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The first steps in vision: cell types, circuits,
and repair
Botond Roska1,2,3

Abstract

Dysfunction of the key sense of vision, leading to visual handicap
or blindness, has a crucial effect on day-to-day life. In this
commentary, I will summarize the work in my laboratory that is
focused on a basic understanding of visual processing and the use
of this information to understand disease mechanism and to
develop correcting therapies. We are beginning to understand how
cell types of the visual system interact in local circuits and
compute visual information. This has brought insight into mecha-
nisms of cell-type-specific diseases and has allowed us to design
new therapies for restoring vision in genetic forms of blindness.
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Cell types, circuits, and computations

We were intrigued to learn how cell types and circuits of the visual

system extract features from the visual scene. We started our investi-

gations by creating an atlas of cell-type transcriptomes in the mouse

retina (Siegert et al, 2012) and found that each adult retinal cell type

expresses a specific set of genes, including a unique set of transcrip-

tion factors. This novel resource has allowed us to manipulate retinal

cell types using mouse genetics or viruses and to explore the logic by

which visual circuits extract information from the visual scene.

Multifunctional cell types in the retina
The first insight we gained was that retinal cell types and circuits

are multifunctional and can therefore perform radically different

functions depending on the visual input or even when the visual

input is the same. Over time, we have reported several examples of

such circuits.

The first case was a retinal circuit that specializes in the detec-

tion of approaching objects, such as looming predators (Münch

et al, 2009). Together with our collaborator Rava Azaredo da

Silveira, we identified an approach-sensitive ganglion cell type in

the mouse retina, resolved elements of its afferent neural circuit,

and described how these confer approach sensitivity to the ganglion

cell. The essential building block of the circuit is a rapid inhibitory

pathway that selectively suppresses responses to non-approaching

objects. This rapid inhibitory pathway was described previously in

the context of night-time vision. In day-time conditions, the same

pathway conveys signals in the reverse direction. This demonstra-

tion of the dual activity of a neural pathway related to different

physiological conditions illustrated the efficiency with which several

functions can be accommodated in a single circuit.

The second example was a retinal circuit that switches function

depending on the ambient illumination (Farrow et al, 2013). By slid-

ing through light levels from starlight to daylight, we identified reti-

nal ganglion cell types that abruptly and reversibly switch the

weighting of center and surround interactions in their receptive field

around cone threshold. Two-photon-targeted recordings together

with genetic and viral-tracing experiments identified the circuit

element responsible for the switch as a large inhibitory neuron that

acts directly on ganglion cells. The experiments suggested that weak

excitatory input via electrical synapses, together with the spiking

threshold in inhibitory cells, acts as a switch. This work demon-

strated that circuits in the retina can quickly and reversibly switch

between two distinct states, implementing distinct perceptual

regimes at different light levels. Furthermore, it revealed a switch-

like component in the spatial integration properties of human vision

at cone threshold.

The third example was based on the discovery that rods, which

act as photoreceptors in nightlight, switch their function in daylight

(Szikra et al, 2014). Vertebrate vision relies on two types of

photoreceptors, the rods and the cones, that signal increments in

light intensity with graded hyperpolarizations. Rods operate in the

lower range of light intensities and cones at brighter intensities. The

receptive fields of both photoreceptors exhibit antagonistic center-

surround organization. We demonstrated that mouse rods at bright-

light levels act as relay cells for cone-driven surround inhibition.

Thus, when they are not directly sensing light, rods are not left

without a task: They join the cone circuit.

The fourth example was a circuit that can have different func-

tions even when the visual input is the same (Drinnenberg et al,

2018). We chemogenetically perturbed horizontal cells, which are
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an interneuron type providing feedback at the first visual synapse

while monitoring light-driven spiking activity in thousands of gang-

lion cells, the retinal output neurons. We uncovered six reversible

perturbation-induced effects in the response dynamics and response

ranges of ganglion cells. A computational model of the retinal

circuitry reproduced all perturbation-induced effects and led us to

assign specific functions to horizontal cells with respect to different

ganglion cell types. Our combined experimental and theoretical

work revealed how a single interneuron type can differentially

shape the dynamical properties of distinct output channels of the

retina.

Computations from retina to cortex
The second insight we generated was the combination of visual

information from several visual channels by cells of the lateral

geniculate nucleus (LGN) and primary visual cortex and the result-

ing computation of new visual features.

First, we determined different modes of visual integration in

the LGN (Rompani et al, 2017). The thalamus receives sensory

input from different circuits in the periphery, but how these

sensory channels are integrated at the level of single thalamic

cells was not well understood. We performed targeted single-cell-

initiated transsynaptic tracing to label the retinal ganglion cells

that provide input to individual principal cells in the mouse LGN.

