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SUMMARY
Because of their immunomodulatory properties, human bone marrow stromal cells (hBMSCs) represent promising stem cells for treat-

ment of immune disorders. hBMSCs expansion precedes their clinical use, so the possibility that hBMSCs undergo spontaneous trans-

formation upon long-term culture should be addressed. Whether hBMSCs retain immunosuppressive and anti-inflammatory properties

upon oncogenic transformation remains unknown. Using sequentially mutated hBMSCs and spontaneously transformed hBMSCs, we

report that, upon oncogenic transformation, hBMSCs lose immunosuppressive and anti-inflammatory properties in vitro and in vivo.

Transcriptome profiling and functional assays reveal immune effectors underlying the loss of immunomodulation in transformed

hBMSCs. They display a proinflammatory transcriptomic signature, with deregulation of immune and inflammatory modulators and

regulators of the prostaglandin synthesis. Transformed hBMSCs lose their capacity to secrete the immunosuppressive prostacyclins

prostaglandin E2 (PGE2) and PGI2 but produce proinflammatory thromboxanes. Together, the immunoregulatory profile adopted by

hBMSCs largely depends on intrinsic genetic-molecular determinants triggered by genomic instability/oncogenic transformation.
INTRODUCTION

Human bonemarrow stromal cells (hBMSCs) are a rare sub-

set of bone marrow cells and constitute a promising source

of multipotent progenitors for mesodermal tissues (Pit-

tenger et al., 1999), being used worldwide in many clinical

applications including tissue repair, treatment of graft-

versus-host disease, and autoimmune diseases (Garcı́a-Cas-

tro et al., 2008). The clinical potential of hBMSCs relies on

key properties such as (1) multipotent differentiation, (2)

long-term ex vivo expansion, (3) homing ability to

damaged tissues, and (4) robust immunomodulatory prop-

erties (Bernardo and Fibbe, 2012, 2013; Garcı́a-Castro et al.,

2008). The mechanisms through which hBMSCs display

reparative effects include the capacity to home to sites of

damage, the ability to release anti-inflammatory factors,

and the capacity tomodulate immune responses (Bernardo

and Fibbe, 2012; Marigo and Dazzi, 2011). hBMSCs secrete

immunosuppressive factors including prostaglandin E2

(PGE2), indoleamine 2,3-dioxygenase (IDO), transforming

growth factor (TGF)-b, and nitric oxide (NO), thus modu-

lating immune responses by inhibiting T cell activation

and natural killer cell activity and inducing type II macro-

phage and dendritic cell differentiation and regulatory

T cell (Bernardo and Fibbe, 2013; English, 2013; Herrero
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and Pérez-Simón, 2010; Ma et al., 2014; Yagi et al., 2010).

However, it has been demonstrated that hBMSCs are not

intrinsically immunoprivileged (Nauta et al., 2006), but

they acquire immunosuppressive properties after exposure

to an inflammatory environment (Prockop and Oh, 2012).

The immunosuppressive properties of allogeneic

hBMSCs might be a double-edged sword. On one hand,

they constitute the rationale for hBMSCs-based potential

therapeutic approaches. On the other hand, they might

enhance the ability of tumors to evade immune surveil-

lance (Lazennec and Jorgensen, 2008; Momin et al.,

2010). hBMSCs have been reported to inhibit or promote

tumor growth, depending on yet undefined conditions

(Momin et al., 2010; Stagg, 2008). Likewise, the experi-

mental transformation of hBMSCs by different mecha-

nisms gives rise to sarcoma formation in vivo, hence

placing stromal mesenchymal stem cells as the cell of

origin for certain sarcomas (Mohseny and Hogendoorn,

2011; Rodriguez et al., 2012). Practically, ex vivo expansion

of stromal mesenchymal stem cells is a prerequisite for

their clinical use (Barkholt et al., 2013) so that, when

considering the use of ex vivo expanded hBMSCs, the pos-

sibility that they undergo senescence, genomic instability,

and spontaneous transformation after long-term culture

should be addressed (Barkholt et al., 2013; Estrada et al.,
uthors
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2013; Pan et al., 2014;Wang et al., 2005). Although in vitro

