.,

techniques for meta-analysis, Eickhoff et al., 2009; Turkeltaub et al., 2002; Wager et al., 2003) to the

social, including the organization and coordination of imaging initiatives collecting datasets comprising

hundreds to tens of thousands of subjects (e.g., Di Martino et al., 2014; Krieger et al., 2017; Miller

et al., 2016; Van Essen et al., 2013; Volkow et al., 2018). These solutions foreshadow good news about

the reproducibility, reliability, and overall quality of research based on their use. However, it is still often

necessary for researchers to interpret results from studies with relatively small sample sizes, such as

when revisiting older publications and analyzing pilot data. Given the prevalence of small studies in the

neuroimaging literature (Poldrack et al., 2017), it remains important to have well-calibrated expectations

for their reliability.

Fortunately, data from relatively small, task-based studies can support reliable research in several specific

ways (Kragel et al., 2021). For example, multivariate models trained using only tens of subjects can

exhibit strong predictive performance on external samples consisting of hundreds of subjects (Han et al.,

2022; Lee et al., 2021; Wager et al., 2013). If these models had been trained with larger and more diverse

groups of subjects, their predictive performance would likely improve (Chen et al., 2023; Greene et al.,

2022; Schulz et al., 2022; Traut et al., 2022), and small samples usually impede accurate estimation

of generalization performance (Poldrack et al., 2020; Varoquaux, 2017). But many research questions

can be answered based on whether, and not how well, fMRI data support predictions (Naselaris et al.,

2011). When multivariate models are tested appropriately – such as through cross-validation, or, ideally,

external test sets – predictive performance in a smaller dataset justifies pursuing the line of research that

led to the study.

In addition to research using multivariate models, there are also examples of reliable research with rel-
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atively small samples using classic, mass-univariate approaches. As one straightforward example, high

power can be achieved by focusing on robust effects (Desmond & Glover, 2002), which are prevalent in

regions like the somatomotor or visual networks (Engel et al., 1994; Grodd et al., 2001). Moreover, av-

enues for enhancing reliability are provided by ongoing developments in statistical methods. For example,

in traditional mass-univariate testing, linear models are fit to the timeseries from individual voxels, and

the resulting maps can be tested for significance voxel-wise, across clusters, or regionally. With small

sample sizes, results from these methods exhibit poor replicability (Nee, 2019; Turner et al., 2018, 2019).

Yet several alternatives to these traditional methods exist that have been shown to improve statistical

power while preserving rates of false positives and improving reliability (Noble et al., 2020; Spisák et al.,

2019; Wang et al., 2021). As with multivariate methods, this success points to the fact that it may be

possible to overemphasize a lack of reproducibility, and that even small sample sizes can support robust

research.

In this paper, we survey the robustness of inferences that rely on task fMRI conducted on small samples,

by which we mean fewer than 100 subjects. The investigation considered four approaches to analyzing

task fMRI, methods that range from statistical maps to predictive models. First, we considered region-

of-interest analyses, assessing the sensitivity and reliability for detecting regional activation. Second,

we considered the consistency with which studies can localize peaks of activity. Third, we considered

the reliability of the patterns of estimated effect sizes. Finally, we concluded with an assessment of the

reliability of multivariate models and conclusions based on those models.

For each of these four approaches, we explored robustness using a four-part simulation (Cremers et al.,

2017; Geuter et al., 2018; Lohmann et al., 2017; Thirion et al., 2007; Turner et al., 2018). First,

we built and described a reference distribution – a population about which individual studies should

support inference. Then, we simulated studies based on samples from this population across a range of

sample sizes and assessed how accurately individual studies estimated population-level metrics. Third, we

calculated statistics related to the variability of these metrics across simulations. Finally, we calculated

the variability of these metrics across the individual subjects that compose the whole population.

Methods

Simulations relied on data from the Human Connectome Project Young Adult cohort (HCP YA; Feinberg

et al., 2010; Moeller et al., 2010; Setsompop et al., 2012; Van Essen et al., 2013; Xu et al., 2012). We

summarize the dataset here and describe the analyses. The tasks and contrasts included in analyses are

described in the supplementary materials (section 1).
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Figure 1: Outline of Methods. From a large dataset (HCP YA), gold-standard results were generated
at each of four different analysis levels: regional of interest activation (Figure 2), peak localization
(Figure 3), topography (Figure 4), and predictive model performance (Figure 5). Smaller studies were
simulated and compared to their gold standards and each other. Finally, the participants from the gold
standard were compared to each other.

Data

The Human Connectome Project 500 (HCP 500) consists of both structural and functional data from

approximately 500 subjects, although the number of subjects for each task differs (numbers reported

below). The 500-participant release was used because our survey covers methods performed in volumetric

space.

All data were acquired on a Siemens Skyra 3T scanner at Washington University in St. Louis. For each

task, two runs were acquired, one with a right-to-left and the other with a left-to-right phase encoding.

Whole-brain echo-planar imaging acquisitions were acquired with a 32-channel head coil with TR=720ms,

TE=33.1ms, flip angle=52◦, bandwidth=2290Hz/Px, in-place field-of-view=208×180mm, 72 slices,

2mm isotropic voxels, with a multi-band acceleration factor of 8. For a full description of the fMRI data

acquisition, see Van Essen et al. (2013).