We identified three modes of sensory integration by single LGN

cells. In the first, few cells of mostly the same type converged

from one eye, indicating a relay mode. In the second, many gang-

lion cells of different types converged from one eye, revealing a

combination mode. In the third, many ganglion cells converged

from both eyes, revealing a binocular combination mode in which

functionally specialized ipsilateral inputs joined broadly distrib-

uted contralateral inputs. Thus, the LGN employs at least three

modes of visual input integration, each exhibiting different

degrees of specialization.

Second, we provided causal evidence for retina-dependent and

retina-independent visual motion computations in primary visual

cortex (Hillier et al, 2017). How neuronal computations in the

sensory periphery contribute to computations in the cortex was not

well understood. We examined this question in the context of visual

motion processing in the retina and primary visual cortex. We

genetically disrupted retinal direction selectivity, either along only

the horizontal axis using FRMD7 mutant mice or along both cardi-

nal axes using starburst cell-ablated mice, and monitored neuronal

activity in layer 2/3 of primary visual cortex during visual motion.

In control mice, we found a strong direction bias for posterior visual

motion, which occurs naturally when the animal moves forward. In

mice with disrupted retinal direction selectivity, the proportion of

posterior motion-preferring cells decreased significantly and their

speed tuning changed. Thus, functionally distinct, retinal direction

selectivity-dependent and selectivity-independent computation of

visual motion occurs in the cortex.

Third, we showed that the visual cortex of mice is organized in

layer-specific cortical network modules (Wertz et al, 2015). We

used single-cell-initiated, monosynaptically restricted retrograde

transsynaptic tracing with rabies viruses expressing GCaMP6s to

image the visual motion-evoked activity of individual layer 2/3

pyramidal neurons and their presynaptic networks across layers in

mouse primary visual cortex. Neurons within each layer exhibited

similar motion direction preferences, forming layer-specific func-

tional modules. In one-third of the networks, the layer modules

were locked to the direction preference of the postsynaptic neuron,

whereas for other networks, the direction preference varied by

layer. Thus, this work revealed the existence of feature-locked and

feature-variant cortical networks.

A cell-type-specific disease mechanism

We designed an experimental logic to identify the relevant cell types

and circuits of genetic diseases of vision with unknown pathology.

First, we focused on the function of a specific retinal circuit and

proceeded to study how cell types participate in a given computa-

tion. Then, we revealed the gene expression patterns of the relevant

cell types and linked cell-type-specific genes to human monogenic

diseases. Finally, we connected the symptoms of human diseases to

the identified cell types and circuits.

Such an approach has led us to identify the circuit mechanism in

a common human neurodevelopmental disease: FRMD7 gene-asso-

ciated congenital nystagmus. We linked a key symptom, loss of the

optokinetic response, to a single retinal cell type (starburst cells)

and a retinal computation, i.e., the computation of motion direction

(Yonehara et al, 2016).

We developed this insight by following the experimental logic

outlined above.

We first investigated the development of the circuit involved in

the computation of direction selectivity (Yonehara et al, 2011). We

followed the spatial distribution of synaptic strengths between star-

burst and direction-selective ganglion cells during early postnatal

development before these neurons can respond to a light stimulus.

We showed that an asymmetry develops rapidly over a 2-day period

through an intermediate state in which random or symmetric synap-

tic connections have been established. The development of asymme-

try involved the spatially selective reorganization of inhibitory

synaptic inputs. This work demonstrated a rapid developmental

switch from a symmetric to asymmetric input distribution for inhibi-

tion in the neural circuit of a principal cell.

Next, we identified the key synapse responsible for the computa-

tion of motion direction (Yonehara et al, 2013). Using the gene

expression atlas developed in our laboratory, we found that FRMD7

was specifically expressed in starburst cells (Yonehara et al, 2016).

We showed that mutation of FRMD7, a gene that is defective in

human congenital nystagmus, leads to selective loss of the horizon-

tal optokinetic reflex in mice, as it does in humans. Together with

our collaborator Andreas Hierlemann, we found that this was

accompanied by selective loss of horizontal direction selectivity in

retinal ganglion cells and the transition from asymmetric to symmet-

ric inhibitory input to horizontal direction-selective ganglion cells.

This work identified FRMD7 as a key regulator in the development

of neuronal circuit asymmetry and suggested the involvement of a

specific inhibitory neuron type in the pathophysiology of a neuro-

logical disease.

