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A B S T R A C T

Retinoic acid, vitamin A metabolite, plays a role in oocyte development and maturation in different ways in-
cluding gene expression alteration and/or prohibiting oxidative stress. The objective of this study was to ex-
amine the effect of 9-cis-retinoic acid (9-cisRA) on the quality and maturation rate of buffalo oocytes. Cumulus-
oocyte complexes (COCs, n= 460) were collected from ovaries of slaughtered buffalos. Varying concentrations
of 9-cisRA (0, 5, 50, and 200 nM) were added to the maturation medium, and the following parameters were
analyzed: (i) maturation and cleavage rates, (ii) mitochondrial activity and reactive oxygen species (ROS) levels,
(iii) expression level of antioxidant-related genes (PRDX1, SOD1, CAT, HOMX1, and GPX4) using RT-qPCR.
Maturation rate was significantly improved in 5 nM 9-cisRA oocyte group (95.8%, P < .05) compared to control
and other treatment groups (86.7% in control group). The same oocyte group exhibited significantly higher
mitochondrial membrane potential activity and lower ROS accumulation level compared to other treatment
groups. Antioxidant-related genes were up-regulated in oocytes matured with 5 or 50 nM 9-cisRA compared to
control and 200 nM 9-cisRA groups. In contrast, 200 nM of 9-cisRA showed a clear down-regulation for anti-
oxidant-related genes except for PRDX1. In conclusion, supplementation of 9-cisRA with a lower concentration
(5 nM) to the buffalo oocytes maturation media promotes maturation rate through a protection mechanism that
maintains adequate levels of antioxidant-related transcripts and improves mitochondrial activity. However, 9-
cisRA has no significant effect on the cleavage rate of the treated oocytes.

1. Introduction

Buffalos (Bubalus bubalis) are a multi-purpose animal that has a
significant contribution to agriculture economy. In comparison to
cattle, buffaloes show more infertility related issues that reduce the
productivity and profitability of this species. These problems include
ovarian inactivity, long postpartum period, lower number of ovarian
follicles and lower response for superovulation treatments [1]. Assisted
reproductive technologies (ART) including in vitro production (IVP) of
embryos have been successfully used in buffaloes to overcome some of
these infertility problems, but still with low overall efficiency [2]. The
first buffalo calf produced via assisted reproductive technology and in

vitro fertilization has been reported in 1991 [3]. Since that date, several
studies have been done to examine the influences of different culture
conditions on oocyte and embryo development in buffaloes [4,5]. In
addition, several studies were focused on the low cleavage and devel-
opmental rates in in vitro produced buffalo embryos compared to cattle.
These studies suggested that the reasons behind this lower embryo
production efficiency could be the different nutritional requirements
between both species, the varying time of nuclear and cytoplasmic
maturation and/or the lower quality of frozen semen [6,7]. On the
ultrastructure level, buffalo immature oocytes showed high lipid con-
tents which increase the sensitivity to oxidative stress under in vitro
conditions [8]. Therefore, specific culture conditions should be
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optimized for buffalo embryos based on their special needs. Recently,
conditioned media of stem cells supplemented with growth factors have
been used to improve the developmental rates of buffalo embryos [9].
In addition, different molecules, including vitamins, hormones and
growth factors, that known to play important roles in controlling oocyte
maturation and embryo development have been tested with buffalo and
other mammalian oocytes and showed positive results in relation with
embryonic developmental rates and pregnancy outcomes [10–12].