spontaneous transformation seems rare, no information

exists about the homeostasis of long-term cultured

hBMSCs regarding the donor age, underlying disease, and

source of stromal mesenchymal stem cells. Furthermore,

although hBMSC-based clinical trials should represent

the optimal source of evidence on the potential in vivo

tumorigenic capacity of hBMSCs, current trials rarely

focused on parameters relevant for assessing the transfor-

mation potential of allogeneic hBMSCs because they rarely

evaluate long-term safety and efficacy of mesenchymal

stem cells (MSCs) (Mishra et al., 2009; Momin et al.,

2010). Additionally, stromal mesenchymal stem cells

exposed to the tumor milieu could differentiate into carci-

noma-associated fibroblasts, enhancing tumor growth

(Mishra et al., 2009; Momin et al., 2010). Together,

although it is an important concern for realizing the full

clinical expectative of hBMSC, the oncogenic potential of

hBMSCs remains poorly explored. Consequently, whether

hBMSCs retain differentiation and immunosuppressive

and anti-inflammatory properties upon oncogenic trans-

formation remains unknown. Here, we take advantage of

a collection of sequentially mutated hBMSCs ranging

from wild-type to fully transformed hBMSCs (targeted

with up to six oncogenic mutations; Funes et al., 2007; Ro-

driguez et al., 2013) to address whether hBMSCs at

different stages of a well-characterized oncogenic process

(normal, immortalized, and transformed; Funes et al.,

2007; Rodriguez et al., 2013) retain immunomodulatory

properties in vitro and in vivo. We describe an oncogenic-

transformation-associated loss of the immunosuppressive

and anti-inflammatory properties by hBMSCs and identify

candidate immune effectors underlying this loss of immu-

nomodulation capacity. These data have enormous impli-

cations not only in ex vivo expansion of hBMSCs but

also in microenvironment tumor biology.
RESULTS

Impaired InVitroHomeostasis of TransformedhBMSC

We have very recently developed and characterized sar-

coma models using several sequentially mutated hBMSCs

(Funes et al., 2007; Rodriguez et al., 2013). This collection

of hBMSCs ranges from wild-type (WT) (hBMSC-0H) to

fully transformed hBMSC (Figure 1A; Funes et al., 2007; Ro-

driguez et al., 2013). The combination of oncogenic hits

include p53 inactivation (hBMSC-1H), hBMSC-1H plus

Rb inactivation and hTERT overexpression (hBMSC-3H),

hBMSC-3H plus c-myc stabilization (hBMSC-4H), and

hBMSC-4H plus H-RASv-12 (hBMSC-5H). In addition, the

fusion oncogene FUS-CHOP was ectopically expressed in

all the hBMSC genotypes (Funes et al., 2007; Rodriguez
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et al., 2013). Figure 1A summarizes the main features and

tumorogenic potential of all the different hBMSCs. Briefly,

hBMSCs harboring less than three oncogenic hits are non-

immortalized; hBMSC-3H-GFP, hBMSC-3H-FUS-CHOP

(FC), and hBMSC-4H-GFP are immortalized, but not trans-

formed; and hBMSC-4H-FC, hBMSC-5H-GFP, and hBMSC-

5H-FC are transformed and originate sarcomas in vivo

(Funes et al., 2007; Rodriguez et al., 2013). All hBMSC

types, regardless of the number/nature of oncogenic hits,

display a typical hBMSC phenotype (Menendez et al.,

2009; Table S1 and Figure S1 available online). As expected,

immortalized and transformed hBMSCs grow in vitro

much faster than nonimmortalized hBMSCs (�22, �28,

and �4 doubling populations in 30 days, respectively; Fig-

ure 1B). Additionally, sequential acquisition of oncogenic

hits in hBMSCs impairs their adipogenic differentiation

ability but does not compromise osteogenic potential (Fig-

ures S2A and S2B). The accumulation of oncogenic events

in transformed hBMSC-5H cells induce striking alterations

in the expression of many genes involved in adipogenic

differentiation, and consequently, these cells fail to acti-

vate the master regulators of adipogenic differentiation

peroxisome proliferator-activated receptor g and CCAAT/

enhancer-binding protein alpha (Rodriguez et al., 2013).

Thus, transformation of primary hBMSC is coupled to a dif-

ferentiation impairment and proliferation advantage, hall-

mark properties of oncogenesis.

Transformed hBMSCs Lack Immunosuppressive and

Anti-inflammatory Properties In Vitro and In Vivo

It remains elusive whether transformed hBMSCs retain

immunomodulatory properties.We investigated the ability

of immortalized and transformed hBMSCs to inactivate

T cell responses and to inhibit inflammatory responses.

The potential immunomodulatory activity of immor-

talized (hBMSC-3H) and transformed (hBMSC-4H and

hBMSC-5H) hBMSCs was compared with WT-hBMSC

(hBMSC-0H) and nonimmortalized hBMSC (hBMSC-1H).

The addition of hBMSC-0H, hBMSC-1H, and hBMSC-3H

hBMSCs to mixed lymphocyte culture (MLC) of peripheral

blood mononuclear cells (PBMCs) from different donors

significantly reduced the number of total cells in the cul-

ture and specifically decreased the number of cycling

CD4 T cells (Figure 2A), suggesting they were efficient in-

hibiting the proliferative response of activated T cells.

Because they lack class II major histocompatibility com-

plex (MHC) and CD80 and CD40 costimulatorymolecules,

hBMSC-0H/ hBMSC-1H/ hBMSC-3H did not stimulate the

proliferation of allogeneic PBMCs, supporting their ‘‘im-

mune-privilege’’ status. On the other hand, hBMSC-4H

and hBMSC-5H failed to inhibit cell proliferation in the

MLC assays (Figure 2A). Moreover, hBMSC-0H/hBMSC-

1H/hBMSC-3H significantly inhibited the production of
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Figure 1. Transforming Mutations, Tumorogenic Potential, and In Vitro Growth Kinetics of the Indicated hBMSC Cultures
(A) Summary of the main features of the sequentially mutated collection of hBMSCs. Data on the in vivo tumorogenic potential (tumor
penetrance, latency, and histological analysis) have been previously reported (Rodriguez et al., 2013). The latency represents the number
of days until 1 cm3 tumor is observed.
(B) Proliferation was measured as cumulative population doublings in three independent triplicates. *p value immortalized/transformed
hBMSCs versus nonimmortalized hBMSCs at day 30 < 0.01.
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the Th1-cytokines interleukin 2 (IL-2), interferon g (IFNg),

and tumor necrosis factor a (TNF-a) on the allogeneic

MLCs (Figure 2B). The immunosuppressive effects of

hBMSC-0H/ hBMSC-1H/ hBMSC-3H were observed on

allogeneic, but not on syngeneic, reactions (Figures 2A

and 2B), indicating the requirement of activated immune

responses. In contrast, hBMSC-4H and hBMSC-5H failed
608 Stem Cell Reports j Vol. 3 j 606–619 j October 14, 2014 j ª2014 The A
to decrease the production of Th1 cytokines by activated

lymphocytes (Figure 2B). The observed effects were not a

consequence of induced cell mortality, because the

hBMSCs did not affect the apoptosis/survival of PBMCs

on the MLCs.

