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Background: The newly identified betacoronavirus SARS-CoV-2 is the causative
pathogen of the coronavirus disease of 2019 (COVID-19) that killed more than 3.5
million people till now. The cytokine storm induced in severe COVID-19 patients causes
hyper-inflammation, is the primary reason for respiratory and multi-organ failure and
fatality. This work uses a rational computational strategy to identify the existing drug
molecules to target host pathways to reduce the cytokine storm.

Results: We used a “host response signature network” consist of 36 genes induced by
SARS-CoV-2 infection and associated with cytokine storm. In order to attenuate the
cytokine storm, potential drug molecules were searched against “host response signature
network”. Our study identified that drug molecule andrographolide, naturally present in a
medicinal plant Andrographis paniculata, has the potential to bind with crucial proteins to
block the TNF-induced NFkB1 signaling pathway responsible for cytokine storm in
COVID-19 patients. The molecular docking method showed the binding of
andrographolide with TNF and covalent binding with NFkB1 proteins of the TNF
signaling pathway.

Conclusion: We used a rational computational approach to repurpose existing drugs
targeting host immunomodulating pathways. Our study suggests that andrographolide
could bind with TNF and NFkB1 proteins, block TNF-induced cytokine storm in COVID-19
patients, and warrant further experimental validation.

Keywords: SARS-CoV-2, COVID-19, cytokine storm, systems bioinformatics, drug-repurposing, andrographolide,
TNF signaling pathway, molecular docking
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INTRODUCTION

The ongoing pandemic by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infected more than 168 million
people worldwide, causing more than 3.5 million deaths as of 26
May 2021 (https://www.worldometers.info/coronavirus/). SARS-
CoV-2 infects the lower respiratory tract resulting in a severe
respiratory disease called coronavirus disease of 2019 (COVID-19)
(1). The majority of COVID-19 patients have mild symptoms,
including cough, fever, body pain, which recover in a few days.
However, a significant number of patients developed severe cases
with difficulty in breath, respiratory and lung failure, organ
damage, and even death (2–4). Accumulating studies found that
an excessively high level of pro-inflammatory cytokines released,
called cytokine storm, in response to SARS-CoV-2 infection
triggers acute respiratory distress syndrome (ARDS) and multi-
organ failure in COVID-19 patients (2, 4). The most prominent
cytokines elevated in the blood plasma of severe COVID-19
patients include TNF, IL-6, IL-8, IL-10, and IL-2 (5, 6).

SARS-CoV-2 is classified as betacoronavirus closely related to
two previously identified human pathogenic SARS-CoV and
MERS-CoV, which caused the epidemics in 2002 and 2012,
respectively (7). The SARS-CoV-2 infects the host cell with its
spike protein that binds to the ACE2 receptor on the host cell
surface and facilitates viral entry. SARS-CoV-2 has a plus-strand
RNA genome of about 29,900 nucleotides that work as mRNA to
encode viral proteins using host machinery. The genome also
contains several cis-acting RNA elements that could be involved
in viral infection and replications (8). Studies indicated that
SARS-CoV-2 has evolutionary closely related to bat-derived
SARS-CoV (8, 9).

Till now, no safe and effective therapy has been approved to
cure COVID-19. However, life support treatment is recommended
for the management and treatment of COVID-19 patients based
on the symptoms and severity of the cases.

Based upon multiple clinical trial data on mild-to-severe
COVID-19 patients, the US Food and Drug Administration
(FDA) has approved only a single antiviral drug Veklury
(remdesivir), for the treatment of COVID-19 on 22 October
2020. Furthermore, the FDA authorized eight drugs for
emergency use to treat severe COVID-19 patients, and numerous
other therapeutics are currently being under clinical trials (https://
www.fda.gov/media/136832/download). The FDA is working with
different organizations to facilitate the development of safe and
effective drug molecules in combating COVID-19.