Vitamin A is known to play an essential role in female reproduction
including follicular growth, steroidogenesis and oocyte/embryo devel-
opment. In ruminants, vitamin A is taken as β-carotene (BC) from
forages, absorbed by intestinal mucosal cells and enzymatically clea-
vages to produce retinal which is subsequently reduced to retinol [13].
It has been reported that both BC and retinol are present in bovine
follicular fluid [14] with follicular internal activity to convert BC into
retinol that converts inside the target cells into 9-cis-retinoic acid (9-
cisRA) and All-trans-retinoic acid (AtRA), the active forms of vitamin A
[15]. These active forms can bind with retinoid X and RA receptors
(RXR and RAR) and interact with the promoter region of some specific
genes to control their expressions [16]. Transcripts of RAR are ex-
pressed in bovine oocytes, cumulus and granulosa cells indicating the
existence of utilization mechanisms of vitamin A in these cells [17].
Retinoic acid has been used in vitro as a supplement to oocyte ma-
turation media to improve maturation and embryo developmental rates
in several species including cows [18], goats [19], mice [20] and,
human [21] but has not been tested with buffalo oocytes or embryos.
Moreover, the exact mechanism of action of 9-cisRA during the ma-
turation process is differed between studies. Some studies reported that
adding of RA during in vitro maturation (IVM) of oocytes increases the
developmental capacity through the reduction of apoptosis rates of
cumulus or embryonic cells by regulating expressions of signaling
pathways and some related genes, like TNF-α [19] or cell cycle-related
genes [22]. Other studies demonstrated the role of RA as an antioxidant
agent protecting oocytes and embryonic cells from the excessive levels
of ROS by scavenging the peroxyl radical and thus reducing ROS level
[23]. Furthermore, the concentration of 9-cisRA in maturation media is
an important factor determining the quality and developmental rate of
produced embryos. High concentration of 9-cisRA (500 nM) found to be
toxic and impairing nuclear maturation in bovine, porcine and canine
oocytes, however, 5 nM was stimulatory [24,25]. To the best of our
knowledge, no studies determined the optimum concentration of RA
during IVM and its effects on oocyte development and quality in the
buffalo model. Therefore, the objective of this study was to examine the
effect of adding 9-cisRA with different concentrations to the maturation
media on development and quality of buffalo oocytes.

2. Materials and methods

2.1. Oocyte collection, in vitro maturation and fertilization

Ovaries were collected from a local abattoir in warm saline (0.9%
NaCl) including 100 IU/mL penicillin and 100 µg/mL streptomycin
sulfate at 37°C and transported within 2 h to the lab. The ovaries were
then washed with freshly prepared phosphate buffer saline (PBS).
Follicles with 2–8mm size were puncture using an 18-gauge needle and
COCs were collected in HEPES buffered solution of medium-199
(22340; Gibco, UK) including antibiotics (100 IU/mL penicillin,
100 µg/mL streptomycin sulfate and 50 µg/mL gentamicin). COCs sur-
rounded by at least three layers of compact cumulus cells were used for
IVM. For each treatment, a total of 115 oocytes (3 biological replicates)
were incubated in maturation media (400 µL) after supplementation
with 0, 5, 50 and 200 nM of 9-cisRA (Sigma-Aldrich St. Louis, MO, USA)
for 24 h at 38.5°C under 5% CO2 atmosphere. TCM199 medium (Sigma-
Aldrich, Munich, Germany) supplemented with 10% (v/v) Fetal Bovine
Serum (FBS), 4.4mM HEPES, 55mg/mL gentamicin, 2.9mM calcium
lactate, 33.9 mM NaCHO3 and 2mM pyruvate were used for IVM.

Following IVM, matured oocytes were washed with TCM-199 medium
containing 25mM HEPES and 0.3% bovine serum albumin (BSA). In a
separate experiment and based on the maturation rates, oocytes ma-
tured with 0, 5 and 50 nM of 9-cisRA were washed twice with a pre-
fertilization medium containing TCM-199 supplemented with 0.3%
bovine serum albumin (BSA, Sigma A-9647) and 25mM HEPES. In vitro
fertilization (IVF) was then performed in Fert-TALP medium supple-
mented with 10mM hypotaurine, 20mM penicillinamine, 50mg/mL
gentamicin 2mM nor-adrenaline, 1 mg/mL heparin and 6mg/mL BSA.
The spermatozoa were processed for IVF as described previously [26].
A total of 25–30 oocytes/well were placed into the sperm suspension
(2×106 sperms/mL) then kept at 38.5°C in a Multi-gas incubator (5%
CO2 and 5% O2) for 18 h. The presumptive zygotes obtained after IVF
were denuded by gentle repetitive pipetting, washed three times with
modified synthetic oviductal fluid (mSOFaa) medium supplemented
with 5mg/mL BSA+5 ng/mL insulin and 50 μg/mL gentamycin and
subsequently cultured in the same medium at 38.5°C in a humidified
Multigas CO2 incubator. The cleavage rate was checked on day 2 post
insemination.