We next investigated the capacity of the hBMSCs to regu-

late the inflammatory response of resident cells of the
uthors
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Figure 2. Transformed hBMSCs Lose Immunosuppressive and Anti-inflammatory Properties In Vitro
(A) MLCs established by coculturing responder PBMCs from donor A and stimulator PBMCs from donor B were treated with the indicated
hBMSCs (right side of each panel). Cultures of PBMCs from donor A (syngeneic) alone and cultures of hBMSCs alone were used as basal
controls (left side of each panel). Upper panel: proliferation was determined by measuring [3H]thymidine incorporation after 96 hr. Lower
panel: responder PBMCs from donor B were CFSE labeled before being added to culture, and the number of cycling (CFSEmild/low) CD4 cells
was determined by flow cytometry after 96 hr culture. *p value < 0.001 versus MLC without hBMSCs; #p value < 0.001 versus hBMSC-0H-
treated cultures (n = 3 independent experiments; two-way ANOVA).
(B) Transformed hBMSCs fail to inhibit the production of Th1 cytokines by activated lymphocytes. MLCs were established and treated as
described in (A). Cytokine contents were determined by ELISA after 48 hr culture. *p value < 0.001 versus MLC without hBMSCs; #p value <
0.001 versus hBMSC-0H-treated cultures (n = 3 independent experiments; two-way ANOVA).
(C) Transformed hBMSCs do not inhibit the inflammatory response in SMCs from RA patients. SMCs isolated from two RA patients were
stimulated with lipopolysaccharide (for cytokine determination) or TNF-a (for collagenase activity assay) in the absence or presence of the
indicated hBMSCs. Culture supernatants were assayed for collagenase activity (after 24 hr) or TNF-a contents (after 48 hr). *p value < 0.001
versus SMCs alone; #p value < 0.01 versus BMSC-0H-treated cultures.
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synovial membrane in patients with active rheumatoid

arthritis (RA). Synovial-membrane-derived cells (SMCs) iso-

lated from RA patients were cultured in the presence of

hBMSCs and assayed for the production of the inflam-

matory mediator TNF-a and matrix-degrading enzymes

(collagenase activity). Again, hBMSC-0H, hBMSC-1H, and

hBMSC-3H treatment of RA SMC cultures decreased the

secretion of TNF-a after stimulation with lipopolysaccha-

ride (LPS) and reduced the collagenase activity after stimu-

lation with TNF-a (Figure 2C). However, hBMSC-4H and

hBMSC-5H did not inhibit the inflammatory response in

RA SMCs (Figure 2C). Together, these data reveal that

hBMSCs lose immunosuppressive and anti-inflammatory

properties upon oncogenic transformation.

The lack of in vitro immunosuppressive and anti-inflam-

matory properties of transformed hBMSCs prompted us to

analyze their in vivo properties in a 2,4,6-trinitrobenzene

sulfonic acid (TNBS)-induced mouse model of inflamma-

tory bowel disease that displays clinical, histopathological,

and immunological features of human Crohn’s disease

(Bouma and Strober, 2003; González et al., 2009; Sánchez

et al., 2011). In both Crohn’s disease and our mouse model,
Stem Cell
activated Th1 and Th17 cells promote an exaggerated

macrophage and neutrophil infiltration and activation,

inducing a prolonged severe transmural inflamed intestinal

mucosa, characterized by uncontrolled production of in-

flammatory cytokines and chemokines (Boumaand Strober,

2003;González et al., 2009; Sánchez et al., 2011). Inflamma-

torymediators such as cytokines and free radicals, produced

by infiltrating cells and residentmacrophages, play a critical

role in colonic tissue destruction. TNBS-treated mice devel-

oped a severe illness characterized by bloody diarrhea, rectal

prolapse, pancolitis accompanied by extensive wasting syn-

drome, and profound and sustained weight loss resulting

in 50% mortality (Figure 3A). Macroscopic examination

of colons showed striking hyperemia, inflammation, and

necrosis (Figures 3B and 3C). However, mice treated

with hBMSC-0H, hBMSC-1H, or hBMSC-3H displayed an

increased survival rate, rapidly recovered body weight loss,

improved the wasting disease, regained a healthy appear-

ance, and only showed slight signs of colon inflammation,

similar to controlmice treatedwith vehicle (Figures 3A–3C).

Histological examination of the colons showed that

hBMSC-0H/hBMSC-1H/hBMSC-3H-treatment reduced the
Reports j Vol. 3 j 606–619 j October 14, 2014 j ª2014 The Authors 609
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TNBS-induced transmural inflammation, depletion of

mucin-producing goblet and epithelial cells, disseminated

fibrosis, focal loss of crypts, and infiltration of inflammatory

cells (Figure 3D). However, in line with the in vitro observa-

tions, treatment with transformed hBMSCs (hBMSC-4H

and hBMSC-5H) failed to protect against experimental coli-

tis in vivo (Figure 3), demonstrating that transformed

hBMSCs lose their immunosuppressive and anti-inflamma-

tory properties both in vitro and in vivo.

