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Abstract: Rett Syndrome (RTT) is an X linked neurodevelopmental disorder caused by mutations in
the methyl-CpG-binding protein 2 (MECP2) gene, resulting in severe cognitive and physical disabil-
ities. Despite an apparent normal prenatal and postnatal development period, symptoms usually
present around 6 to 18 months of age. Little is known about the consequences of MeCP2 deficiency at
a molecular and cellular level before the onset of symptoms in neural cells, and subtle changes at
this highly sensitive developmental stage may begin earlier than symptomatic manifestation. Recent
transcriptomic studies of patient induced pluripotent stem cells (iPSC)-differentiated neurons and
brain organoids harbouring pathogenic mutations in MECP2, have unravelled new insights into the
cellular and molecular changes caused by these mutations. Here we interrogated transcriptomic
modifications in RTT patients using publicly available RNA-sequencing datasets of patient iPSCs
harbouring pathogenic mutations and healthy control iPSCs by Weighted Gene Correlation Network
Analysis (WGCNA). Preservation analysis identified core gene pathways involved in translation,
ribosomal function, and ubiquitination perturbed in some MECP2 mutant iPSC lines. Furthermore,
differential gene expression of the parental fibroblasts and iPSC-derived neurons revealed alterations
in genes in the ubiquitination pathway and neurotransmission in fibroblasts and differentiated
neurons respectively. These findings might suggest that global translational dysregulation and pro-
teasome ubiquitin function in Rett syndrome begins in progenitor cells prior to lineage commitment
and differentiation into neural cells.

Keywords: RTT; iPSCs; WGCNA

1. Introduction

Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder characterised
by loss of fine and gross motor skills, abnormal social behaviour, growth retardation,
seizures, and breathing dysregulation [1]. RTT predominantly affects females, with a
worldwide prevalence of 1 in 10,000 girls [2]. The majority of RTT cases are caused by
de novo mutations in the X-linked methyl-CpG-binding protein 2 gene (MECP2) encoding
the MeCP2 protein, which plays a critical role specifically in the maturation of the central
nervous system (CNS) and synaptic function [3,4]. Mutations that result in the loss of
MeCP2 function cause a range of molecular, cellular, and anatomical abnormalities that
perpetuate at the symptomatic phase [5].

RTT is associated with more than 500 pathogenic mutations, with the majority being lo-
cated in three key domains: the methyl-binding domain (MBD), transcriptional-repression
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domain (TRD), and nuclear localisation signal (NLS) domain [6]. MECP2 plays a critical
role in transcriptional regulation, and it is key for normal brain development. While
genotype-phenotype correlations are limited, it has been noted that mutations located up-
stream in the N-terminal and including p.R270* are associated with more severe symptoms
when compared with those of p.R294* or C-terminal–truncating mutations [7]. Despite the
availability of pre-clinical models of RTT, these disease models do not fully recapitulate
all aspects of the human pathology. The limitations in their reliability for understanding
disease physiology and the predictive value for clinical outcomes poses a significant hur-
dle to devising effective therapeutics [7,8]. So far, there are no effective pharmaceutical
neuromodulators that alter the course of disease in RTT individuals.

Induced Pluripotent stem cells (iPSCs) reprogrammed from patient somatic cells that
can be differentiated into neurons, provide a valuable complementary disease model to
existing models. RTT iPSC derived neurons recapitulate the RTT phenotype, such as
smaller soma size, reduced dendritic branching and axonal arborisation, and unbalanced
excitatory versus inhibitory activity. While many iPSC studies using RTT patient-derived
cells have demonstrated their utility as a valuable model, few studies have explored the
molecular and cellular attributes and the RTT pathophysiology of the iPSCs at the stem
cell state.

Transcriptional and global translational dysregulation as well as proteomic pertur-
bations and reduced global protein synthesis in mouse models and humans is well docu-
mented in RTT [9–14]. Recent evidence has unravelled reduced global translation in RTT
iPSC-derived neurons, including reduced ribosome engagement, compromised mTOR
signalling, and altered ubiquitination via NEDD4L E3-ubiquitin ligase, demonstrating
a globally disturbed translatome during neurodevelopment [15]. In this study, we used
a gene interaction network approach to survey gene expression changes in published
transcriptomic datasets of RTT patient fibroblasts, iPSCs, and iPSC-differentiated neu-
rons (GSE21037 [16] GSE51607 [17] and GSE107399 [18]). The three studies analysed
different patient cell lines, where the mutations spanned exons 3 and 4 of the MECP2
gene. MT [17] analysed a c.1155del33 mutation located in the C-terminus; OH [18] anal-
ysed two mutations; c.705delG and c.1461A>G located in the transcriptional repressor
domain (TRD) and the C-terminus respectively; and lastly, TK analysed four patient
mutations; c. 473C>T, c.1461A>G, c.916C>T and p.E235fs located in the methyl binding
domain (MBD), C-terminus respectively, and the last two in the TRD respectively (Table 1,
Supplementary Table S1). Weighted Gene Co-expression Network Analysis (WGCNA),
designed to identify key biological processes in complex expression data [19] was used to
detect correlation patterns of key gene modules and pathways underpinning iPSC biology
dysregulated in RTT. In addition, preservation analysis of the MT dataset [17] was per-
formed to determine if any of the modules were conserved across the other two datasets
(OH [18] and TK [17]). The lavenderblush module, that was highly preserved across the
three studies, identified genes involved in translation and ribosomal function, including
many NEDD4-family ubiquitin ligases. These findings point to global dysregulation of
translation in the RTT iPSCs prior to commitment and differentiation to neural cell lineage,
which reflect the transcriptional disruption of key cellular pathways in undifferentiated
neural cells in RTT patients.
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Table 1. Summary table of studies used in the present study, including sample ID, status and
mutation (protein change and nucleotide change).