2.2. Mitochondrial membrane potential activity

Mitochondrial membrane potential, as an indicator of mitochondrial
activity and number, was assessed in control and 9-cisRA treated buf-
falo oocytes using MitoTracker1-Red CMXRos (M7512; Invitrogen) as
previously reported [27]. For each treatment, ten oocytes were in-
cubated with 600 µL of MitoTracker1-Red dye in a concentration of
200 nM for 45min in dark followed by three times washing in PBS for
10min. Samples were fixed in formaldehyde (4%) at 4°C overnight. In
the next day, oocytes were mounted on a glass slide with Vectashield
(H-1200) mounting media. The mitochondrial membrane potential
activity was then visualized under a fluorescence microscope (Leica
DMI 3000 B, Leica, Germany) at the appropriate excitation wavelength
(579–599 nm).

2.3. ROS accumulation level

Intracellular ROS level in control and 9-cisRA treated buffalo oo-
cytes was detected using fluorescent dye-based H2DCFDA (6-carboxy-
2′, 7′-dichlorodihydrofluorescein diacetate, di (acetoxymethyl ester), C-
6827; Invitrogen) according to the manufacturer’s protocol [28]. A
group of fifteen oocytes from each treatment was stained with 400 µL of
20 µM H2DCFDA at 37°C for 20min with no light then washed for three
times in PBS. ROS levels were visualized using an appropriate green-
fluorescence filter under a fluorescence microscope (Leica DMI 3000B,
Leica, Germany) at Ex/Em: approx 492-495/517-527 nm and images
were immediately captured.

2.4. Fluorescence level quantification

To quantify fluorescence levels for both mitochondrial activity and
ROS accumulation in oocytes, ImageJ software (v1.50i, NIH, USA,
http://imagej.nih.gov/ij) was used. Mean fluorescence and background
readings were measured for each oocyte. Fluorescence signals were
quantified from at least 8 individual oocytes per each group. The total
corrected fluorescence (TCF) was calculated according to the previous
method [29].

2.5. Expression analysis of antioxidant genes using quantitative real-time
PCR (RT-qPCR)

2.5.1. RNA isolation and cDNA synthesis
Three biological replicates were collected, each containing 30 ma-

tured oocytes, from control and each 9-cisRA treatment group for RNA
isolation and cDNA synthesis. Total RNA was isolated using PicoPure
isolation kit (Arcturus, Munich, Germany). Total RNA was then purified
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using on-column DNase digestion sets containing DNase enzyme
(QiagenGmbH, Hilden, Germany). Finally, RNA was collected in a total
volume of 11 µL using elution buffer after washing twice using two
different washing buffers. RNA quantity and quality were determined
using a Nanodrop ND-1000 (NanoDrop Technologies, Wilmington, DE,
USA).

cDNA was synthesized from mRNA of each sample using random
primers (Promega Madison WI, USA), oligo (dT)25 and SuperScript™ II
reverse transcriptase (Invitrogen, Karlsruhe, Germany). Random pri-
mers (1 µL), oligo (dT)25 (1 µL) were incubated with 10 μL RNA sample
for 3min at 70°C. The RNA-primers mixture was then chilled on ice.
After that, cDNA synthesis master mix containing 1 µL dNTP (10 pmol/
μL), 0.3 µL RNase inhibitor, 2 µL of 0.1M dithiothreitol (DTT, Promega,
Madison, WI,USA), 4 µL of 5X first strand buffer (15mM MgCl2,
375mM KCl, 250mM Tris–HCl, pH 8.3) and 0.7 µL of invitrogen
SuperScript™ II reverse transcriptase (200 unit/µL) was added to the
RNA-primers mix and incubated for 90min at 42°C followed by dena-
turation at 70°C for 15min. cDNA was stored at −20°C until use.