Additionally, we investigated whether hBMSCs that ac-

quired spontaneous transformation (Pan et al., 2014) also

lose their immunomodulatory capacities. We observed

that, similarly to the experimentally generated hBMSC-

5H, three different lines of spontaneously transformed

hBMSCs (Sp-T-BMSC-1-3) failed to suppress allogeneic

T cell responses in vitro (Figure 4A) and the progression of

experimental colitis in vivo (Figure 4B). These data with

‘‘clinical’’ hBMSCs that underwent spontaneous trans-

formation validate the data on experimentally induced

transformed hBMSCs, indicating that the loss of immune

properties by hBMSCs upon oncogenic transformation

may be a hallmark of transformed hBMSCs.

Identification of Candidate Immune Effectors

Underlying the Loss of Immunomodulation in

Transformed hBMSCs

hBMSCs secrete immunosuppressive factors such as PGE-2,

IDO-derived products, TGF-b, and NO, which modulate

adaptive and innate immune responses (Bernardo and

Fibbe, 2013; English, 2013; Herrero and Pérez-Simón,

2010; Ma et al., 2014; Yagi et al., 2010). To identify patterns

of gene expression that could explain molecularly the

lack of immunomodulatory properties by transformed

hBMSCs, we performed a gene-expression profiling (GEP)

comparing normal and transformed hBMSCs. Ingenuity

Pathway Analysis (IPA) of genes differentially expressed be-

tween hBMSC-5H-GFP and hBMSC-0H-GFP revealed that

many immunological pathways were significantly altered

in hBMSC-5H-GFP cells (Figure 5A). Pathways such as the

complement system, IL-6 and IL-10 signaling, dendritic

cell maturation, or helper Tcell differentiation are involved

in the activation of the hBMSCs immunosuppressive prop-

erties (Chen et al., 2011; English, 2013; Yagi et al., 1998).

Similarly, several disease-associated immunological path-
Figure 3. Treatment with Transformed hBMSCs Does Not Protect
Colitis was induced by intracolonic administration of TNBS (3 mg/mou
i.p. with the indicated hBMSCs (106), 8 hr after TNBS injection. Cont
(A and B) Clinical evolution was monitored by body weight changes
(C) Colon length and weight and macroscopic colonic damage score w
(D) Histopathology was determined 4 days after cell infusion (four
hBMSCs were observed. The scale bar represents 200 mm. *p value <
versus BMSC-0H-treated mice (paired Student’s t test).
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ways, mainly related to the proinflammatory cytokine

IL-17, were altered in transformed hBMSC-5H-GFP cells

(Figure 5A).

To identify regulators that could explain the gene-expres-

sion pattern observed in transformed hBMSC-5H-GFP, we

looked for upstream regulators using the IPA software. We

found a robust tendency of transformed hBMSC-5H-GFP

cells toward activation of proinflammatory cytokines/

growth-factors-mediated signaling pathways and inhibi-

tion of anti-inflammatory-molecules-driven signaling (Fig-

ure 5B). In addition, many regulators of hBMSCs immune

properties were significantly altered in hBMSC-5H-GFP

(Figure 5C). These include regulators of the prostaglandin

synthesis (upregulation of prostaglandin synthase 1

[PTGS1] and PTGS2 and downregulation of prostaglandin

E synthase [PTGES], prostaglandin I2 synthase [PTGIS],

and prostaglandin D2 synthase [PTGDS]), inflammatory

cytokines (upregulation of IL1B, IL8, IL1A, leukemia inhib-

itory factor [LIF], IL32, and TNF), complement system (up-

regulation of C3 and downregulation of CFH and CD59),

MHC class II and costimulatory factors (upregulation of

several MHC class II genes, CD274, and CD86), and other

genes controlling the recruitment and proliferation of lym-

phocytes (upregulation of C-C chemokine receptor type 1

[CCR1], intracellular adhesion molecule 1 [ICAM1],

C-X-C motif chemokine 10 [CXCL10], and LIF; Abdi

et al., 2008; Bernardo and Fibbe, 2013; Chen et al., 2011;

Dorris and Peebles, 2012; English, 2013; Herrero and

Pérez-Simón, 2010; Iyer and Rojas, 2008; Kim et al., 2005;