The elevated level of cytokines is the primary cause of severity
in COVID-19 patients, and hence, attenuating the level of these
cytokines would be a better approach to manage and treat the
COVID-19 patients. Therefore, it is urgently required to identify
the drug molecules for targeting the critical pathways in the human
that could minimize cytokine storm in COVID-19. However,
developing a new medicine is a scientifically challenging process
that requires a very long time and massive money with the risk of
failure. With the high rate of SARS-CoV-2 infection and the rise of
new variant strains, drug repurposing became an extremely
important process to identify the potential candidate drugs for
treating the severe symptoms of COVID-19. Drug repurposing
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refers to an approach to identifying new therapeutic uses for
approved or investigational drugs other than the scope of the
original medical indication (10, 11). Since the repurpose drugs
already passed the early-stage trial, including safety assessment,
efficacy, toxicity, pharmacokinetic, pharmacodynamic, and
preclinical testing, this approach has several advantages: drugs
are sufficiently safe, low risk of failure, less investment, and shorten
the timeline, could instantly start the tested trials in patients (11).
Several drugs were repurposed against numerous diseases (12, 13).
Furthermore, various computational methods, including
molecular docking and dynamic simulations, have increasingly
being used for structural insights into the action mechanism of
existing drugs and for novel drug designing (14–18).

This study used a rational computational approach to
repurpose drug molecules to minimize the cytokine storm
associated with COVID-19 patients. Our previous study
identified the SARS-CoV-2-mediated activation of the “host
response signature network” responsible for cytokine storm (5).
In this work, we identified andrographolide to target the “host
response signature network” through a virtual drug screening
method. Finally, we employed a structure-based molecular
docking method to demonstrate that the andrographolide could
bind with TNF and NFkB1, potentially blocking the TNF-
mediated NFkB1 pathway underpinning cytokine storm in
severe patients with COVID-19.
MATERIALS AND METHODS

Host Regulatory Network and Biological
Pathway Analysis
This study used the “host response signature network” identified
in the human cells infected with SARS-CoV-2 in our previous
study (5). Briefly, transcriptome data of SARS-CoV-2 infected
normal human bronchial epithelial (NHBE) cells and controlled
NHBE cells were used to identify the differentially expressed host
genes (DEHGs) (19). A network was created by integrating
DEHGs with human protein-protein interaction data.
Furthermore, analysis of the network revealed an important
sub-network of highly inter-connected 31 proteins (IL6, TNF,
CXCL8, CXCL3, CXCL5, IRF9, SAA1, OAS3, CSF2, IFI6, OAS2,
CSF3, IRF7, ICAM1, CXCL2, MX1, OAS1, MMP9, IL1A, IL1B,
C3, TLR2, IFI27, CXCL6, CXCL1, CCL20, XAF1, IFI44L, MX2,
BST2, IFITM1) predominantly involved in cytokine storm and
under the regulation of transcription factors STAT1, STAT2,
STAT3, POU2F2, and NFkB1. The sub-network of 31 proteins
and their five master regulators are called as “host response
signature network”. In order to understand the biological
pathways associated with the “host response signature network”,
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway
enrichment analysis was performed using DAVID 6.8 (https://
david.ncifcrf.gov/home.jsp).

Potential Drugs Against “Host Response
Signature Network”
The “host response signaturenetwork”wasanalyzed tofindpotential
drug molecules using the “Gene Association” module of
June 2021 | Volume 12 | Article 648250

https://www.worldometers.info/coronavirus/
https://www.fda.gov/media/136832/download
https://www.fda.gov/media/136832/download
https://david.ncifcrf.gov/home.jsp
https://david.ncifcrf.gov/home.jsp
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Rehan et al. Andrographolide Suppresses Cytokine Storm
Network Data Exchange (NDEx version 2.4.5) (https://ndexbio.
org/) (20, 21). NDEx is an open-source platform for biological
network analysis and knowledge discovery. The output of “Gene
Association” analysis gives networks of query gene/protein and its
direct or indirect interaction with chemical and drugmolecules. All
output networks of drug-target interaction were merged to make a
non-redundant network and visualized with Cytoscape software
version3.7. Subsequently, we analyzed the potential drugmolecules
targeting the “host response signature network”. For further study,
we selected adrugmolecule, andrographolide, naturally present in a
medicinal plant used to treat common cold and inflammation (22).