Scans were preprocessed according to the HCP “fMRIVolume” pipeline (Glasser et al., 2013), which

includes gradient unwarping, motion correction, fieldmap-based distortion correction, brain-boundary-

based registration to a structural T1-weighted scan, non-linear registration into MNI152 space, grand-

mean intensity normalization, and spatial smoothing using a Gaussian kernel with a full-width half-

maximum of 4mm. Analyses were restricted to either a whole-brain mask or a graymatter mask that
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included both cortical and subcortical voxels.

Several analyses were performed using a general linear model on the volumetric contrast maps provided

by the HCP (Barch et al., 2013). For each task, predictors (described for each task in the supplementary

materials) were convolved with a canonical hemodynamic response function to generate regressors. To

compensate for slice-timing differences and variability in the hemodynamic delay across regions, temporal

derivatives were included and treated as variables of no interest. Both the data and the design matrix were

temporally filtered using a linear high-pass filter (cutoff 200 s). During model fitting, the time series was

pre-whitened. For each task, a single contrast of the estimated parameters was analyzed (the result of a

fixed-effects analysis on run-wise “Level 1” analyses). Note that although this approach did not include

denoising strategies standard in many analysis pipelines (e.g., including motion regressors as confounds),

denoising these data has been reported to not substantially improve individual-level z-statistics (Barch

et al., 2013).

Analyses

For each task, one group-level dataset was calculated from all available subjects, which we alternatively

refer to as the reference dataset, the gold standard, or the population dataset. Studies were simulated

by drawing samples (with replacement) from the population (full) dataset. Simulated studies consisted

of either 20, 40, 60, 80, or 100 subjects. At each sample size, simulations were repeated 100 times. In

comparisons between participants, we considered the pairwise relationships between all participants in

the population.

Maps of Regional Activation

Voxels were labeled and grouped according to either the Schaefer parcellation (after projection of the

parcellation to standard space) or the Harvard-Oxford subcortical atlas (Schaefer et al., 2018). Analyses

were performed using the 400-level parcellation (additional levels are presented in the supplementary

materials). Regions were further grouped into one of the Yeo7 Networks or, if they were within subcortex,

labeled as such (Thomas Yeo et al., 2011).

Within each region of interest, the average activity across voxels was calculated for all subjects. Activation

was determined for each region by performing a t-test across subjects.

To facilitate comparisons across tasks, region of interest analyses focused on the ten regions in each task

that exhibited the largest effect size in the gold standard. To compare the simulated studies to the gold
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standard, we calculated the proportion of studies at each sample size that exhibited significant activation

in each of these ten key regions.

To compare simulated studies with each other, we calculated the mean square contingency coefficients,

Φ, across all pairs of significance maps at a given sample size and task (thresholded at p < 0.05, family-

wise error-corrected across all regions in the parcellation; Holm, 1979). This measure was chosen to

equally prioritize each of the quadrants of the confusion matrix for statistical significance. Referring to

the counts in those quadrants as True Negative, TN , True Positive, TP , False Negative, FN , and False

Positive, FP

Φ =
TP ∗ TN − FP ∗ FN√

(TP + FP ) (TP + FN) (TN + FP ) (TN + FN)

Finally, to compare subjects with each other, we calculated the product-moment correlation across

subjects’ regional activation maps, which were defined as the average (across voxels within a region)

contrast of the parameter estimate.

Localization of Peaks Across Voxels

Reference peaks were based on the raw z-statistic map obtained using the full dataset (i.e., all available

HCP subjects). The peaks were defined as those voxels that had a more extreme value than their 26

neighbors, calculated using cluster from FSL (S. M. Smith et al., 2004).

Peaks in simulated studies were identified in unsmoothed, probabilistic threshold-free cluster enhanced

z-maps (Spisák et al., 2019). Before peak detection, maps were thresholded according to a statistical

significance filter (family-wise error rate p < 0.05; Spisák et al., 2019). As this thresholding removes

voxels with negative activation, displays that include peak location only include positive effects. Note

not every simulated study included suprathreshold voxels (gambling with 20 subjects: 4 simulations with

no voxels, relational with 20 subjects: 43, social with 20 subjects: 1, relational with 40 subjects: 4).

Analogous to the region of interest analyses, we considered only a subset of the peaks, to facilitate

comparisons across tasks. Specifically, we considered the ten peaks that had the largest (positive)

activation in the gold standard, taking at most one peak per parcel or region (the largest). These were

compared to the simulated studies by calculating the proportion of stimulated studies that contained any

local peak within different radii of a sphere centered on the reference peak (radii: 2, 4, 8, 10, 20 mm).

Comparisons between studies and between subjects involved associating the peaks from the z-maps of
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individual studies or the z-maps from individual subjects that were closest to the ten reference peaks.

Comparisons were made by assessing distributions of peak Euclidean distances.

Reliability of Maps of Effect Sizes

Voxel-wise effect sizes were measured using Cohen’s d. To construct the reference map, for voxel v, effect

sizes were calculated from the average (across subjects), µv, and standard deviation (also across subjects),

σv, of each contrast of parameter estimate (i.e., dv = µv/σv). Voxels were binned into categories using the

guidelines of Cohen (1988): with “negligible” indicating |dv| < 0.2, “small” indicating 0.2 <= |dv| < 0.5,

“medium” indicating 0.5 <= |dv| < 0.8, and “large” indicating 0.8 <= |dv|. The effect sizes in simulated

studies were calculated using Hedges’ correction (Bossier et al., 2019; Hedges, 1981).

