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Ovarian cancer (OvCa) is one of the most widespread malignant tumors, which has the
highest morbidity and unsatisfactory clinical outcomes among all gynecological
malignancies in the world. Previous studies found that cancer-associated fibroblasts
(CAFs) play significant roles in tumor growth, progression, and chemoresistance. In the
current research, weighted gene co-expression network analysis (WGCNA), univariable
COX regression, and the least absolute shrinkage and selection operator (LASSO) analysis
were applied to recognize CAF-specific genes. After multiple bioinformatic analyses, four
genes (AXL, GPR176, ITGBL1, and TIMP3) were identified as OvCa-specific CAF markers
and used to construct the prognostic signature (CAFRS). Furthermore, the specificity of
the four genes’ expression was further validated at the single-cell level, which was high-
selectively expressed in CAFs. In addition, our results showed that CAFRS is an
independent significant risk factor affecting the clinical outcomes of OvCa patients.
Meanwhile, patients with higher CAFRS were more likely to establish chemoresistance
to platinum. Besides, the CAFRSwere notably correlated with well-known signal pathways
that were related to tumor progression. In summary, our study identifies four CAF-specific
genes and constructs a novel prognostic signature, which may provide more insights into
precise prognostic assessment in OvCa.
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INTRODUCTION

Ovarian cancer (OvCa) is one of the most common malignancies, and its morbidity is the highest
among all gynecological malignancies worldwide (Siegel et al., 2022). Due to the fatal aggressiveness,
the prognosis of patients with OvCa is quietly poor (Siegel et al., 2022). Increasing numbers of studies
report that cancer-associated fibroblasts (CAFs), which are highly versatile, plastic and resilient in
primary and metastatic tumors, actively participate in tumor progression based on complicated
interactions with other cell types in the tumor microenvironment (TME) (Chen et al., 2021; Czekay
et al., 2022). For example, Silvia et al. found that diverse CAF subpopulations could promote the
growth of cholangiocarcinoma at the single-cell level (Affo et al., 2021). In addition, the cellular
crosstalk mediated by CAFs could also support the progression of hepatocellular carcinoma (Song
et al., 2021). Collectively, the significant roles of CAFs in mediating oncogenesis and progression of
tumors have been preliminarily concluded, suggesting potential targets of them for novel therapies in
the future. However, there are few studies regarding CAFs in OvCa.
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Increasing numbers of evidence suggested that recognized
markers, such as α-smooth muscle actin and fibroblast
activation protein α, are carried on CAFs (Nurmik et al.,
2020). However, different cancer tissues have specific CAF
genes (Biffi and Tuveson, 2021). Thus, using these identified
markers may lead to ineluctable deviations in the assessment of
CAFs in TME. Single-cell transcriptome analysis can reveal the
cellular diversity in TME, such as the sub-populations of CAFs in
cholangiocarcinoma (Affo et al., 2021). Although single-cell
RNA-sequencing analysis can identify cellular states and their
specific genes, the number of cells in tumor tissues is limited and
the source of cases is heterogeneous, which may lead to bias.
Despite the expression profiles of large cases provided by RNA-
sequencing or microarray technologies, the complexity of cellular
states and cell subtypes in a tissue mixture may also lead to bias.

Considering the advantages and limitations of single-cell
sequencing and RNA sequencing or microarray technology, we
firstly assessed the infiltration status of the stroma and CAFs
using published algorithms that assess the abundance or levels of
infiltration cell populations according to the expression values of
some well-known signatures. Then, specific CAF genes were
identified using weighted co-expression network analysis
(WGCNA) by linking the fraction of CAFs with the relative
gene module, and the clinical value of the gene signature was
further explored and verified in many other microarray datasets.
Finally, the expression specificity of gene signatures of OvCa
CAFs was further verified in a single-cell transcriptome dataset.

MATERIALS AND METHODS

Download and Analysis of Public Datasets
The Gene Expression Omnibus (GEO) portal (https://www.
ncbi.nlm.nih.gov/geo/) and UCSC Xena website (https://
xenabrowser.net/datapages/) were used to obtain gene
expression profiles of OvCa patients. After screening, six
OvCa-related datasets, including GSE9891 (Tothill et al.,
2008), GSE26712 (Bonome et al., 2008), GSE49997 (Pils
et al., 2012), GSE140082 (Kommoss et al., 2017), GSE23603
(Marchion et al., 2011), and TCGA-OV cohort were obtained.
GSE9891 was used as a training cohort. And the other five
datasets were applied as test cohorts. The robust multi-array
average (RMA) algorithm in the affy package was conducted to
preprocess the array profiles. After background correction,
quantile normalization, and probe summarization, the gene
expression profile was generated based on the platform
providing gene and probe mappings. Samples with overall
survival (OS) above zero day were selected for further
analysis. All the details of these datasets are presented in
Supplementary Table S1.