Data Retrieval
The three-dimensional coordinates of andrographolide were
retrieved from the PubChem database with PubChem CID,
5318517. The crystal structure of human NFkB1, p50 subunit,
with bound native DNA was selected and retrieved from the PDB
database with PDB Id, 2V2T. The crystal structure of human
TNF as a dimer with bound native inhibitor was selected and
retrieved from the PDB database with PDB Id, 5MU8.

Predicting the Drug‐Likeness and
Pharmacokinetic Properties
The drug‐likeness and pharmacokinetic properties, including
absorption, distribution, metabolism, excretion, and toxicity, were
analyzed using the online tool “pkCSM‐pharmacokinetics” (http://
biosig.unimelb.edu.au/pkcsm/). This machine learning-based
method uses the various graph-based signature of chemical
compounds having sets of distance patterns between atoms (23).

Covalent Docking of Andrographolide
to NFkB1
It was reported that andrographolide is a covalent inhibitor of
NFkB1 and makes a covalent bond with Cys-62 of NFkB1 (24,
25). Autodock Vina (26) was used for covalent docking of
andrographolide to NFkB1. To perform covalent docking, the
reported atom of the andrographolide was linked to the sulfide
atom of Cys-62 through a covalent bond (25). The adduct Cys-
andrographolide was made flexible for rotation through various
bonds using Autodock Tools (27). Then the docking of a very
small molecule (e.g., water molecule) was performed, leading to
the relaxed conformation of the flexible adduct Cys-
andrographolide. Finally, this relaxed conformation of the
adduct Cys-andrographolide was reported as the final covalent
docking of andrographolide. Autodock Tools was used to
prepare the protein, the ligand, and the grid box required for
docking by Autodock Vina.

Molecular Docking and Protein-Ligand
Complex Analysis
For normal molecular docking, we used Dock version 6.5 (28).
For TNF, the homodimer (Chains A and B) was used for
molecular docking, and the native inhibitor bound within the
binding site formed by both monomers (Chains A and B) was
used as a probe for the TNF homodimer binding site. The
protein and ligand preparation required for molecular docking
Frontiers in Immunology | www.frontiersin.org 3
and visualization at different stages of docking was performed
using Chimera version 1.6.2 (29). The illustrations for binding
poses were generated using Pymol version 2.4.0 (Schrödinger,
LLC) and the protein-ligand interaction plots were prepared
using Ligplot+ version 2.1 (30). The binding energy and
dissociation constant scores were predicted using XScore
version 1.2.11 (31).
RESULTS AND DISCUSSION

The integration and analysis of high-throughput biological data
are extensively used to identify altered regulatory networks and
the potential target molecules of complex diseases (5, 32).
Furthermore, virtual drug screening and molecular docking
were used to find therapeutic drug molecules against target
molecules to treat the disease (17, 18). Therapeutic molecules
against SARS-CoV-2 infection could be developed using two
major approaches: (i) design the therapeutic molecules against
the crucial targets of the virus (33–36); (ii) identify the disease-
related gene regulatory network and then design the therapeutic
molecules against it. Our previous work identified the “host
response signature network” associated with the influx of
cytokine storm through the TNF-induced NFkB1 signaling
pathway (5). Our study also suggested vitamin D’s role in
reducing the cytokine storm and viruses (5). In this work, we
employed the later drug development strategy in which the “host
response signature network” induced in the SARS-CoV-2
infection was used as targets to repurpose drug molecules to
reduce the cytokine storm responsible for severe COVID-19.

Biological Pathways of “Host Response
Signature Network”
The “host response signature network” was analyzed with the
KEGG pathway, which identified several significantly associated
biological pathways. We found that TNF signaling pathway is
significantly associated with IL6, CSF2, CCL20, IL1B, CXCL1,
CXCL3, TNF, CXCL2, MMP9, NFkB1, and ICAM1 of the “host
response signature network” and responsible for the induction of
cytokine storm (Figure 1). The complete list of all KEGG
pathways is provided in the Supplementary Table S1.