To compare the gold standard with the simulated studies, rank correlations were calculated between the

maps of the reference and the simulated studies, within a gray matter mask. To compare simulated

studies with each other, analogous rank correlations were calculated pairwise, between simulated studies

(using effect sizes), and likewise for comparisons between subjects (using their contrasts of parameter

estimates).

Reliability of Models Trained with Maps of Effect Sizes

Models predicting participant traits were trained using a form of connectome-based predictive modeling

(Gao et al., 2019; Greene et al., 2018). First, the data were subjected to basic cleaning: linear detrending,

band-pass filtering (0.01–0.1Hz), voxel-wise standardization, and nuisance regression with 24 motion

parameters (Friston et al., 1996; Satterthwaite et al., 2013). To build connectivity matrices, the left-

right and right-left timeseries for each task were concatenated and then decomposed according to the

64 region version of the DiFuMo atlas (Dadi et al., 2020). Connectivity was estimated via a regularized

procedure (Ledoit & Wolf, 2004), and the correlations were transformed with the inverse hyperbolic

tangent. As our outcome we used several instruments (e.g., task performance and fluid intelligence); see

Figure S8 for a complete list.

Considering the small sample sizes and high numbers of features (around 500 subjects but 2079 features),

models relied on feature selection and regularization. Feature engineering and modeling were performed

with scikit-learn (Pedregosa et al., 2011). First, features with a variance of less than 0.01 were

removed. Then, features were independently standardized using a robust normalization (i.e., removing

the median and scaling by the interquartile range). For predictions, A ridge regression model was used
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where the regularization parameter was selected from 20 log-spaced values (0.1 to 10000, inclusive)

by the efficient leave-one-out cross-validation procedure described by Rifkin and Lippert (2007) and

implemented in scikit-learn.

To facilitate comparison across studies of various sizes (including with the gold standard), a test set was

segregated from the training and validation samples. The test set comprised 20% of the full dataset

(the same test set was used for all simulated studies of a given task).

Model performance was measured as a rank correlation between trained model predictions and the true

values in the test set. The gold standard was defined as the performance of the model on the test

sample when the training sample comprised all other subjects. This gold standard was compared to

the performance of the simulated studies of varied sample sizes. At each sample size, performance

was measured via a random-effects meta-analysis of the correlations estimated at each sample size

as implemented in the R package meta (R Core Team, 2023; Schwarzer et al., 2015). To compare

performance across studies, the predictions on the held-out test set were used to calculate an intra-

class correlation. We calculated both consistency and agreement based on a 2-way random-effects

model. Given that we were interested in the reliability of a single study, we used the single-measure

version. These measures are also known as ICC(A,1) or ICC(C,1) (McGraw & Wong, 1996). Intraclass

correlations were calculated using the R package irr (Gamer et al., 2019; R Core Team, 2023). Subjects

were compared to each other by calculating the pairwise rank correlation of each connectivity feature.

Results

Maps of Regional Activation

Gold Standard

We first explored the statistical power for detecting regional activation at different sample sizes. For

each task, we designated a set of regions as the “primary targets” if their average effect size in the gold

standard was among the ten highest. This designation enabled us to focus on a core set of regions for

each task. These regions can be understood as representing regions that would likely be studied with

the given task (for region definition, see Methods). For example, in the motor task, this scheme picks

voxels within the primary motor cortex.
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Recovery of Gold Standard

Studies using the language and motor tasks would be nearly guaranteed to detect an effect in all ten of the

targeted regions even with only 20 subjects (Figure 2a). In the social and working memory tasks, similarly

high power would require around 40 subjects. Finally, the gambling and relational task would require

between 60 to 80 subjects. Note that the high power is attained while maintaining family-wise error

rate correction (Figure S1). These patterns were largely consistent across different levels of parcellation

granularity (Figure S2).

Study-to-Study Comparisons

To compare studies, we calculated the distribution of mean square contingency coefficients across all

pairs of studies at given sample sizes (Figure 2b). Tasks with the most reliably activated primary target

regions had the highest distributions of coefficients. In particular, the language task exhibited a median

mean square contingency coefficient with 40 subjects that was higher than the equivalent median of the

gambling studies conducted with 100 subjects (0.69 vs 0.51), indicating substantially more variability in

which regions were activated during any given gambling study.

Subject-to-Subject Comparisons

Finally, to compare subjects we calculated the pairwise product-moment correlation between average

regional effect sizes (Figure 2c). The two most extreme tasks were again gambling and language, with

the average correlation in the gambling task being 0.05 and the average correlation in the language task

around 0.51. This indicates substantially more variability across subjects in which regions were activated

while performing the gambling task. This may help explain the subsequent variability observed across

studies (simulations).

Localization of Peaks Across Voxels

Gold Standard

Second, we considered the replicability of peak location. Due to the number of subjects, clusters of

activation covered most of the gray matter, so we focused on local rather than global cluster peaks. As

before, we assume that each task was designed to elicit activation in several distinct regions, but that
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the number of regions may vary across tasks. To facilitate comparisons across tasks, we considered the

ten voxels with the highest peaks for each contrast. Note that this classification does not guarantee that

the peak voxels are in one of the regions with the largest average effect size.