Evaluation of Stromal Cell Populations for
Ovarian Cancer Patients
To estimate the fraction of CAFs in the TME of OvCa patients
in the GSE9891 cohort, the Estimating the proportion of
immune and cancer cells (EPIC) method (Racle et al., 2017)

was used to estimate the population abundance of CAFs in the
training cohort according to the expression levels of
signatures for different cell types. In addition, The
ESTIMATE algorithm (Yoshihara et al., 2013), a method
using gene expression profiles to estimate the fraction of
stromal and immune cells in tumor samples, was also
conducted to calculate Stromal Score, ESTIMATE Score,
Immune Score, and Tumor Purity.

Identification of Cancer-Associated
Fibroblasts-Specific Markers
Previous studies identified shared gene signatures and
biological mechanisms in type 2 diabetes and pancreatic
cancer by utilizing the WGCNA method (Hu et al., 2022).
To further explore the relationship between gene expression
and abundance of CAFs, we performed the WGCNA
according to the expression profiles of all genes (17,003
genes) by utilizing the R package WGCNA (Langfelder and
Horvath, 2008) and next identified the remarkable gene
modules positively correlated with the fraction of CAFs.
The idea of a soft threshold is to continually elementize
the elements in the Adjacency Matrix through a weight
function. And due to the choice of the soft threshold, β,
can affect the result of module recognition and the relative
network of the random average of each node, there is a scale-
free network in which a few nodes exhibit a significantly
higher degree than the general point, which is a more stable
choice. According to published research (Chen et al., 2020),
the WGCNA was performed, and the soft threshold power of
β = 4 (scale-free R2 = 0.92) was installed. Genes with gene
significance (GS) ≥ 0.5 and module membership (MM) ≥ 0.5
in modules highly associated with CAFs were identified as
CAF-related markers and extracted for further study.

Construction of Prognostic Model Based on
Cancer-Associated Fibroblasts-Specific
Markers
Next, CAF-specific markers were selected to construct the
gene risk score following the criteria. Firstly, genes with GS ≥
0.5 and MM ≥ 0.5 in the module which had the highest
correlation with CAF fraction were selected for further
analysis. Then, the univariable COX regression analysis
was conducted to extract genes significantly associated
with OS (p-value < 0.05). Subsequently, the least absolute
shrinkage and selection operator (LASSO) regression
algorithm was utilized to screen the potential prognostic
genes, which were defined as CAF-specific markers. The
risk score of the prognostic model based on CAF-specific
markers (CAFRS) of patients was calculated based on the
linear combination of the expression values of CAF-specific
markers multiplied by the corresponding LASSO coefficients.
To confirm the role of the risk score in the prediction of
prognosis, the OvCa patients were divided into the high- and
low-CAFRS groups according to the 50% cutoff of the
CAFRS.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9252312

Zeng et al. A CAF-Signature Predicts Prognosis

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Enrichment Analysis of Gene Functions and
Pathways
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis were performed
by using the R package clusterProfile. The top ten enriched GO
and KEGG pathways with the most significant p-values were
displayed.

Single-Cell RNA Sequencing Datasets
Analysis
To explore whether the gene signature screened by WGCNA was
consistent with the cell-specific genes of different cells in OvCa,
the single-cell transcriptomes datasets of six ovarian tumor tissue
from GSE173682 (Regner et al., 2021) were downloaded. All
additional analyses were performed using the Seurat (4.0.4, http://
satijalab.org/seurat/) R toolkit (Butler et al., 2018), including
quality control and all subsequent analyses.

To eliminate the influence of abnormal cells and technical
background noise on downstream analysis, cells were reserved if
the expression of mitochondrial genes was greater than 10% or
with detected genes less than 200 or greater than 5,000. Finally, a
total of 50,502 cells were used for further analysis (GSM5276938:
8,009 cells, GSM5276939: 8,295 cells, GSM5276940: 8,181 cells,
GSM5276941: 8,984 cells, GSM5276942: 10,094 cells,
GSM5276943: 6,939 cells).