Ma et al., 2014; Nasef et al., 2008; Sandig et al., 2007; Yagi

et al., 2010). Similarly, many positive regulators of immu-

nomodulation like PTGES and PTGIS; the complement

system factors C3, CFH, and CD59; the cell-adhesionmole-

cule vascular cell adhesion protein 1, or the Toll-like recep-

tor 3 (English, 2013), which mediate signaling leading to

IDO activation, were downregulated in Sp-T-hBMSCs as

compared to their parental nontransformed hBMSCs (Fig-

ure 5D). Also, Sp-T-hBMSCs displayed a downregulation

of the signaling pathways controlled by TGF-b1 or IL-10

(data not shown) whereas MHC class II molecules were up-

regulated in Sp-T-hBMSCs (Figure 5D). Together, all these

gene-expression data confirm that transformed hBMSCs

display a proinflammatory rather than an anti-inflamma-

tory transcriptomic signature and both experimentally
against Experimental Colitis In Vivo
se dissolved in 50% ethanol). Mice (n = 10 per group) were treated
rol mice received 50% ethanol.
and survival (A) as well as measuring the colitis score (B).
ere evaluated at day 4.
mice per group). No peritoneal tumors derived from transformed
0.001 versus TNBS colitic mice (two-way ANOVA); #p value < 0.001
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Figure 4. Spontaneously Transformed hBMSCs Lose Their Immunosuppressive Properties In Vitro and In Vivo
(A) MLCs were established by coculturing responder PBMCs from donor A and stimulator PBMCs from donor B. The indicated mitomycin-C-
treated hBMSCs (BMSC-3H, BMSC-4H, and BMSC-5H) or mitomycin-C-treated Sp-T-BMSCs were added to the MLCs (right side of each panel).
Cultures of PBMCs from donor A (syngeneic) and of mitomycin-C-treated hBMSCs and Sp-T-BMSCs alone were used as basal controls (left
side of each panel). Upper panel: proliferation was determined by measuring [3H]thymidine incorporation after 96 hr. Lower panel: IFNg
contents were determined by ELISA after 48 hr culture. *p value < 0.001 versus MLC without BMSCs; #p value < 0.001 versus BMSC-3H-
treated cultures (n = 3 independent experiments; two-way ANOVA).
(B) Colitis was induced by intracolonic administration of TNBS (3 mg/mouse dissolved in 50% ethanol). Mice (n = 10 per group) were
treated i.p. with medium (TNBS group) or with two different lines of Sp-T-BMSCs (106) 12 hr after TNBS injection. Control mice (n = 5)
received 50% ethanol. Clinical evolution was monitored by measuring the daily body weight loss (numbers in parentheses correspond to
survival rates for each group), the colitis score (at day 4), and the macroscopic colonic damage score (at day 10).
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and spontaneously transformed hBMSCs show a deregula-

tion of key immune and inflammatory modulators.

We finally determined whether the transcriptional signa-

ture of transformed hBMSCs correlates with a different

secretory profile of key immunoregulatory mediators. As

expected, hBMSC-5H-GFP consistently produced more

proinflammatory chemokines (CXCL10 and IL-8) than

hBMSC-0H-GFP (Figure 6). Interestingly, transformation

of hBMSCs did not affect the release of NO (Figure 6). As

previously described (Gonzalez-Rey et al., 2010), WT-

hBMSCs gained the capacity to secrete IL-10 following their

stimulation with PBMCs; however, transformed hBMSC-

5H-GFP failed to produce this anti-inflammatory cytokine

under any condition (Figure 6). Similarly, hBMSC-5H-GFP

lost their capacity to secrete immunosuppressive prosta-
612 Stem Cell Reports j Vol. 3 j 606–619 j October 14, 2014 j ª2014 The A
noids, such as PGE2 and 6-keto-PGF1a, whereas they

gained the capacity to produce proinflammatory throm-

boxanes (thromboxanes B2 and A2; Figure 6).
DISCUSSION

Because of their robust immunomodulatory properties,

hBMSCs represent a promising source of adult stem cells

for tissue repair and treatment of many immune disorders

(Bernardo and Fibbe, 2012, 2013; Garcı́a-Castro et al.,

2008). hBMSCs have the capacity to home to sites of dam-

age and release anti-inflammatory factors modulating im-

mune responses (Bernardo and Fibbe, 2012; Marigo and

Dazzi, 2011). Ex vivo expansion of hBMSCs is a prerequisite
uthors
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for their clinical use (Barkholt et al., 2013), so the possibil-

ity that hBMSCs undergo senescence, genomic instability,

and spontaneous transformation after long-term culture

should be addressed when considering the use of ex vivo

expanded hBMSCs (Barkholt et al., 2013; Estrada et al.,

2013; Pan et al., 2014;Wang et al., 2005). We have recently

reported how senescence induces phenotypic changes in

hBMSCs and abrogates their protective activity in murine

models of sepsis and graft-versus-host disease (Sepúlveda

et al., 2014). However, the transformation potential of

hBMSCs remains poorly explored and whether hBMSCs

retain differentiation and immunomodulatory properties

upon oncogenic transformation remains unknown. Here,

we have harnessed a collection of sequentially mutated

hBMSCs (Rodriguez et al., 2013) to report that, upon onco-

genic transformation, hBMSCs lose their immunosuppres-

sive and anti-inflammatory properties. This was observed

in hBMSCs carrying oncogenic events of distinct nature,

suggesting that the loss of immunomodulatory properties

seems independent of ‘‘specific’’ oncogenic drivers. The

reduced anti-inflammatory and immunomodulatory ca-

pacity of transformed hBMSCs does not seem to be a conse-

quence of their cell division history, as hBMSC-4H require

much-longer latency (138 days) than highly proliferative

hBMSC-5H (25 days) to originate in vivo tumors, while dis-

playing similar degree of immune deficiency. More impor-

tantly, these studies were validated in primary hBMSCs

spontaneously transformed after long-term culture (Pan

et al., 2014), which also failed to suppress allogeneic

T cell responses in vitro and the progression of experi-

mental colitis in vivo. These data indicate that the loss of

immune properties by hBMSCs upon oncogenic transfor-

mation may be a hallmark of transformed hBMSCs.