Recovery of Gold Standard

To summarize the replicability in a manner that was independent of the atlas, we considered the distance

between the highest reference peaks and the nearest peak within the simulated studies. Specifically,

we calculated the proportion of simulated studies that contained a significant peak within various radii,

plotting these proportions by task and sample size (Figure 3a). Increasing the number of subjects

improved peak localizability (e.g., at a given radius for a given task, the proportions increase down the

rows of Figure 3a). In all tasks except gambling and relational, nearly 100% of simulated studies were

within 10mm of each of the ten peaks from the gold standard – even with only 20 subjects. For the

gambling and relational tasks, simulated studies with 20 subjects often failed to provide a peak within

that radius. Even so, with 40-60 subjects in these two tasks, over 95% of simulated studies produced

peaks that were within 10mm (equivalently, five voxels) of one of the top ten peaks.

When considering all peaks within each contrast (that is, all peaks with effect sizes above negligible

magnitude and in voxels that survived multiple familywise error corrections), localization exhibited a

dependence on the effect size of the peak such that peaks with larger effects in the reference distribution

were better localized with fewer subjects (Figure S4). For example, in studies of 20 subjects, peaks in the

reference sample with small effect sizes were separated from the study peaks by an average of 34.6mm,

while the same average for peaks whose voxels had a large effect was only 4.45mm.

There were apparent differences in localizability when categorizing peaks according to connectivity net-

work (Thomas Yeo et al., 2011), such that peaks within “lower-level” networks like the somatosensory

or visual networks were localized more easily than those within “higher-order” networks like the default

or limbic networks (Figure S3). However, there was also a close relationship between the presence of

a peak within a network and the height of the peak, so the effect of the network was not necessarily

distinct from the effect of peak height. As one example, consider that, with only 20 subjects, peaks

within the somatomotor network were localized well (mean: 4.6mm) in the motor task (average effect

size: 0.84), but peaks within that network were localized relatively poorly (mean: 24.8mm) in the social

task (average effect size: 0.48).
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Study-to-Study Comparisons

To compare studies, the local peaks associated with the ten highest peaks were grouped, and the average

distance between them was calculated (Figure 3b). This measure highlights the variability that can be

expected across studies conducted with small samples. For example, 10% of simulated studies with 20

subjects that used the gambling and relational tasks had peaks that were over 15mm apart. In contrast,

90% of 20 participant studies using the motor task were separated by less than 3.75mm.

Subject-to-Subject Comparisons

To compare subjects with each other, the study-to-study comparison was repeated with the participant-

wise z-maps for each contrast, thresholding only to exclude values below 0 (Figure 3b). This revealed

that the peaks in the participant maps that were closest to the gold-standard maps tended to be within

a few voxels of each other. In addition, this distance was largely consistent across tasks.

Reliability of Maps of Effect Sizes

Gold Standard

Peaks are only one feature of the activation map, and for these next analyses, we reviewed the repro-

ducibility of the map as a whole, using voxel-wise effect sizes.

For most tasks, the standard deviation of the voxel-wise variability increases with the mean, resulting in a

funnel-shaped pattern (Figure 4a). The contrasts for the gambling and relational tasks had distributions

with the smallest averages, resulting in the largest proportion of voxels with negligible effects and the

smallest proportion of voxels with medium and large effects (Figure S5). For the gambling task in

particular, fewer than 1% of voxels had an effect size that was medium or large. In the language, motor,

social, and working memory tasks, small effects were present in around 30 to 40% of voxels, and medium

effects were present in 10 to 25%. In most tasks, large effects were present in fewer than 5% of voxels.

But in the language task, a large effect was present in almost 20% of voxels.

Recovery of Gold Standard

As measured by correlations, individual studies were able to recover the gold standard well. For all tasks,

99% of rank correlations between the effect size maps of the simulated studies and the reference map
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were above 0.5 (Figure 4b). Consistent with the gambling task eliciting smaller effects, the correlations

for this task were generally lower. In contrast, the language task, which tended to elicit the strongest

activation, showed correlations that were typically above 0.75 at all sample sizes. These trends were

also present in the correlations between simulated studies (Figure 4c); for example, all of the maps from

simulated studies with only 20 subjects with the language contrast exhibited correlations above 0.8,

whereas none of the maps from simulated studies with the gambling contrast reached that level, even in

studies of 100 subjects.

As with the reliability of activation and peak localization, there was variation in the recovery of the gold

standard across networks, and that variation was consistent with an important role for the effect sizes

within the networks (Figure S6). Across all tasks, voxels within the limbic network were among those

that exhibited the lowest correlations. In most tasks, voxels within the subcortical regions also exhibited

low correlations. Correlations for voxels within the somatomotor network were neither the highest nor

lowest for all tasks except the motor task, where they were the highest.

Study-to-Study Comparisons

The trends for the recovery of the gold standard were present in comparisons between the simulated

studies, though the magnitudes were generally lower (Figure 4c). The gambling task exhibited the lowest

correlations, ranging from around 0.2 with 20 subjects to .55 with 100. In contrast, the language task

exhibited the highest correlations, ranging from around 0.9 with 20 subjects to .97 with 100 subjects.