In order to minimize the technical batch effects among
individuals and experiments, we used the “RunHarmony”
function in R package harmony (Korsunsky et al., 2019) to
integrate 50,502 cells from six OvCa patients. The top 4,000
variable genes were used for principal component analysis (PCA)
to reduce dimensionality. The dimensionality of the scaled integrated
data matrix was further reduced to two-dimensional space based on
the first 30 principal components (PCs) and visualized by
t-Distributed Stochastic Neighbor Embedding (tSNE). The cell
clusters were identified based on a shared nearest neighbor
(SNN) modularity optimization-based clustering algorithm with a
resolution of 1, and all cells were divided into 27 clusters
(Supplementary Figure S1B). In order to recognize the types of
these cells, some known markers, such as VWF and PECAM1 for
endothelial cells, EPCAMandKRT8 for epithelial cells, COL1A1 and
DCN for fibroblasts, CD3E andCD3G for T cells, CD86 and LYZ for
macrophages, and CD79A for B cells, were used to verify the
annotation of cell types (Supplementary Figure S1C).

Statistical Analysis
All statistical analyses were handled using R-4.0.4. The
significant difference in continuous variables between the
two groups was assessed using the Wilcoxon rank-sum test,
while categorical variables were compared by the chi-square
test. Prognostic values were evaluated using the log-rank test.
For all analyses, a two-paired p-value < 0.05 was deemed to be
statistically significant, and labeled with *p-value < 0.05,
**p-value ≤ 0.01, ***p-value ≤ 0.001, and ****p-value ≤ 0.0001.

FIGURE 1 | Flow chart of the research. The gene expression profiles of
GSE9891 were obtained from the GEO database. ESTIMATE and EPIC
algorithms were performed to estimate the infiltration levels of stromal, CAFs
and immune cells. WGCNA was used to explore potential genes related
to the fraction of CAFs. Univariable Cox regression analysis was performed to
screen genes that were notably related to OS. LASSO regression method was
used to find out the CAF-specific markers and construct the prognostic
model. The prognostic value of the model was validated in the other five
independent cohorts. Moreover, the distribution of the CAF-specific markers
was displayed at the single-cell level.
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RESULTS

Changing Trends in the Stromal and
Cancer-Associated Fibroblasts
Details of the study’s design were illustrated in Figure 1. Firstly,
ESTIMATE and EPIC algorithms were performed to calculate
the infiltration of the stromal, CAFs, and immune cells in OvCa.
As shown in Figure 2A, OvCa patients with higher tumor stages
tended to have a higher proportion of stromal cells and CAFs.
As expected, the fractions of CAFs estimated by EPIC for each
OvCa patient were significantly positively associated with
Stromal Scores (Figure 2B). Meanwhile, high CAF fraction
(p = 0.03, Hazard Ratio [HR] = 1.6) and Stromal Score (p =
0.04, HR = 1.6) were remarkably related to poor OS (Figure 2C),

while the relative abundance of immune cell populations and
tumor purity were not significantly associated with OS
(Figure 2C), indicating the important role of stromal cells,
especially the CAFs in the prognosis of OvCa. Overall, these
results uncovered the encouraging prognostic values of CAFs
in OvCa.

Identification of Gene Modules and Gene
Signatures Correlated to
Cancer-Associated Fibroblasts
Having observed the prognostic values of CAFs in OvCa, we then
constructed a WGCNA by utilizing the R package WGCNA to
identify markers associated with CAF fraction in the GSE9891