It remains elusive how the complex transcriptional

machinery triggered by transformation causes the loss in

the immunoregulatory activity of hBMSCs. GEP identified

various immune genes differentially expressed in trans-

formed hBMSCs. Transformation of hBMSCs caused upre-

gulation of proinflammatory cytokines and chemokines,

such as TNF-a, IL1, IL8, IL-32, CXCL10, and LIF, and proin-

flammatory receptors/adhesion molecules such as ICAM

and CCR1. In contrast, transformed hBMSCs failed to pro-

duce IL-10, an anti-inflammatory cytokine critically

involved in the immunosuppressive action of hBMSC (An-

derson et al., 2013; Gonzalez-Rey et al., 2010). Moreover,

transformed hBMSCs upregulate the expression of human

leukocyte antigen (HLA) class II and costimulatory (CD86)

molecules. It is generally accepted that absence of MHC

class II and costimulatory molecules is a characteristic

phenotype of MSCs and one of the mechanisms underly-

ing their immunosuppressive activities (Uccelli et al.,

2008). Thus, transformed hBMSCs expressing MHC

class II molecules and CD86 and secreting inflammatory
Stem Cell
cytokines and chemokines will favor the activation of T

lymphocytes. Importantly, transformation of hBMSCs

also induced important alterations in the synthesis

pathway of prostanoids. Whereas transformed hBMSCs

showed increased expression in COX2 (PTGS2) and

COX1 (PTGS1), early acting enzymes in the prostanoids

synthesis pathway, they displayed a reduced expression

of PTGES, PTGIS, and PTGDS, enzymes downstream COX

involved in the synthesis of PGE2, PGI2, and PGD2, respec-

tively (Nicolaou et al., 2014). As a result, transformed

hBMSCs produced very low levels of PGE2 and PGI2, as

compared to normal hBMSCs. PGE2 is a critical mediator

of the immunoregulatory activity of hBMSCs (Bernardo

and Fibbe, 2013; Uccelli et al., 2008). Our study reports

the production of PGI2 by normal hBMSCs. This finding

is functionally relevant because prostacyclins are widely

recognized as potent immunosuppressors (Nicolaou et al.,

2014). As a consequence of the inhibition of the PTGES,

PTGIS, and PTGDS, the activation of COX in transformed

hBMSCs is shifted to the production of TXB2, which exerts

potent inflammatory effects in several pathologies (Nico-

laou et al., 2014).

Our data indicate that common oncogenic mutations

sequentially induce the loss of the immunomodulatory

capacity of hBMSCs by preventing the production of

immunoregulatory prostacyclins and inducing a proin-

flammatory profile. This implies an important functional

consequence. It is recognized that tissue resident hBMSCs

function as sentinels of the microenvironment signals (in-

flammatory mediators or regulatory macrophages) and

exert pro- or anti-inflammatory actions accordingly (Ber-

nardo and Fibbe, 2013). We propose that, beside these

extrinsic environmental signals, the immunoregulatory

profile adopted by hBMSCs would largely depend on

intrinsic genetic-molecular determinants triggered by

senescence (Sepúlveda et al., 2014) and oncogenic transfor-

mation. Additionally, our data shed light onto the concept

of hBMSC-mediated surveillance of immune response in

the tumor because, upon oncogeneic transformation,

hBMSCs lose their capacity to impair T cell and inflamma-

tory responses. Overall, these data have enormous implica-

tions not only in ex vivo expansion of hBMSCs but also in

microenvironment tumor biology.
EXPERIMENTAL PROCEDURES

Generation and Culture of Mutated and

Spontaneously Transformed hBMSCs
Wild-type hBMSCs (hBMSC-WT or hBMSC-0H) were obtained

from Inbiobank. MSCs depleted of p53 (hBMSC-1H) were gener-

ated by lentiviral transduction with a p53-small hairpin RNA

expression vector (pLVUH-shp53) as described (Rodriguez et al.,

2011, 2013). The hBMSCs carrying three, four, or five different
Reports j Vol. 3 j 606–619 j October 14, 2014 j ª2014 The Authors 613
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Figure 6. hBMSC Production of Candidate
Immune Effectors Underlying the Loss
of Immunomodulation in Transformed
BMSCs
MLCs were established by coculturing PBMCs
isolated from two mismatched donors. Cul-
tures of PBMCs from donor A were used as
basal syngeneic controls. hBMSC-0H and
hBMSC-5H were added to the MLCs, and the
production of CXCL10, IL-8, PGE2, IL-10,
6-keto-PGF1a, and TXB2 was determined in
supernatants by ELISA after 48 hr culture.
Levels of nitrite were determined using
Griess reagent to measure indirectly the
secretion of NO in culture supernatants. *p
value < 0.001 (n = 6 independent experi-
ments; paired t test student).
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oncogenic hits (hBMSC-3H, hBMSC-4H, and hBMSC-5H) were

developed and characterized elsewhere (Funes et al., 2007; Rodri-

guez et al., 2013). Briefly, hBMSCs were sequentially infected

with retroviral particles carrying the following expression vectors:

pBABE-puro-EST2 (hTERTexpression) and pLXSN-neo-E6E7 (inac-
Figure 5. Gene-Expression Profiling Revealed an Impaired Immun
Genes differentially expressed (p value < 0.05; regulationR 2-fold) in
(A) Representation of the most significantly altered immunological p
(B) List of the cytokine and growth-factor-signaling pathways most sig
scores are indicated and highlighted in red (activation)/green (inhib
active or inhibited if their Z score is higher than 2 or lower than �2,
flammatory factor is indicated.
(C) List of genes involved in the induction (+) or inhibition (�) of imm
is highlighted using red (activation)/green (inhibition) color scale.
(D) List of genes involved in the induction (+) or inhibition (�) of imm
nontransformed hBMSCs. The fold change expression is highlighted u
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tivation of p53 and Rb mediated by E6 and E7 antigens of human