Subject-to-Subject Comparisons

Correlations between the effect size maps of individual subjects were lower than those between studies,

although the ordering across tasks was consistent (Figure 4d). In the gambling task, the average cor-

relation was slightly above zero. In contrast, the average participant-to-participant correlation in the

language task was nearly 0.4 but with a long left tail. The spread in the working memory task was the

largest, with the 10% and 90% quantiles ranging from 0.01 to 0.30 (compare with relational, which

ranged from -0.03 to 0.18).
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Reliability of Models Trained with Maps of Effect Sizes

Gold Standard

Models were trained to predict characteristics of subjects within the HCP. In the main text, We focus

on prediction of fluid intelligence, but results for other measures are presented in the Supplementary

Materials (Figure S7). Predictions were based on features derived from connectivity matrices and a ridge

regression model.

Predictions for fluid intelligence were significant with all of the considered tasks and contrasts (p < 0.05,

as measured with permutation test for rank correlations on held-out test data, Figure 5a). The rank

ordering of all tasks was similar to the other analyses, with the relational and gambling tasks exhibiting

the lowest rank correlations (0.23 and 0.27), and the language and social tasks exhibiting the highest

(0.35 and 0.47).

Recovery of Gold Standard

Study reliability was assessed by comparing levels of predictive performance attained with the simulated

study to the performance attained with the population. All tasks were numerically below gold-standard

level performance with even 100 subjects (Figure 5a). Although absolute performance was below the gold

standard, the 95% confidence intervals in all tasks excluded 0, even with only 20 participants, indicating

that the ability to predict fluid intelligence can be reliably detected with even a small sample size.

Study-to-Study Comparisons

To measure the reliability of predictions across studies, the intraclass correlation coefficient was used.

This enables asking about the stability of predictions for a given subject across training datasets – by

how much do predictions vary according to the training set. Across all tested sample sizes and tasks,

the reliability was generally poor, with intraclass correlations below 0.5 (Figure 5a). Note that this

poor reliability was not limited to this particular instrument; of the instruments considered, the chosen

measure, fluid intelligence, exhibited among the highest levels of reliability (Figure S8 and Figure S9).
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Subject-to-Subject Comparisons

Subjects were compared to each other by calculating correlations of features in a pairwise manner. Across

tasks, there was minimal difference in the distribution of pairwise correlations (Figure 5c). The relational

task had the lowest 5% quantile at 0.24 (95%: 0.56), and the working memory task had the highest at

0.32 (95%: 0.62).

Discussion

In this report, we leveraged the Human Connectome Project to survey several aspects of sensitivity and

reliability in group-level MRI studies conducted with sample sizes common in the neuroimaging literature

– typically less than 100. We used the rich datasets provided by the HCP to construct reference datasets

and asked how well features of those datasets could be recovered from individual studies. We considered

how these analyses were influenced by sample size, effect size, and task, aiming to provide results that

could be used to calibrate expectations about the reliability of individual studies and analyses.

First, we considered the case of a researcher using the classical, univariate approach of detecting activation

in task-related regions. Predictably, regions with large effect sizes could be detected with relatively small

sample sizes – around 40 subjects (Figure 2a). For reference, note that reaching 80% power with a one-

sample, two-sided t-test with a true effect size of 0.8 requires at least 15 observations, which increases to

34 observations with an effect size of 0.5, and with an effect size of 0.2, 199 observations are required.

However, large effect sizes were relatively rare and nearly absent from some tasks (Figure 4a, Figure S5).

This means that reports of novel effect effects – even large ones – that are based on only 40 subjects

should be viewed with skepticism (see also Marek et al., 2019; Reddan et al., 2017). That is, while

observation of a significant effect with at least 40 subjects provides justification for deciding whether to

continue a line of research, the relative scarcity of large effects underscores a need for replication before

effects are considered established.

When considering peak activation, we observed that studies with between 40 - 60 subjects were able

to localize a peak to within 10mm. For reference, note that the number of distinct regions within the

cortex has been estimated to be around 300 - 400 (Van Essen et al., 2012). At this scale, the average

volume of a region is approximately 2400mm3. A spherical region with this volume would have a radius

of around 8.3mm. This implies that, with 40 subjects, individual studies would contain local peaks

that are within one to two “regions” away from the peaks in the gold standard. That resolution may

be inadequate for certain kinds of experimental questions, especially those based on the parcellation or
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segmentation of microstructures (e.g., identifying substructures within subcortex). Moreover, given that

analyses were performed in volumetric space, even a distance of a few millimeters could place peaks in

functionally distinct cortex (e.g., spanning multiple gyri). However, considering that the voxel size in this

dataset was 2.4mm3, a distance of 10mm translates to separation by only a few voxels.

Note that there is no guarantee that the peak activation for all voxels will be in the same location for each

participant; due to idiosyncrasies across subjects (or inadequate spatial normalization), some variability

in peak location may be unavoidable. Put another way, the location of the peak in the population should

not be taken to be the location of a peak in any individual participant. For the tasks and contrasts studied

here, most subjects exhibited peaks in activation that were less than 6mm from each other (Figure 3c).

The success of methods that aggregate information across subjects using functional information (e.g.,

hyperalignment; Haxby et al., 2011), implies that performing diffeomorphic transformations based on

structural features alone can result in misaligned features. However, based on the variability in peaks

across the region of activation, the population provides a good summary of individual subjects.