FIGURE 2 | Evaluation and prognostic values of infiltration cell populations. (A) Heatmap showing the abundance of tissue-infiltrated cell populations evaluated by
ESTIMATE and EPIC algorithm. (B) Scatter plot showing the Pearson correlation between CAF fraction evaluated by EPIC and Stromal Score calculated by ESTIMATE.
(C) Univariable analyses of the abundance of infiltration cell populations with overall survival in GSE9891.
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FIGURE 3 | Identification of relevant modules associated with CAF fraction in GSE9891. (A) Analysis of the scale-free fitting indices for different soft-thresholding
powers (β). (B) Mean connectivity analysis of different soft-thresholding powers. (C) Clustering dendrograms of genes were based on dissimilarity topological overlap
and module colours. As a result, 26 co-expressed modules except the grey module were constructed and labeled with different colours. These modules were arranged
from large to small according to the number of genes included. (D)Heatmap of the correlation betweenmodule eigengenes and CAF or StromalScore of OvCa. The
yellow gene module was revealed to exhibit the highest correlation with both CAF fraction and Stomal Score. (E,F) Scatter plots showing the relationship between MM
and GS in the yellow module. (G) GO and KEGG analyses of genes in the yellow module.
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FIGURE 4 | Construction of prognostic model in GSE9891. (A) The LASSO coefficient profiles were constructed using CAF-related genes, and the tuning
parameter (λ) was calculated based on the minimum criteria for OS with ten-fold cross validation. Four genes were selected according to the best fit profile. (B)
Univariable analyses of the expression values of the four genes with overall survival in GSE9891. (C–E) Distributions of CAFRS, survival status of OvCa patients, and
expression profiles of the gene signatures. (F) Survival analysis showing the prognostic value of CAFRS in the GSE9891 cohort. (G–H)Univariable andmultivariable
analyses of CAFRS and clinical characteristics in the term of OS in the GSE9891 cohort.
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OvCa cohort. In the current study, the power of β = 4 (scale-free
network R2 = 0.92) was selected as the soft threshold to ensure a
scale-free network (Figures 3A,B). Next, 26 color-coded gene
modules except for the graymodule were held for further research
(Figure 3C). As shown in Figure 4D, the yellow module had the
highest correlation with CAFs fraction (R = 0.91, p < 0.001) and
levels of stromal cells (R = 0.88, p < 0.001). The GS and MM
values for the yellow module in CAF and StromalScore were
displayed in scatter plots (Figures 3E,F). Furthermore, a
functional analysis of genes with GS ≥ 0.5 and MM ≥ 0.5 in
the yellow module was highly related to extracellular matrix
function (Figure 3G), which was produced by CAFs in cancer
development (Plikus et al., 2021).

Identification of Cancer-Associated
Fibroblasts-Specific Markers and
Constructing a Prognostic Model
The WGCNA and the functional enrichment analysis suggest
that genes in the yellow module were positively associated with
CAF fraction and functions, then genes with GS ≥ 0.5 and MM
≥ 0.5 in the yellow module were selected as candidate CAF-
specific genes. In order to choose genes with significant
prognostic values, the univariable COX regression analysis
was performed firstly on selected genes that were correlated
with OS in OvCa (Figure 4A and Supplementary Table S1).
Then, LASSO COX analysis was applied to further reduce the
scale of independent prognostic genes to four genes (AXL,
GPR176, ITGBL1, and TIMP3) (Supplementary Table S2).
The expression of these four genes all behaved with favorable
prognosis prediction ability (Figure 4B). Meanwhile, the four
genes tended to be highly expressed in patients with higher
pathological stages and grades (Supplementary Figures
S1A–S1B), consistent with previous results that TIMP3
expression was significantly enhanced in Stage III and
Grade 3 (Escalona et al., 2021).

Next, a prognostic model of the four genes was
constructed.The CAFRS of patients were calculated
according to the combination of the expression levels of
these genes multiplied by the corresponding coefficients.
The CAFRS of OvCa patients in GSE9891 was further
shown in Figures 4C–E. The death cases were focused in
the high-CAFRS group, and the surviving cases were
centralized in the low-CAFRS group (Figure 4B).
Moreover, compared to the low-CAFRS group, four genes
in the prognostic signature were higher expressed in the high-
CAFRS group. Consistent with the results above, the patients
with high CAFRS showed a worse prognosis, compared with
patients with low CAFRS (Figure 4F). Furthermore, the
prognostic value of CAFRS was explored via univariable
COX regression analysis of the risk score and multiple
clinical characteristics (grade and stage). The univariable
COX regression analysis results showed that the improve
of CAFRS (HR = 3.04, p < 0.001) and stage (stage III and IV,
HR = 9.14, p < 0.001) were risk factors for OS (Figure 4G). In
addition, the results of multivariable COX regression analysis
revealed that CAFRS (HR = 2.49, p < 0.001) and stage (stage

III and IV, HR = 7.28, p < 0.001) were independent prognostic
factors in OvCa (Figure 4H).