2.5.2. Gene expression analysis
Expression analysis of 5 antioxidant-related genes namely super-

oxide dismutase-1 (SOD1), heme oxygenase decycling-1 (HMOX1),
peroxiredoxin-1 (PRDX1), catalase (CAT) and Glutathione peroxidase 4
(GPX4) have been analyzed in buffalo oocytes matured in vitro under
different concentrations (0, 5, 50 and 200 nM) of 9-cisRA using se-
quence-specific primers (Table 1). A primer pair, forward and reverse,
for each tested gene was designed using Primer Express version 2.0
software (Applied Biosystems, Foster City, CA).

Step-One Plus real-time PCR system (Applied Biosystems) was used
to analyze the expression level of transcripts using SYBR green fluor-
escent dye. RT-qPCR reactions (20 µL) were contained 2 µL cDNA, 10 µL
iTaq SYBR Green master mix with ROX (Bio-Rad Laboratories, Munich,
Germany), 7.4 µL H2O and 0.3 µL of each forward and reverse primers
(20 µM). The cycling conditions were adjusted to 95°C for 3min as an
initial denaturation followed by 15 s at 95°C and 45 s at 60°C (an-
nealing/extension) for 40 cycles. Comparative CT (2−ΔΔCT) method was
used to analyze RT-qPCR data and determine the transcript abundance
in the tested samples. The relative CT value of each gene was normal-
ized using Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a
housekeeping gene to compare transcript abundance differences be-
tween the groups of buffalo oocytes matured under different levels of 9-
cisRA.

2.6. Statistical analysis

Data were analyzed statistically using SAS version 9.1 (SAS Institute
Inc., Cary, NC, USA). Maturation and cleavage rates were log trans-
formed and analyzed by one-way ANOVA followed by Tukey’s test
(α=0.05). Gene expression data were analyzed using SAS General
Linear Model (GLM). Differences in mean values were tested amongst

treatment groups using ANOVA followed by Student t-test. The sig-
nificance level was considered at P < .05.

3. Results

3.1. Maturation and cleavage rates

A total number of 460 oocytes have been aspirated and randomly
distributed into 4 groups (115 oocytes each). Polar body extrusion and
cumulus cells expansion rates were recorded and analyzed. The 9-cisRA
treatment with a concentration of 5 nM showed higher maturation rate
(P < .05) represented as expansion and polar body rates (95.8 and
45.5%, respectively) compared to other treatments (Table 2). In con-
trast, treatment with high concentrations of 9-cisRA (50 and 200 nM)
during maturation showed the lowest maturation rates (P < .05,
Table 2). The cleavage rates of oocytes matured with 0, 5 and 50 nM 9-
cisRA have been recorded. The results showed a tendency of higher
cleavage rate in 5 nM 9-cisRA treatment group (61.1%) compared to
control and 50 nM groups (53.8 and 57.6%, respectively) but with no
significant differences (Fig. 1).

3.2. Mitochondrial membrane potential activity

The oocytes mitochondrial membrane potential, as indicator of
mitochondrial activity, was detected using MitoTracker1-Red. 5 nM 9-
cisRA treatment group exhibited significantly higher mitochondrial
activity (high fluorescence intensity) compared to other treatment
groups (Fig. 2). In contrast, oocytes matured with 50 and 200 nM 9-
cisRA exhibited lower mitochondrial activity compared to control and
5 nM 9-cisRA groups.

3.3. ROS level

ROS accumulation level was detected in fifteen oocytes from each
group. Oocytes matured with 50 and 200 nM of 9-cisRA showed higher
level of ROS accumulation. In contrast, control and 5 nM groups

Table 1
Details of primers used for quantitative real-time PCR.