Peaks are only one summary of activation. It has previously been reported that most patterns of activation

produced by the Human Connectome Project are diffuse (Cremers et al., 2017), and when the activation

is diffuse – especially when a cluster of active voxels span multiple anatomically defined regions – then

the relevance of a peak is less clear, and localizing a peak to within 10mm may be sufficient. When

considering the topography of the statistical maps as a whole, correlations between individual studies and

their respective gold standards ranged from strong to very strong (0.5 - 1). For tasks that elicit strong

activation, maps constructed with only 20 subjects correlated with the gold standard at over 0.9, a map

constructed from over 400 subjects. That is, with respect to this global measure, 20 subjects provided

information that appears to be highly predictive of the maps produced by 400 subjects.

Compare these whole map correlations to those reported by the Neuroimaging Analysis and Replication

Project (Botvinik-Nezer, 2020). In that project, teams of researchers analyzed the same set of data, each

using the idiosyncratic set of methods preferred by individual teams. One conclusion from that replication

project is that the analysis pipeline has a strong influence on binary activation maps (see also Bowring,

Maumet, & Nichols, 2019), but a substantially weaker influence on the underlying statistical maps. That

is, when multiple analysis pipelines are applied to a common dataset, the unthresholded statistical maps

are largely consistent with each other (M. Lindquist, 2020; Taylor et al., 2023). Similarly, we show that

when the same analysis pipeline is applied to several repeated experiments, the unthresholded statistical

maps are again largely consistent with each other.

When interpreting the results of voxel-wise effect sizes, it may be helpful to consider “worst-case”

scenarios. For small effects, the 0.05 and 0.95 quantiles for the difference between the estimated and
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true effects were -0.37 and 0.40 with 20 subjects, -0.24 and 0.26 for 50 subjects, and -0.18 and 0.19

with 100 subjects. That is, with 20 subjects, it is likely that the difference between the reported and

true effect sizes may be off by as much as a “small” effect, whereas with 100 subjects that difference is

often “negligible”. Although 100 subjects exceed what can be collected for most individual studies, this

scale is typical for datasets provided by many collaborative efforts. The stability at 100 subjects supports

the use of datasets of this size in, for example, pilot analyses for designing more focused studies using a

smaller number of subjects.

Finally, the results using multivariate models were mixed. In general, tens of subjects were sufficient

for obtaining significant predictions on external training samples (Figure 5a). However, the consistency

and agreement of these predictions were poor (Figure 5a, Figure S8, Figure S9). This means that the

parameters learned by models remained unstable at these sample sizes. We speculate that this instability

may relate to the high imbalance between the number of subjects (in the tens) and the number of features

(in the thousands). The models used regularization (ridge regression), but the particular regularization

procedure aims to aid cross-validation performance and not necessarily feature consistency. Data may

comprise multiple, possibly disjoint, sets of features that can support equally good predictions, and so

without additional information, the regularization procedure can be expected to select different sets of

features across studies.

Recommendations

First, we continue to remind neuroimaging researchers that, when feasible, data ought to be made

publically available. There have been calls for open sharing for over a decade. Although tools have been

developed to work around the lack of easily available raw images or statistical maps (e.g., neurosynth.org)

and community-driven efforts demonstrate the feasibility of sharing original data (e.g., the FCON 1000

project), there now exist many resources that obviate these workarounds. Based in the US alone,

resources include OpenNeuro, the National Institute of Mental Health Data Archive, and NeuroVault.

Together, these make it feasible for many more researchers to share data (Gorgolewski et al., 2015).

Having rich and varied raw data drastically increases the value of small studies, especially when analyses

are exploratory or focused on subtle effects.

Second, for certain well-circumscribed aims, we recommend against overemphasizing lack of reproducibil-

ity; datasets with tens of subjects, which are typical in the neuroimaging literature (Poldrack et al., 2017),

can be of high quality and value. That is, for well-studied tasks that produce large effect sizes like the

language, motor, social, and working memory tasks of the HCP dataset, 40 subjects provide high power
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to detect regional activation. But we emphasize that this recommendation applies to datasets that are

as high-quality as the HCP, with tasks that are known to produce at least medium effect sizes, and with

limited room for exploratory analyses. In tasks with unverified effect sizes, tens of subjects may be too

few to have confidence in a new effect, or in which regions are most activated by the tasks. Even so,

the sample sizes required for drawing reliable conclusions from these tasks may not be in the hundreds,

considering that around 80 subjects were enough to reliably activate the targeted regions with even the

gambling and relational tasks.

Third, there is a need for further research on quantifying confidence in peak location. The distributions

of peak distances that we report provide heuristics for assigning confidence to locations reported in

individual studies, but these heuristics imply a general lack of confidence (e.g., with 40 subjects, any

voxel within 10mm of a reported peak is a likely location for the true peak). Advances have been made

in exploring confidence in effect size maps (Bowring, Telschow, et al., 2019; Bowring et al., 2021), but

these methods are not yet commonly used. Typical cluster analyses discard substantial information about

the location of activation; the significance of a cluster only implies that there is an activation in some

voxel within a cluster (Woo et al., 2014). This can lead to situations where larger study populations

increase the power to detect activation within each voxel, thereby increasing the size of clusters and

hindering the determination of which voxels are active (Rosenblatt et al., 2018). To some extent, our

reliance on pTFCE specifically can be expected to mitigate the problem of “cluster leakage” (Spisák

et al., 2019). However, an issue remains where testing for activation and then selecting the voxel with

the largest activation does not necessarily provide information about whether that voxel is significantly

higher than neighboring voxels; a voxelwise test is still about whether each voxel’s intensity is different

than 0 rather than about differences between voxels.