Independent Prognostic Analysis of
Construct the Prognostic Signature in
Validation Cohorts
Given that CAFRS was an independent prognostic factor in
OvCa patients in the GSE9891 cohort, we further verified this
finding in the TCGA-OV cohort. Consistent with the above
results, the four genes tended to be highly expressed in patients
with higher clinical stages or grades (Supplementary Figures
S2A–S2B). Besides, patients in the high-CAFRS group showed
worse prognosis and CAFRS was an independent prognostic
factor in the TCGA-OV cohort as well (Figures 5A–C).
Considering the importance of genomic mutations in tumor
progression, we next performed mutation analysis on the
model’s CAF gene to the TCGA dataset. Results showed
that there were few mutations in the four genes
(Supplementary Figure S3), suggesting that the four genes
did not affect the clinical outcomes via genomic mutations.

Consistent with the results found in GSE9891 and TCGA-
OV cohort, the prognostic performance of CAFRS was also
validated in another four OvCa cohorts (GSE26712, p = 0.012;
GSE4997, p = 0.0075; GSE140082, p = 0.025; GSE23603, p =
0.019; Figures 5D–G). In addition, OvCa patients with high
CAFRS were more likely to exhibit resistance to platinum (p =
0.046, Figure 5H), indicating the worse outcome of patients
in the high-CAFRS group.

Distribution and Expression of the Four
Cancer-Associated Fibroblasts-Specific
Markers at the Single-Cell Level
In order to confirm the four markers identified by WGCNA
based on the expression profiles of tissue mixtures expressed
on CAFs specifically, we described the distribution and
expression of the four genes in the cell landscape of OvCa
at the single-cell level. Single-cell RNA sequencing datasets
from six OvCa patients were collected and integrated firstly
(Supplementary Figures S3A–S3B). As a result, 50,502
individual cells were passed the quality control criteria (see
“Methods” section) and were unsupervised clustered into 27
clusters (Figure 6A). These clusters were explored with
unbiased clustering across all cells by PCA and visualized
by t-Distributed Stochastic Neighbor Embedding. We
annotated the cell type of each cluster with the canonical
markers (Figure 6B and Supplementary Figure S1C,
Supplementary Table S3), including B cells, endothelial
cells, epithelial cells, fibroblasts, macrophages, and T cells.
Then, we investigated the distribution and expression levels of
four crucial genes. Results showed that all of these genes,
especially AXL and TIMP3, were specific highly expressed
in fibroblasts (Figures 6C–F and Supplementary Figures
S3D–S3E), suggesting that the four genes were OvCa CAF-
specific, and the risk score based on them can represent the
levels of CAFs fraction.
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FIGURE 5 | Validation of the prognostic model in five independent cohorts. (A) Survival analysis showing the prognostic value of CAFRS in the TCGA-OV cohort.
(B–C) Univariable and multivariable analyses of CAFRS and clinical characteristics in the term of OS in the TCGA-OV cohort. (D–G) Survival analysis showing the
prognostic value of CAFRS in GSE26712, GSE49997, GSE140082, and GSE23603 cohorts. (H) Barplot showing the percentage of platinum-sensitive and resistant
patients in high-CAFRS and low-CAFRS groups.
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FIGURE 6 | Transcriptomic clustering of six OvCa patients. (A)Marker-based cell type identification analysis allowed the prediction of six broad cell types across all
profiled single cells. (B)Gene expression heatmap of top-10 cell type-specificmarker genes asmeasured byWilcoxon rank-sum test. (C,E) Expression levels of AXL and
TIMP3 overlaid on the UMAP representation. (D,F) Boxplot showing the expression level of AXL and TIMP3 between fibroblasts and non-fibroblasts. Horizontal lines in
the boxplots represent the median, the lower and upper hinges correspond to the first and third quartiles, and the whiskers extend from the hinge up to 1.5 times
the interquartile range from the hinge.
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FIGURE 7 | Correlation between CAFRS and HALLMARK. (A) Heatmap showing the correlation between CAFRS and HALLMARK scores. The color indicates the
correlation coefficient. The asterisks indicate significant differences assessed by Pearson analysis. (B–D) Correlation between CAFRS and
HALLMARK_TGF_BETA_SIGNALING, HALLMARK_EMT, and HALLMARK_ANGIOGENESIS.
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Positive Correlation Between Construct the
Prognostic Signature and Tumor
Progression
Previous studies reported that CAFs, an important component of
TME, play a crucial role in cancer progression (Song et al., 2021).
Thus, we further explored the correlation between CAFRS and
pathways associated with tumor progression. Results exhibited
that the CAFRS were positively related to TGF-β signaling,
epithelial-mesenchymal transition and angiogenesis pathways
(Figures 7A–D, Supplementary Figures S4A–S4C). Several
studies proved that the CAF-mediated TGF-β pathway
contributes to cancer progression by regulating many
physiological processes, including the promotion of cancer cell
proliferation, migration, invasion and metastasis by secreted
TGF-β, VEGF and PDGF (Hasegawa et al., 2014; Shi et al.,
2020). Conbined with previous studies, our results suggested
that CAFRS may reflect the progression of OvCa.