Finally, we developed functional ultrasound imaging to record

whole-brain activity in behaving mice at a resolution of ~ 100 lm
and compared activity in healthy and FRMD7 mutant mice (Macé

et al, 2018). In healthy mice, we detected 87 active brain regions

during visual stimulation that evoked the optokinetic reflex. Using

FRMD7 mutant mice, we identified a subset of regions whose
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activity was reflex-dependent. Our work identified the brain regions

affected in a mouse model of congenital nystagmus and provided an

experimental approach to monitor whole-brain activity of mice in

normal and disease states.

Cell-type-targeted repair

We used our understanding of the activity, connectivity, and gene

expression pattern of retinal cell types to design cell-type-targeted

optogenetic therapies for blinding diseases. We concentrated on a

group of genetic diseases, termed retinitis pigmentosa, in which

blindness is caused by photoreceptors losing light sensitivity. We

showed proof of principle for making key retina cell types light

sensitive using cell-type-targeted optogenetic approaches (Lagali

et al, 2008; Busskamp et al, 2010). We restored visual function first

in animal models of retinitis pigmentosa. With our collaborators

Jose-Alain Sahel and Serge Picaud, we then provided proof of

concept for visual restoration in human retinas ex vivo and identi-

fied blind patients who could benefit from the potential therapy.

We are currently working on translation of the therapy to patients:

A first phase clinical trial run by GenSight Biologics Inc. is ongoing.

A further therapeutic approach to photoreceptor-based blindness

is to prevent the loss of photosensitivity. Working toward this goal,

together with our collaborator Witold Filipowicz, we identified a

key microRNA-based pathway involved in the maintenance of the

photosensitive subcellular compartment, the outer segment of

photoreceptors (Busskamp et al, 2014). We then used the identified

molecules to grow outer segments and enable photosensitivity in

embryonic stem cell-derived retinoids in vitro. We are currently

experimenting with these molecules to prevent loss of photosensitiv-

ity in retinitis pigmentosa.

A key limitation in gene therapy has been the lack of cell-type-

specific gene delivery vectors. Adeno-associated viral vectors

(AAVs) are frequently used for gene delivery, but targeting expres-

sion to specific cell types has been a challenge. We created a

library of 230 AAVs, each with a different synthetic promoter

designed using four independent strategies (preprint: Juettner et al,

2018). We showed that ~ 11% of these AAVs specifically target

expression to neuronal and glial cell types in the mouse retina, the

mouse brain, the non-human primate retina in vivo, and the human

retina in vitro. We demonstrated applications for recording, stimu-

lation, and molecular characterization, as well as the intersectional

and combinatorial labeling of cell types. These resources and

approaches allow economic, fast, and efficient cell-type targeting in

a variety of species, both for basic science and for gene therapy.

An additional limitation of current gene therapy approaches is

that once injected into the body, viral vectors can no longer be

controlled. Together with our collaborator Daniel Mueller, we have

begun to address this problem. We have bound viruses to magnetic

nanoparticles and showed that these particles can be remote

controlled in the brain using a magnetic field in a way that leads to

infection; we named the process “virus stamping” (Schubert et al,

2018).

Summary

For a long time, studies of neuronal circuits and of visual diseases

have been pursued separately. In recent years, the concept of cell

types (structurally, functionally, and transcriptomically similar

groups of cells) has brought the two fields together. Cell types are

the basic building blocks of neuronal circuits, and technologies to

deliver genes to cell types are now core components of neuronal

circuit studies. Since most retinal diseases are cell-type-specific, the

notion of cell types and cell-type-targeted gene delivery is also at the

center of research on disease mechanisms and therapy. As both

fields mature, the concepts and tools developed in basic circuit

science will help in the development of therapy and, conversely, the

concepts and tools being developed for therapy will open the door

to increased sophistication in our understanding of the structure

and function of neuronal circuits.

A personal note

I enjoy thinking and exploring. I was lucky that over the last

13 years I received extraordinary generous support for these activi-

ties from Novartis and from the Friedrich Miescher Institute (FMI),

for which I am deeply grateful. Currently, I am occupied by thinking

about and exploring how can we understand the biology of humans

and to develop therapy. Toward this direction—with the generous

support of Novartis, the University of Basel, the University Hospital

of Basel, and the city of Basel—and together with my colleague and

friend Hendrik Scholl, we started a new institute, the Institute of

Molecular and Clinical Ophthalmology Basel (IOB). I feel similarly

as I felt at the time when I started my laboratory in 1995: a bit inse-

cure, rejuvenated, and full of plans.
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