Gene Accession number Primer sequences Product size (bp)

SOD1 XM_006053564 F: gagaggcatgttggagacct
R: ctgcccaagtcatctggtt

153

GPX4 XM_006050496 F: agccagggagtaatgcagag
R: cacacagccgttcttgtcaa

203

CAT XM_006062382 F: agatggacacaggcacatga
R: attgaaaagatcgcggaggc

184

PRDX1 XM_006052557 F: aaacaaggaggactgggacc
R: gcacacttccccatgtttgt

243

HMOX1 XM_006074428 F: atgccccaggatttgtcaga
R: aggggagtatagacggggtt

206

GAPDH XM_006065800 F: agatggtgaaggtcggagtg
R: tggaagatggtgatggcctt

229

Table 2
Expansion and polar body appearance rates under different concentrations (0,
5, 50 and 200 nM) of 9-cisRA during in vitro maturation of buffalo oocytes.

Groups Total
oocyte

Expanded oocytes
(% ± S.D)

Polar body appearance
(% ± S.D)

Control 115 86.7 ± 5.4b 29.7 ± 1b

9-cisRA5 115 95.8 ± 5a 45.5 ± 5.2a

9-cisRA50 115 80.5 ± 1.8c 26.4 ± 5c

9-cisRA200 115 79.1 ± 3c 23.6 ± 5c

a, b, c values with different letters in the same column are significantly different
(P < .05).

Fig. 1. Cleavage rates per total fertilized oocytes after maturation in vitro with a
supplementation of 0 (control), 5, and 50 nM of 9-cisRA.
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showed lower levels of ROS as a lower intensity of fluorescent dye
(Fig. 3).

3.4. Gene expression results

Gene expression analysis revealed that 5 and 50 nM 9-cisRA treat-
ments significantly up-regulated all antioxidant-related genes com-
pared to control and 200 nM 9-cisRA groups (Fig. 4). In contrast,
200 nM 9-cisRA treatment dramatically decreased the expression of
CAT gene compared to all other groups, in addition to a down-regula-
tion for other antioxidant-related genes except for PRDX1 (Fig. 4).

4. Discussion

In this study we examined the effect of 9-cisRA with different con-
centrations on buffalo oocytes maturation rate and quality in regards to
mitochondrial activity, ROS levels and gene expression during IVM. Our
results showed that 9-cisRA with a concentration of 5 nM during IVM
significantly improves the nuclear and cytoplasmic maturation in buf-
falo oocytes. However, higher concentrations (50 and 200 nM) reduce
the maturation rate compared to control group. Meanwhile, we re-
corded the cleavage rates of the fertilized oocytes from control, 5 nM

and 50 nM 9-cisRA groups. In the 5 nM 9-cisRA group there was a
tendency for an improvement in cleavage rate compared to the other
groups but with no significant differences (P > .05). Several studies
discussed the beneficial and detrimental effects of RA during IVM and
development of embryos in different species. RA concentration in ma-
turation media is an essential factor affecting oocytes and embryos
developmental competency. In agreement with our findings, 5 nM of 9-
cisRA during IVM was supportive to the maturation of bovine [30]
porcine [24] and canine [25] oocytes. The susceptibility of oocytes to
different retinoid concentrations seems to vary between species and in
vitro culture conditions. For instance, higher concentrations of RA
(500 nM) were cytotoxic for oocytes during IVM in bovine [30] and
porcine [31]. In contrast, basic maturation media supplemented with
FSH and 500 nM RA improved blastocyst formation of bovine embryos
cultured in potassium simplex optimized medium (KSOM) [32]. In
another study, the same concentration of RA improved the develop-
mental capacity in goat embryos [33] or even with higher concentra-
tion (2 μM), it showed beneficial effects on mouse oocyte IVM [34]. One
explanation of these contrary results may be the different used media
with different compositions in which interaction between RA and
hormones supplemented to the maturation media has been proved to
affect the action mechanisms inside cells and oocytes [30]. On the other
hand, species-specific nutritional requirements and time required for in
vitro nuclear maturation may account for these variations [35].