Potential Drug Molecules Targeting
“Host Response Signature Network”
Analysis of potential drug molecules for “host response signature
network” with the “Gene Association” module of online tool
NDEx returns a list of drug-target interactions networks
(Table 1). The list of drug-target interactions from different
networks was merged to create a non-redundant drug-target
network (Figure 2). The detailed information of drug molecules
is provided in the Supplementary Table S2. The data was further
investigated to find a potential drug for better management of the
cytokine storm in severe COVID-19 patients. We have selected
andrographolide for further study based upon the following
criteria from the list of repurposed drugs.
June 2021 | Volume 12 | Article 648250
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(a) The drug must target/suppress the highest number
of proteins of the “host response signature network”; (b)
targeted proteins associate with the same biological pathway;
(c) targeted proteins play a crucial role in the cytokine storm; and
(d) a medicinal plant could be a source of the drug.

We found that andrographolide can target four different
proteins IL1B, NFkB1, TNF, and IL6 (Table S2A) of the TNF
signaling pathway (Figure 1), whichmight result in blockage of the
cytokine storm in COVID-19. Andrographolide is a labdane
diterpenoid isolated from Andrographis paniculata, also known as
the “king of bitters”, a medicinal plant that mainly grows in Asian
countries (Figure 3).Andrographis paniculata traditionally used in
Frontiers in Immunology | www.frontiersin.org 4
Unani, Ayurvedic, and Chinese herbal medicines with a broad
range of therapeutic applications, including treating a common
cold, upper respiratory tract infections, and inflammation (22).

Drug-Likeness and Pharmacokinetic
Properties
As shown in Table 2, the andrographolide was having a low
molecular weight of 350.46 (< 500) and the lipophilicity (LogP)
value of 1.96 (<5), H-bond donors 3 (<5) and acceptors 5 (<10),
and three rotatable bonds (<10). The values for all five
conditions (Lipinski’s Rule of Five) for the andrographolide
were well within the desired range of a drug molecule.
FIGURE 1 | The KEGG pathway enrichment analysis showed that the “host response signature network” is associated with the TNF signaling pathway. The proteins
IL6, CSF2, CCL20, IL1B, CXCL1, CXCL3, TNF, CXCL2, MMP9, NFKB1, and ICAM1 of the “host response signature network” are represented as red stars.
TABLE 1 | Drug-target networks were retrieved using the “Gene Association” module of NDEx v2.4.5.

Network Name Query result

Network Properties Number of overlapping gene

DrugBank - Combined Network
Parent: Nodes:11994; Egde:27799

Nodes:106; Egde:119 14 genes

DisGeNET - Gene-Disease Associations (Score >=0.5)
Parent: Nodes:8631; Egde:8273

Nodes:75; Egde:79 14 genes

DrugBank - Target drugs
Parent: Nodes:11407; Egde:19650

Nodes:104; Egde:118 13 genes

BioGRID: Protein-Chemical Interactions (H. sapiens)
Parent: Nodes:6776; Egde:10854

Nodes: 52; Egde:45 12 genes

BindingDB - High Affinity Compounds vs. human targets (Commercially available)
Parent: Nodes:1374; Egde:3371

Nodes: 7; Egde:6 2 genes

DrugBank - Enzyme drugs
Parent: Nodes:1984; Egde:4905

Nodes: 2; Egde:1 1 gene
June 202
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While most of the pharmacokinetic properties, including
absorption, distribution, metabolism, excretion, and toxicity,
Frontiers in Immunology | www.frontiersin.org 5
were acceptable for andrographolide (Table 3). Therefore, this
suggests that andrographolide is a potentially safe drug candidate
for use in humans.
Covalent Docking Analysis of
Andrographolide With NFkB1
The PDB structures of IL1B and IL6 are available as a complex
with their receptors (for example, PDB Ids: 3O4O and 1P9M,
respectively) and with the antibody (for example, PDB Ids: 4G6J
and 4CNI, respectively). The information for the binding site of
ILIB and IL6 for a chemical compound was not obvious. So, we
FIGURE 2 | The network of drug molecules targeting the “host response signature network”.
A B

FIGURE 3 | Molecular structure of andrographolide. (A) Two-dimensional sketch of andrographolide with O-atoms and -OH groups in red color. (B) Three-
dimensional diagram of andrographolide with O-atoms in red and H-atoms in white colors.
TABLE 2 | Drug-likeness (Lipinski rule of five) for andrographolide.