papillomavirus 16) to generateMSC-3H cells, pBABE-zeo-ST (intro-

duction of the SV40 small Tantigen to inactivate the protein phos-

phatase 2 phosphatase leading to c-myc stabilization) to generate

MSC-4H cells, and pWZL-hygro-RasV12 (expression of oncogenic
e Response Signaling in Transformed hBMSCs
hBMSC-5H versus hBMSC-0H were analyzed using the IPA software.
athways in hBMSC-5H.
nificantly altered in hBMSC-5H cells. The corresponding activation Z
ition) color scale. A regulator-signaling pathway is predicted to be
respectively. Whether each regulator functions as pro- or anti-in-

unosuppression altered in MSC-5H cells. The fold change expression

unosuppression altered in Sp-T-hBMSC-1 as compared to syngeneic
sing red (activation)/green (inhibition) color scale.
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H-RASv-12) to generate MSC-5H cells. Following serial retroviral in-

fections, drug selection with puromycin (1 mg/ml), neomycin

(300 mg/ml), Zeocin (50 mg/ml), and hygromycin (100 mg/ml),

respectively, was used to purify cell populations. Figure 1A summa-

rizes the transforming hits and tumorogenic potential of each

hBMSC genotype used in this study (Rodriguez et al., 2013). To

overexpress FC, a hallmark fusion oncogene associated to human

mixoid liposarcoma, each type of hBMSC (hBMSC-0H to -5H)

was infected with either pRRL-EF1a-PGK-GFP (empty vector;

GFP) or pRRL-EF1a-FUS-CHOP-PGK-GFP (FC-expressing vector;

FC), as previously reported (Rodriguez et al., 2011, 2013). When

transduction efficiency was <80%, the transduced GFP+ fraction

was fluorescence-activated cell sorting enriched using a FACSAria

cell sorter. The resulting hBMSC-GFP andhBMSC-FCwere cultured

in Advanced Dulbecco’s modified Eagles’ medium (DMEM) plus

10% fetal bovine serum (FBS) (Rodriguez et al., 2011, 2013). Spon-

taneously transformed hBMSCs (Sp-T-hBMSCs) were obtained

from a previous study (Pan et al., 2014). Briefly, 46 different

batches of hBMSCs were long-term cultured in DMEM supple-

mented with 10% FBS. Two out of five hBMSC cultures and two

out of 41 liver-derived MSC cultures underwent a spontaneous

genomic and functional oncogenic transformation. Transformed

hBMSCs can form tumor in immunodeficient mice. Both primary

transformed hBMSCs and hBMSCs retrieved from tumors formed

in the mice were established as stable lines, which are used in

this study (Pan et al., 2014).

In Vitro Growth Kinetics and Differentiation Assays
Growth kinetics were measured as cumulative population dou-

blings (Rodriguez et al., 2011, 2013). An equal number of hBMSCs

(2 3 105) between p6 and p12 were initially plated for each geno-

type, and cells were counted every 5 days and replated at 3 3 103

cells/cm2. For osteogenic and adipogenic differentiation assays

(n = 3), 1 3 104 hBMSCs/cm2 were expanded in Advanced

DMEM with 10% fetal calf serum. At confluence, medium was

replaced with specific differentiation inductive medium. For adi-

pogenic differentiation, cells were cultured inAdipogenicDifferen-

tiation Bullet Kit (Lonza) for 2 weeks. Differentiated cell cultures

were stained with Oil Red O (Sigma). For osteogenic differentia-

tion, cells were cultured in Osteogenic Differentiation Bullet Kit

(Lonza) for 2 weeks. Differentiated cultures were stained with Aliz-

arin Red S (Sigma; Rodriguez et al., 2011, 2013; Rubio et al., 2010,

2013; Sánchez et al., 2011).

Flow Cytometry Analysis
The immunophenotype of cultured hBMSCs was determined by

flow cytometry using fluorochrome-conjugated monoclonal anti-

bodies anti-CD90, CD73, CD105, CD44, CD166, CD106, CD45,

CD34,HLA-DR, CD19, andCD14 (Miltenyi Biotec) as detailed else-

where (Menendez et al., 2009; Sánchez et al., 2011).

T-Lymphocyte Proliferation and Cytokine Production
PBMCs were isolated from buffy coats from healthy volunteers by

Ficoll-Hypaque gradients.MLCswere performed in 96-well, round-

bottom plates by stimulating 105 responder PBMCs from donor A

with 105 allogeneic HLA-mismatchedmitomycin-C-treated stimu-

lator PBMCs from donor B in complete medium (DMEM supple-
616 Stem Cell Reports j Vol. 3 j 606–619 j October 14, 2014 j ª2014 The A
mented with 10% FBS, 20 mM L-glutamine, and 1% penicillin/

streptomycin) in the absence or presence of the different geno-

types of hBMSCs (2 3 104). In some experiments, hBMSCs and

Sp-T-BMSCs were pretreated with mitomycin C (50 mg/ml;