Fig. 2. (A) Mitochondrial membrane potential activity (MitoTracker1-Red
stain) of buffalo oocytes matured in vitro with a supplementation of (a) 0
(control), (b) 5, (c) 50 and (d) 200 nM of 9-cisRA. Scale bar, 100 μm. (B) Total
corrected fluorescence (TCF) levels of oocytes from different groups. a, b, c va-
lues with different letters are significantly different (P < .05).

Fig. 3. (A) ROS levels (H2DCFDA stain) in buffalo oocytes matured in vitro with
supplementation of (a) 0 (control), (b) 5, (c) 50 and (d) 200 nM of 9-cisRA.
Scale bar, 100 μm. (B) Total corrected fluorescence (TCF) levels of oocytes from
different groups. a, b, c values with different letters are significantly different
(P < .05).
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Oocyte developmental competence and subsequent preimplantation
embryonic development are highly correlated with the potentiality and
distribution of mitochondria [36]. Production of ATP by mitochondria
using oxidizable energy substrates is essential for all metabolic, tran-
scription and translation processes required for normal nuclear and
cytoplasmic maturation [37]. Although the high efficiency of energy
production in mitochondria via oxidative phosphorylation pathway, it
is considered as a main source of ROS. High levels of ROS lead to cell
apoptosis through impairment of the mitochondrial activity in oocytes
and embryos [38]. Internally produced or externally added antioxidants
play important roles to maintain the oocyte’s oxidant/antioxidant bal-
ance during IVM. Several antioxidants, including enzymatic and non-
enzymatic, were tested with in vitro cultured oocytes and embryos in
different mammalian species and found to be efficient protectants
against ROS [39]. We reported here an increase in mitochondrial
membrane potential activity in oocyte group matured with 5 nM 9-
cisRA compared with control and other treatments. The same oocyte
group showed a reduction of ROS level compared to the higher con-
centrations of 9-cisRA. These results indicated that an appropriate
concentration of 9-cisRA can maintain the energy production process
via mitochondria, meanwhile keeping adequate levels of ROS during
oocytes IVM. In mouse liver and a model of human liver, the isomer for
9-cisRA (AtRA) was found to increase fatty acid oxidation and mi-
tochondrial function [40]. In contrast, higher concentrations of AtRA
induce electron leakage from mitochondrial membranes and subse-
quently reduce mitochondrial activity, increase ROS generation and
lead to cell apoptosis [41]. These findings confirmed the contrary

effects of RA in its dose-specific manner and could explain the reported
lower mitochondrial activity and higher ROS levels in 50 and 200 nM 9-
cisRA groups compared to the lower concentration and control groups.