Lipinski rule of five

Property Desired value Andrographolide

Mol Wt. <500 350.46
H-Bond Donors <5 3
H-Bond Acceptors <10 5
Rotatable Bonds <10 3
Lipophilicity (LogP) <5 1.96
June 2021 | Volume 12 | Article 648250
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proceeded with the docking of andrographolide to NFkB1 and
TNF only.

The experimental laboratories showed that andrographolide
reacted with the sulfhydryl group (-SH) of Cys-62 of NFkB1 and
formed a covalent bond (24, 25). One of the studies mentioned
above further proceed to a normal docking of andrographolide to
NFkB1, and they reported Cys-62 and Arg-57 as the interacting
residues forming hydrogen bonds (25). We tried normal docking
considering Cys-62 as a clue for the binding site and failed to see
a binding site cavity close to Cys-62 residue where this
compound may fit. Therefore, we proceeded with the covalent
docking of andrographolide to NFkB1. The docking results
showed that the andrographolide formed a covalent bond and
a hydrogen bond (2.86 Å) with the sulfide atom of Cys-62
(Figure 4). The Cys-62 was also involved in 13 non-bonding
contacts with andrographolide (Table 4). Another interacting
residue Glu-63 was involved in another 13 non-bonding
contacts. Thus, the andrographolide formed an adduct with
Cys-62 and became part of the protein. In addition, it formed
a hydrogen bond and 26 non-bonding interactions with the
protein (Figure 4 and Table 4). Thus, our study suggests
andrographolide could block the DNA binding site, interfering
with the binding of DNA, and thus the transcription factor
NFkB1 would not be able to carry out its function. This is in
Frontiers in Immunology | www.frontiersin.org 6
agreement with previous findings, which revealed that
andrographolide binds with NFkB1, which blocks the binding
of NFkB1 to DNA and prevents transcriptional activity (24, 25).

Molecular Docking Analysis of
Andrographolide With TNF Homodimer
The andrographolide docked well within the binding site formed by
twomonomeric units of TNF (Figure 5A) and stabilized by 20 non-
bonded contacts and one hydrogen bond through nine interacting
residues (Figure 5B and Table 5). The absolute values of binding
scores, including dock score (-32.67), binding energy (-7.52 Kcal/
mol), and dissociation constant measure pKd (5.51), were also
reasonably high required for the stable protein-ligand complex.
The nine interacting residues include four residues from chain A
(Tyr-59,Tyr-119,Leu-120,andGly-121)andfive residues fromchain
B (Leu-94, Tyr-119, Leu-120, Gly-121, and Gly-122). Interestingly,
the three identical residuesTyr-119, Leu-120, andGly-121 fromboth
themonomers, played a role in binding. Of nine interacting residues,
Gly-121(B) formed hydrogen bonding interaction with the
andrographolide with bond length 3.06 Å and also formed eight
(maximum) non-bonded contacts. Therefore, the Gly-121(B) is
proposed as the key residue playing a role in binding. While
comparing the binding of andrographolide to that of the native
inhibitor JNJ525 (Figures 5B, C), it was found that the
TABLE 3 | Pharmacokinetic properties (ADMET) prediction for andrographolide.

Pharmacokinetic properties (ADMET)

Property Model Name Desired value Unit Andrographolide

ABSORPTION Water solubility log mol/L -3.494
Caco2 permeability >0.90 log Papp in 10-6 cm/s 1.07
Intestinal absorption (human) >>30 % Absorbed 95.357
Skin Permeability >-2.5 log Kp -3.794
P-glycoprotein substrate No Yes/No No
P-glycoprotein I inhibitor Yes/No No
P-glycoprotein II inhibitor Yes/No No

DISTRIBUTION VDss (human) 0.71<VDss<2.81 log L/kg -0.286
Fraction unbound (human) Fu 0.281
BBB permeability <0.3 log BB -0.598
CNS permeability >-2 log PS -2.691