20 min; 37�C) before being added to MLCs. Cells were pulsed

with 5 mCi/well [3H]thymidine for the last 12 hr of a 96 hr culture

and harvested ontomembranes, and proliferation was determined

by measuring [3H]thymidine uptake in a liquid scintillation

counter. In similar experiments, responder PBMCs were labeled

with 2.5 mM carboxyfluorescein diacetate succinimidyl ester

(CFSE) (Molecular Probes) prior to setting up cocultures. After cul-

ture, cells were labeled with PerCP-conjugated anti-CD4 and fixed

with 1% paraformaldehyde, and proliferating cells were deter-

mined by CFSE dilution in the CD4+ population. The number of

cycling cells was calculated as the percent of CFSEmild/low cells

that had divided by the total number of cells (Gonzalez-Rey

et al., 2009; Sánchez et al., 2011). To determine cytokine pro-

duction, MLCs were established in 24-well plates (in 1 ml) by

stimulating 5 3 105 responder PBMCs from donor A with 5 3

105 allogeneic HLA-mismatched stimulator PBMCs from donor B

in completemedium in the absence or presence of the different ge-

notypes of hBMSCs (105). After 48 hr, levels of IL-2, CXCL10, IL-8,

TNF-a, IL-10, and IFN-g in the supernatants were determined by

ELISA using capture/biotinylated detection antibodies from BD

PharMingen and PrepoTech (Gonzalez-Rey et al., 2009; Sánchez

et al., 2011). Levels of PGE2, thromboxane B2 (indirect determina-

tion of thromboxane A2), and 6-keto-PGF1a (indirect determina-

tion of prostacyclin PGI2) in supernatants (collected at 48 hr)

were determined by ELISA kits purchased from Cayman Chemi-

cals. The levels of NO in culture supernatants (at 48 hr) were deter-

mined indirectly by measuring the concentration of nitrite using

the Griess reagent (Anderson et al., 2013).
Anti-inflammatory Studies
SMC cultures were established in 10% FBS/DMEM from synovial

tissue obtained from two unrelated patients with active rheuma-

toid arthritis (RA). SMC cultures were conducted in RPMI supple-

mented with 8% heat-inactivated human serum, L-glutamine

(20 mM), sodium pyruvate (1%), nonessential amino acids (1%),

and penicillin/streptomycin (1%). We stimulated 2 3 105 SMCs

with either LPS (1 mg/ml) or TNF-a (20 ng/ml) in the absence or

presence of the different genotypes of hBMSCs (105), and after

24–48 hr, culture supernatants were assayed for TNF-a content

and collagenase activity, respectively (Gonzalez-Rey et al., 2009;

Sánchez et al., 2011). Collagenase activity in cell-free supernatants

was determined using the EnzChek gelatinase/collagenase assay

kit (Molecular Probes; Sánchez et al., 2011).
Induction of Experimental In Vivo Colitis
To induce in vivo colitis, 3 mg of TNBS (Sigma) in 50% ethanol

(100 ml) was administered intrarectally in 7-week-old Bagg Al-

bino/c male mice. Control mice received 50% ethanol alone. Ani-

mals were treated intraperitoneally (i.p.) with medium, with 106

BMSCs, or with 106 Sp-T-BMSCs 12 hr after TNBS instillation. An-

imals were monitored for the appearance of diarrhea, body weight

loss, and survival. Colons were removed from the caecum to the

anus, and colon length and weight were measured as markers of
uthors
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inflammation. Colons were evaluated for macroscopic damage

(graded on a scale 0–10) based on criteria reflecting inflammation

(hyperemia, bowel thickening, and ulceration extent). Scores for

stool consistency and rectal bleeding were assessed as described

(González et al., 2009). For histopathology analysis, a colon spec-

imen was fixed in 10% formalin, embedded in paraffin, sectioned,

and stainedwith hematoxylin-eosin (Sánchez et al., 2011). Inflam-

mation was graded from 0 to 4 in a blinded fashion as described

(González et al., 2009). The animal care committee of the Univer-

sity of Granada approved all mice protocols.

GEP
Exponentially growing wild-type (hBMSC-0H-GFP) and trans-

formed (hBMSC-5H-GFP) hBMSCs were collected and stabilized

in RNA later (Ambion) until RNA extraction. RNA was isolated us-

ing the Agilent Total RNA Isolation Kit and its quality checked in

the Agilent 2100 Bioanalyzer. Total RNA samples were labeled

with Cy3 using the Low-Input Quick Amp Labeling kit (Agilent;

Barroso-delJesus et al., 2011). Samples were hybridized to Whole

Human Genome 8x60K Microarray (G4851A), and arrays were

scanned using an Agilent G2505B scanner. Each sample was

labeled and hybridized as independent duplicates. Primary data

were examined using GeneSpringGx 11.5 software (Silicon Ge-

netics). Gene expression in the control and experimental groups

was compared. Only genes satisfying the threshold of p value <

0.05 and a fold change expression >2 were included and assigned

as significant. Analysis of pathways significantly altered in the

experimental groups was performed using the Ingenuity Pathway

software 8.0 (IPA; Ingenuity Systems; Bueno et al., 2013).

Statistical Analysis
All data are expressed as mean ± SEM. Statistical comparisons be-

tween experimental groups were performed with either a paired

Student’s t test or Duncan’s multiple range test after two-way

ANOVA. Statistical significance was defined as a p value < 0.05.
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