DISCUSSION

OvCa is one of the most widespread malignancies, which has the
highest morbidity and leads to thousands of cancer-related deaths
among gynecological malignant tumors in the world (Siegel et al.,
2022). Although the underlying mechanisms of OvCa
progression are still indistinct, the complex roles of TME in
OvCa are gaining attention (Jiang et al., 2020; Song et al., 2020).
CAFs, the major cell component of the TME, can lead to the
failure of various treatments by exchanging signals with tumor
cells during the cancer progression (Errarte et al., 2020). For
example, the interaction between CAFs and cancer cells can
support glycogenolysis under normoxic conditions and induce
phosphorylation and activation of phosphoglucomutase 1,
leading to the increased proliferation, invasion, and metastasis
of cancer cells (Curtis et al., 2019). Besides, CAFs can influence
the actual level of autophagy in OvCa cells through the secretion
of pro-inflammatory cytokines and the release of autophagy-
derived metabolites and substrates, maintaining the survival and
propagation of tumor cells (Thuwajit et al., 2018). Thus, CAFs
can be potential targets for novel therapies in the future.

In this research, we reported that the high CAF infiltration in
OvCa was related to poor clinical outcomes. And patients with
higher pathological stages and grades tended to have higher levels
of CAF. Due to the critical function of CAFs in cancer progression
and prognostic assessment, the accurate definition of CAF
markers within OvCa is significant. Thus, multiple
bioinformatics methods were applied in our research to select
CAF-specific gene signatures of OvCa and construct the
prognostic model. Meanwhile, the independent clinical
significance of the CAFRS was validated in the other five
datasets, suggesting that CAF-specific genes and the CAFRS
could be helpful for individualized prognostic assessment
in OvCa.

Several studies have focused on the prognostic values of CAF-
related genes in other cancers, a 4-CAF-gene (COL8A1, SPOCK1,
AEBP1 and TIMP2) prognostic signature was developed to

predict the clinical outcomes and the response to anti-tumor
therapies in gastric cancer (Zheng et al., 2021). However, the lack
of validation at the single-cell level may lead to bias. In our
research, the four OvCa CAF-specific markers (AXL, GPR176,
ITGBL1 and TIMP3) were specially expressed in fibroblasts from
OvCa at the single-cell level, indicating the more OvCa-specific
and accurate of the four genes.

Furthermore, we also found that OvCa patients with high
CAFRS were more likely to exhibit resistance to platinum. And
the CAFRS were notably correlated with well-known signaling
pathways related to tumor progression. Several pieces of evidence
reported that CAFs are associated with therapeutic resistance
(Kieffer et al., 2020; Zhang et al., 2020; Galbo et al., 2021). The
crosstalks between tumor cells and CAFs may lead to the failure
of treatment (Fiori et al., 2019). Besides, CAFs can help tumor
cells evade immune surveillance (Kieffer et al., 2020) by
promoting tumor matrix deposition and remodeling the TME
(Sahai et al., 2020), and achieving resistance to treatment finally
(Galvani et al., 2020). Moreover, Wang et al. proved that the
curative effects of immune checkpoint blockade could be reduced
by extracellular matrix (Chang, 2019). Due to the unclear sources
and functions of CAFs, they will be novel targets for cancer
control and overcoming drug-resistance in the future (Sahai et al.,
2020).

Although our research recognized and confirmed the clinical
significance of OvCa CAF-specific markers and the risk score
constructed based on them, further clinical studies are warranted
to validate that these signatures can be potential biomarkers or
targets of CAFs in OvCa. In addition, given the connections between
CFAs and TME, whether the CAF-specific signature could predict
the response to immune checkpoint blockade is also worth
exploring.

CONCLUSION

To sum up, based on multiple bioinformatics analyses, we reported
that the enhanced infiltration of fibroblast in OvCa was remarkably
associated with worse clinical outcomes. In addition, the 4-gene
signature with prognostic significance, which was identified by
WGCNA and verified in other independent cohorts and single-
cell RNA-sequencing datasets, was significant for future studies on
CAFs and shed novel insights into CAFs-target therapy in OvCa.
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