METABOLISM CYP2D6 substrate No Yes/No No
CYP3A4 substrate No Yes/No Yes
CYP1A2 inhibitor Yes/No No
CYP2C19 inhibitor Yes/No No
CYP2C9 inhibitor Yes/No No
CYP2D6 inhibitor Yes/No No
CYP3A4 inhibitor Yes/No No

EXCRETION Total Clearance log ml/min/kg 1.183
Renal OCT2 substrate No Yes/No No

TOXICITY AMES toxicity No Yes/No No
Max. tolerated dose (human) <0.477 log mg/kg/day 0.128
hERG I inhibitor No Yes/No No
hERG II inhibitor No Yes/No No
Oral Rat Acute Toxicity (LD50) mol/kg 2.162
Oral Rat Chronic Toxicity (LOAEL) log mg/kg_bw/day 1
Hepatotoxicity No Yes/No No
Skin Sensitization No Yes/No No
T. pyriformis toxicity <-0.5 log ug/L 0.491
Minnow toxicity >-0.3 log mM 1.37
June 2021 | Volume 1
ADMET, absorption, distribution, metabolism, excretion, and toxicity; BBB, blood‐brain barrier; CNS, central nervous system; CYP, cytochrome P; hERG, human ether‐a‐go‐go‐related
gene; LD50, lethal dose 50%; LOAEL, lowest observed adverse effect level; OCT2, organic cation transporter 2; VDss, steady‐state volume of distribution.
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andrographolide was also binding to the same site and sharing
common six interacting residues Tyr-59 (A), Tyr-119 (A), Gly-121
(A), Tyr-119 (B), Gly-121 (B), and Gly-122 (B). Thus, the
andrographolide was binding in the site where the TNF inhibitor is
binding and inhibiting TNF activity.

Previous studies showed that andrographolide has a potent
inhibitor of wide verities of viruses, including influenza virus (37,
38), hepatitis C virus (39), herpes simplex virus type 1 (40),
Chikungunya virus (41). It also has the potential to inhibit the
proliferation of lung carcinoma (42) and nasopharyngeal
carcinoma (43), and tumor metastasis (44). Another report
demonstrated that mice treated with andrographolide reduce the
inflammation andfibrosis of damaged liver (45). It also prevents liver
neutrophil infiltrationandreducedTNFandCOX-2signaling (45).A
recent study with the molecular docking method suggested
andrographolide as a potential inhibitor of SARS-CoV-2 main
protease Mpro (47). Another computational-based study found
that andrographolide and its derivative, 14-deoxy-11,12-
didehydroandrographolide, have a high binding affinity with three
target proteins of SARS-CoV-2, i.e., main protease, papain-like
protease (PLpro), and spike protein (48). In addition, the same
Frontiers in Immunology | www.frontiersin.org 7
study used a DIGEP-Pred tool and predicted that both compounds
induce the level of several proteins involved in regulating immune
systems, including the NFkB signaling pathway (48).

The NFkB1 is a family of transcription factors, which regulate
the expression of various genes of pro-inflammatory cytokines,
including IL6 and IL8 (CXCL8), mainly responsible for cytokine
storm in COVID-19 (Figure 1) (5, 49). NFkB1 inhibitory protein
(IkB) binds with NFkB1 dimer in an unstimulated cell, which
preventsmovement ofNFkB1 fromthe cytoplasm to thenucleus. In
response to SARS-CoV-2 infection, the TNF signaling pathway is
activated, which causes degradation of IkB, resulting in the release
and translocation of NFkB1 to the nucleus for transcription of
various cytokine genes (5, 49). Our study found that
andrographolide bound well with TNF and NFkB1 and provided
structural insights into their binding. This binding of
andrographolide blocks the TNF signaling pathways at these two
critical steps, thus prevents the expression of various cytokine genes
responsible for the influx of cytokine in COVID-19.