It has been reported that retinoids can quench oxygen molecules
and subsequently regulates redox status and pathways [42]. IVM
medium supplemented with AtRA showed a significant reduction in
ROS level and improved blastocyst rate in bovine [23]. The antioxidant
activity of AtRA has been elucidated through its ability to scavenge a
spectrum of ROS molecules in in vitro cultured cells [43]. This may
suggest a scavenging ability of 9-cisRA, as a more potent isomer for
AtRA [44], against ROS as a mechanism of reducing ROS level, how-
ever, this mechanism needs more research to be confirmed. Previously,
It has been reported that retinoids can maintain adequate endogenous
levels of antioxidants which can be used to protect oocyte and embryo
during maturation and development against ROS accumulation [45].
These antioxidants regulate the internal protection mechanisms of oo-
cytes against ROS [46]. It is already known that RA regulates the
transcription of several genes through the nuclear receptors RAR and
RXR that hetero- or homo-dimerize after binding with RA and then
interact with RARE in the promoter regions of target genes [47]. Anti-
apoptotic and oocyte quality related genes were found to be up-regu-
lated in IVM oocyte cultured with RA [30]. In addition, it has been
reported that RA improves the polyadenylation process and thus in-
creases mRNA quality [22]. In the current study, we observed a sig-
nificant up-regulation of all tested antioxidant-related genes in 5 and
50 nM 9-cisRA groups compared to control and 200 nM 9-cisRA groups.
It is accepted that during the transition from meiosis I (MI) to meiosis II
(MII), oocyte progressively decreases its transcriptional activities and
becomes highly dependent on the stored maternal RNA and proteins.
Therefore, protecting the existed transcripts against degradation is an
essential process for further development [48]. RA proved to protect
and prevent decreases in transcript and protein levels of SOD in primary
cultured rat cells [49]. This protection strengthened the endogenous
antioxidant defense system and subsequently reduced ROS levels.
Moreover, it has been reported that 9-cisRA with a concentration of
5 nM during IVM can stabilize the transcription of prostaglandin-en-
doperoxide synthase2 (PTGS2), which has an important role in the
process of cumulus cell expansion, and subsequently improves ma-
turation and embryo development in porcine [24]. This could explain
the higher levels of antioxidant-related genes in 5 and 50 nM 9-cisRA
groups as a protective role of RA against transcripts degradation. Our
results regarding SOD1 and GPX4 are in agreement with the previous
studies which explained that the addition of antioxidant upregulated
these genes as an antioxidant behavior [50,51]. Moreover, SOD1 has
been reported as one of the important genes which supports buffalo
oocytes against oxidative stress [26] as it is involved in the breakdown
of ROS during stress conditions. In addition, several antioxidant en-
zymes including CAT and GPX play an important role in protecting
oocytes and embryos against pro-oxidative damage [52]. SOD1 is re-
sponsible for the first enzymatic step that protects cells against toxic
oxygen radicals and produces hydrogen peroxide (H2O2) as a by-pro-
duct which is then eliminated either by catalase or GPX [45]. Peroxir-
edoxin1 (Prdx1) is an antioxidant enzyme that regulates the cellular
ROS levels through catalyzation of the reduction of H2O2 and alkyl
hydroperoxide. The result of the current study supports the antioxidant
action of Prdx1 as previously stated [53] and its function as a down-
stream mediator of the retinoic acid signaling pathway during embry-
ogenesis [54]. The inducible isoform heme-oxygenase 1 (HMOX1) plays
an important physiological role as an antioxidant enzyme. It is involved
in oxidative degradation of heme into equimolar amounts of carbon
monoxide, ferrous iron, and biliverdin, which, per se and particularly
after conversion into bilirubin, is known to have potent antioxidant
properties [55]. The expression of HMOX1 gene is regulated by the
Keap1-Nrf2 pathway after binding of Nrf2 to the consensus binding
sequence and activates a cascade of events which, in the end, provides
robust protection against oxidative challenge [56]. The importance of

Fig. 4. Relative expression of antioxidant-related genes (SOD1, CAT, HOMX1,
PRDX1, and GPX4) represented as fold change (FC) in buffalo oocytes matured
in vitro with supplementation of 0 (control), 5, 50 and 200 nM of 9-cisRA. a,b,c

values with different letters are significantly different (P < .05).
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HMOX1 during oocyte maturation has been illustrated when female
Hmox1−/− mice showed lower levels of oocyte maturation and overall
lower fertility compared to the wild-type mice [57]. Although 5 and
50 nM 9-cisRA groups showed the same expression pattern of anti-
oxidant genes, only 5 nM 9-cisRA group showed a significant reduction
in ROS level with increased mitochondrial activity and maturation rate.
Although the 50 nM of 9-cisRA can maintain the higher levels of anti-
oxidant genes, it could be a slightly toxic concentration for buffalo
oocytes through its negative effects on mitochondrial activity. In ad-
dition, it could negatively affect the antioxidant capacity on the level of
enzyme activities as it has been reported previously that RA caused an
increase in ROS and decrease in peroxidase activity [58]. However,
highly toxic concentrations, as 200 nM in this study, negatively affected
the antioxidant defense system on the expression level and reduced
mitochondrial activity that leading to a high ROS level.

5. Conclusions

Supplementation of 9-cisRA with lower concentration (5 nM) to the
maturation media is beneficial for buffalo oocytes. It promotes ma-
turation rate through a protection mechanism that maintains adequate
levels of antioxidant-related transcripts and improves mitochondrial
activity. However, 9-cisRA has no significant effect on the cleavage rate
of the treated oocytes.
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