Finally, we caution against using predictive models that have been trained with tens of subjects in any

applied setting. This recommendation derives from the study-to-study comparisons of model predictions

(Figure 5b), which revealed poor consistency and agreement across training datasets. That is, although

models may achieve significant, even substantial, performance when trained on only tens of subjects, the

specific predictions are not stable across training sets with under 100 subjects.

Data and Code Availability

Code to reproduce analyses is available on GitHub: https://github.com/psadil/maps-2-models. Analy-

ses relied on open data provided by the Human Connectome Project, which can be downloaded from

the HCP website https://humanconnectome.org/study/hcp-young-adult/document/500-subjects-data-
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release. Analysis results are available at https://doi.org/10.5281/zenodo.12686151.
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Figure 2: Activation Within Regions of Interest. a) Comparison between Gold Standard and Simulations.
Effect size refers to the average effect size of voxels within an ROI in the gold standard. b) Distribution
of Pairwise Mean Square Contingency (Phi) Coefficient for Activations across Simulations. Each dot
corresponds to one percentile. c) Pairwise Correlation of Effect Size Maps across Subjects. Dots within
the distributions correspond to percentiles. The large black dots mark medians and are surrounded by
bars marking the 0.66 and 0.95 quantile intervals. All) Regions were defined according to the Schaefer
400 parcellation.
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Figure 3: Localization of Peak Activation. a). Proportion of Simulated Studies Containing Peaks within
a Given Radii. Columns indicate tasks from the HCP dataset, and rows are the sample sizes that were
simulated. Each panel depicts the proportion of simulated studies that contained peaks that were within
a given radius of one of the 10 largest peaks for that task, with peaks colored by the effect size of
that voxel in the gold standard. b) Average Distance Between Peaks in Simulated Studies that were
Associated with Common Peaks in the Gold Standard. Within distributions, points represent percentiles
of distances. c) Average Distance Between Peaks in Individual Subject Maps that were Associated with
Common Peaks in the Gold Standard. Within distributions, points represent percentiles of distances.
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Figure 4: Reliability of Topographic Maps. a) Gold Standard. Points indicate voxel-wise standard
deviation vs. mean of the contrast estimates. The gray and black lines mark the significance thresholds
for a one-sample t-test at p = 0.001, for sample sizes N = 20 (black) and N = 100 (gray) b) Comparison
between Gold Standard and Simulations. Points mark rank correlations between simulated studies and
the gold standard and are summarized with box plots. c) Pairwise Rank Correlations Across Simulations.
Error bars span 95% Confidence Intervals (bootstrapped), and the lines trace averages. d) Pairwise
Correlation of Voxel-Wise Effect Size Maps across Subjects. Dots within the distributions correspond to
percentiles.
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Figure 5: Reliability of Multivariate Pattern Models. a) Gold Standard and Comparison between Gold
Standard and Simulations. The lines trace the rank correlation between model predictions and the true
values in held-out samples (random-effects meta-analysis of correlations across simulated studies), with
error bars spanning 95% confidence intervals. The isolated points mark gold-standard performance. b)
Reliability of Model Predictions Across Splits. The intraclass correlation (ICC) was based on a 2-way
random effects model. c) Pairwise Rank Correlations across Subjects. Correlations were calculated with
the model features that were used for training. Dots correspond to percentiles.
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1 HCP Tasks

The following task descriptions are paraphrased from the details provided by Barch et al. (2013).

Working Memory

In the working memory runs, subjects (494) completed N-back tasks (Drobyshevsky et al., 2006). Each

of the two runs contains eight stimulus blocks consisting of ten trials (2 s stimulus presentation, 500ms

ITI) and 4 fixation blocks (15 s each). Within each run, four different stimulus types (faces, places, tools,

and body parts) were presented in separate blocks. Task type was indicated at the start of each block

with a 2.5 s cue. Each block contains 2 targets and 2–3 non-target lures. Half of the blocks for each

stimulus type used a 2-back task and the other half a 0-back task.

The design matrix included eight task-related predictors, one for each stimulus type in each of the N-back

conditions. Each predictor covered the period from the onset of the cue to the offset of the final trial.

Our analyses considered a contrast selecting for the 2-back parameter, the 0-back parameter, and a

comparison of the 2-back minus 0-back parameters.

Motor

In each of two runs, subjects (492) were asked to move different body parts (Buckner et al., 2011;

Thomas Yeo et al., 2011). The body part to move was indicated by visual cues presented at the start

of each block (one 3 s cue for each 12 s block). Cues indicated that subjects should either tap their

left or right fingers, squeeze their left or right toes, or move their tongue (only one type of motion was

asked for in each block). Each run contained two blocks of tongue movements, two blocks of each hand

movement, two blocks of each foot movement, and three additional blocks of fixation (each 15 s).

The design matrix included five task-related predictors, each covering the duration of the 10 movement

trials (12 s). The cue was modeled separately. Our analyses considered a contrast selecting for the cue,

one selecting for the average of motion, and a comparison of average motion minus baseline.
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32 1 HCP TASKS

Gambling

In this task, subjects (494) were asked to guess the number on a hidden card in order to win or lose

money (Delgado et al., 2000). They were informed that the number ranged from 1–9, and that they

should guess whether the hidden number was greater or less than 5. Guesses were realized by pressing

one of two buttons. The task is presented in blocks of eight trials that comprised either mostly rewards

(6 reward trials interleaved with either 1 neutral and 1 loss trial, 2 neutral trials, or 2 loss trials) or mostly

losses (6 loss trials interleaved with either 1 neutral and 1 reward trial, 2 neutral trials, or 2 reward trials).