In addition, our study identified Dilmapimod as potential
compounds to reduce the cytokine storm through targeting/
suppressing IL1B, TNF, and IL6 (Table S2A). Activation of the
p38MAPK signaling pathway is associatedwith lung inflammation
inasthmaandchronicobstructive pulmonarydisease (COPD) (50).
The p38 MAPK regulated NFkB dependent transcription of
multiple inflammatory cytokines (51). Clinical studies showed
that Dilmapimod, a novel inhibitor of p38 MAPK, decreases the
TNFand IL1B level in thebloodofCOPDpatients (52, 53).Another
study also suggested the potential use of Dilmapimod for COVID-
19 management (54). Furthermore, our analysis identified that
Prednisolone, a corticosteroid,has thepotential to suppress the level
TABLE 4 | The NFkB1 residues interacting with andrographolide.

Interacting residue Covalent bond Hydrogen bond Non-bonded
contacts

Cys-62 1 1 13
Glu-63 – – 13
The interacting residues are listed with a number of interactions (covalent bond, hydrogen
bonds and non-bonded contacts).
A B

FIGURE 4 | Covalent docking of andrographolide to human NFkB1. (A) NFkB1 is shown in surface representation colored light orange with bound native double-
helical DNA and docked andrographolide. The docked andrographolide forming Cys-andrographolide adduct was shown as a close-up in the inset. The
andrographolide, part of the adduct, was shown in sticks representation having carbon backbone in green color with heteroatoms oxygen, nitrogen, sulfur, and
hydrogen atoms in red, blue, yellow, and white colors respectively. The Cys-62 part of the adduct forming the covalent bond through sulfur atom was also shown in
sticks representation with the backbone in orange color. (B) Protein-ligand interaction plot of andrographolide with NFkB1. The andrographolide and hydrogen
bonding residues are shown in ball and sticks representation with balls representing atoms and sticks representing the bond between two atoms. The color of balls
distinguishes among atom types as C-atom in black, O-atoms in red, N-atoms in blue, and S-atom in yellow colors. The non-bonded interactions labeled with
interacting residue are shown as red arcs with bristles, covalent bonds as purple line, and hydrogen bonds as thick green lines labeled with bond length in Å.
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of IL6 (Table S2A); thus, supported previous work indicating that
Prednisolone could be useful in treating severe COVID-19 (55).

Previous studies showed the anti-inflammatory and anticancer
effects of Dehydroxymethylepoxyquinomicin (DHMEQ), a new
inhibitor of NFkB (56, 57). Another study found that DHMEQ
reduces allergic airway inflammation and cytokines in a mice
model of asthma (58). An investigation conducted in Jurkat T-
lymphoblastic leukemia cells found that DHMEQ prevents the
TNF-a-induced nuclear translocation of NFkB (46). These
findings also raised the potential use of DHMEQ in inhibiting
cytokine storms and thus need to be studied in more detail in
treating COVID-19.

Our study used a rational computational approach to identify
the potential drug molecule for COVID-19. Though it is
associated with the following limitations: (i) we used the “host
response signature network” identified in the NHBE cells infected
with SARS-CoV-2 (5). The work included a limited sample size
of transcriptomic data with three infected and three controlled
groups (19). (ii) This study lacks in vitro drug screening data on
human lung cells infected with SARS-CoV-2. Therefore, it is
Frontiers in Immunology | www.frontiersin.org 8
difficult to draw the effect of andrographolide on the “host
response signature network” in SRAS-CoV-2 infected cells.
(iii) Furthermore, our study lacks the experimental evaluation
of the dose-dependent effect of the drug and its associated risk.

CONCLUSION

The SARS-CoV-2 infection resulted in the COVID-19 pandemic
killed millions of people around the world. Therefore, it is urgently
needed todevelop safe and effective drugmolecules in a limited time
to combat COVID-19. The influx of cytokines in COVID-19
patients is the prominent reason for organ damage and death.
Thus, our study used the information of altered regulatory network
inducing cytokine storm in COVID-19 and then repurposed
andrographolide as a potential drug molecule to reduce the
cytokine storm. Molecular docking analysis showed that
andrographolide could inhibit NFkB1 and TNF, and thus block
the pathways responsible for cytokine storm. This naturally
occurring compound possesses drug-like properties and could be
a promising drug for further biochemical and cell-based
experimental validation for combating severe COVID-19.
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