After responding, subjects were given feedback. On reward trials, the feedback was a green up arrow

with $1, on loss trials it was a red down arrow with $0.50, and on neutral trials with was the number 5

with a gray, double-headed arrow. In each of the two runs, there were two mostly reward and two mostly

loss blocks, interleaved with four fixation blocks (each 15 s).

The design matrix included two task-related predictors that modeled the mostly reward and mostly

punishment blocks, each covering the duration of 8 trials (28 s). Our analyses relied on contrasts for the

reward parameter, the punish parameter, and the reward minus punish parameters.

Language

In each run of this task, subjects (483) listened to eight blocks of stimuli, four of which consisted of

short stories and four of which consisted of arithmetic (Binder et al., 2011). Blocks averaged 40 s and

the two stimulus types were interleaved. After each block, subjects were presented with a two-alternative

forced choice that either asked subjects about the story or the result of the arithmetic.

The design matrix included two predictors that corresponded to the two types of stimuli. Our analyses

relied on contrasts for the story parameter, the math parameter, and math minus story.

Relational

In this task, subjects (481) were presented with sets of stimuli and discerned whether they matched or

differed according to pre-specified rules (R. Smith et al., 2007). Stimuli varied according to shape and

texture. In a relational condition, two pairs of stimuli were presented. One pair serves as a reference, and

the stimuli in that pair differ along one of the two dimensions. Subjects first determined the mismatching

dimension, and then they determined whether the other pair of stimuli differed along that same dimension.

In a matching condition, a single pair of object stimuli was presented along with a third object and a
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word. The word identified one of the two features, and subjects had to determine whether that identified

feature in the third stimulus matched the feature value for either of the paired stimuli. Relational stimuli

were presented for 3500ms (ITI: 500ms) and matching stimuli for 2800ms (ITI: 400ms). Stimuli were

presented in three blocks that each contained five trials, and the stimulus blocks were interspersed with

three fixation blocks (16 s).

The design matrix for this task included two predictors, one for each of the two conditions (“match” and

“relation”). Our analyses relied on contrasts for the matching minus relation parameters.

Social

The social task used stimuli derived from Castelli et al. (2013) and Wheatley et al. (2007). The stimuli

were videos of shapes that moved either randomly or with a set of specified interactions (20 s per video).

After each video, subjects (486) selected one of three responses about whether they observed the objects

interacting. There were five blocks of trials per run (conditions balanced across the two runs).

The design matrix for this task contained two predictors, one for each of the “theory of mind“ and

“random” conditions. Our analyses used contrasts that selected the subtraction of the theory of mind

from the random parameter.
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Figure S1: False Positive Rate for Probabilistic Threshold-Free Cluster Enhancement. A “null” dataset
was simulated following the methods described by (Wang et al., 2021), in which the Working Memory
contrasts were calculated on resting state data. Any positive activation is therefore a false positive. As
with the main text, the focus is on the 10 regions exhibiting the higest activation in the gold-standard;
regions are grouped by lines. The ribbons span the exact (Clopper-Pearson) 95% Confidence Interval for
an error rate of 5%, assuming a binomial distribution with 100 samples (Thulin, 2014).
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Figure S2: Recovery of Gold Standard across Parcellations. Rows indicate the number of parcels within
the atlas. Compare with Figure 2a.
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Figure S3: Distribution of Average Distances within Yeo7 Networks. Simulations are grouped by the
sample size (rows) and the task (columns). Peaks were selected from each reference map and labeled
according to the Yeo7 networks. Across all peaks within a network, the distance to the nearest study
peak was calculated, and then these distances were averaged by simulated study, network, task, and
sample size. Points mark the distance to the nearest peak within each simulated study. Colors indicate
the average effect size of peak voxels in the gold standard for the given network. Note that some panels
lack points for some networks because peaks were not identified in those networks in the gold standard.
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Figure S4: Average Distance from Reference Peak by Reference Effect Size. Individual points correspond
to peaks in the reference dataset. Averages were taken across simulated studies and grouped in columns
by sample size. Note that the y-axis is on a log scale. Peaks were restricted to those that survived
familywise error corrections (0.05).
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Figure S5: Voxel-wise Effect Sizes Produced by Each Task. Categories were defined as specified in the
Methods.
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Figure S6: Recovery of Gold Standard Topography by Yeo7 Networks. Colors indicate the average
effect size of voxels assigned to the network within the gold standard. Points correspond to simulation
iterations.
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Figure S7: Prediction of Additional Instruments in HCP by Connectivity of DiFuMo components. Color
corresponds to rank correlation (measured with meta-analysis across simulation repetitions, as in the
main text). Instruments are ordered by maximum estimated rank correlation. The measure of fluid
intelligence discussed in the main text corresponds to PMAT24 A CR.
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Figure S8: Agreement of Predictions on Test Samples across Simulations. The measure of fluid intelli-
gence discussed in the main text corresponds to PMAT24 A CR.
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Figure S9: Consistency of Predictions on Test Samples Across Simulations. The measure of fluid intelli-
gence discussed in the main text corresponds to PMAT24 A CR.
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