Sample ID Status
Mutation
(Protein
Change)

Mutation
(Nucleotide

Change)

TK
GSE51607

Tanaka et al.

Control1.iPS.13w Isogenic p.T158M c. 473C>T
Control5.iPS.31w Isogenic p.X487W c.1461A>G
Control4.iPS.24w Isogenic p.R306C c.916C>T

RTT5.iPS.42m Disease p.X487W c.1461A>G
RTT5.iPS.34m Disease p.X487W c.1461A>G
RTT3.iPS.16m Disease E235fs 705delG
RTT4.iPS.16m Disease p.R306C c.916C>T

OH
GSE107399
Ohashi et al.

Control WT -
Control 1

(rep 1 and 2) Isogenic p.V247X c.705delG

Control 2
(rep 1 and 2) Isogenic p.V247X c.705delG

RTT_1
(rep1 and 2) Disease p.X487W c.1461A>G

RTT_2
(rep1 and 2) Disease p.V247X c.705delG

MT
GSE21037

Marchetto et al.

Cnl15Rep1 Disease p.L386Rfs c.1155del32
Cln15Rep2 Disease p.L386Rfs c.1155del32
Cln15Rep3 Disease p.L386Rfs c.1155del32
Cln18Rep1 Disease p.L386Rfs c.1155del32
Cln18Rep2 Disease p.L386Rfs c.1155del32
Cln18Rep3 Disease p.L386Rfs c.1155del32

WT Cln1Rep1 Paedriatic control - -
WT Cln1Rep1 Paedriatic control - -
WT Cln1Rep3 Paedriatic control - -
WT Cln2Rep1 Paedriatic control - -
WT Cln2Rep2 Paedriatic control - -
WT Cln2Rep3 Paedriatic control - -

2. Results
2.1. Dataset Selection and Gene Expression Analysis

Publicly available genome-wide transcriptomic datasets of RTT fibroblasts, iPSCs, and
iPSC-derived neurons were retrieved from the NCBI Gene Expression Omnibus database.
These included: GSE21037 [16] (MT), GSE51607 [17] (TK) and GSE107399 [18] (OH). These
three studies used different sequencing platforms, where the MT analysis was performed
on the Affymetrix Human Gene 1.0 ST Array, TK on the Illumina Genome Analyzer
II, and OH on the Illumina HiSeq 2000 (Figure 1). There were also significant study
design differences in each dataset: for the undifferentiated iPSCs, the GSE51607 (TK) and
GSE107399 (OH) studies included four different diseased samples (from three and two
different RTT patients, respectively) harbouring mutations in the C-terminal and TRD
of MeCP2, and three isogenic controls. The GSE21037 (MT) study included one patient
sample comprising two MECP2-mutant cell clones (Cln 15 and 18) and three replicates
for each clone, as well as three age-sex matched healthy controls. Subsequent differential
expression analyses were done using the fibroblast profiles from the MT study, and the
iPSC-neuron data from the OH study (Table 1; Supplementary Table S1).

The three datasets encompassed patient samples harbouring pathogenic mutations
in exon 4 of MECP2, located on the MBD, TRD and C-terminal key protein domains
(Supplementary Table S1). The position of each mutation and the clinical phenotypes of
each patient cell line are shown in Figure 2.
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separated clearly from controls in the MT dataset whereas OH and TK datasets exhibited 
more heterogeneity, with some mutant samples forming distinct clusters. Owing to this 
apparent heterogeneity, we employed WGCNA, a strategy designed to extract coherent 
gene expression programs from complex data, to elucidate modules of gene expression in 
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Figure 2. MECP2 gene and MeCP2 functional domains. Mutations covered in the present analysis are
indicated by arrows. There are over 500 pathogenic mutations in MECP2, with the majority lying in
exons 3 and 4 in the methyl binding domain (MBD), transcriptional repressor domain (TRD) and the
C-terminal functional domain (CTD) regions, disrupting the normal function of the MeCP2 protein.

2.2. Principle Component Analysis and Sample Clustering

We firstly evaluated global gene expression patterns using hierarchical clustering to
rule out outlier samples that would impact the downstream WGCNA analysis (Supple-
mentary Figure S1). We then use Principal Components Analysis (PCA) to interrogate the
expression profile relationships (Figure 3). We observed that the MECP2 mutant cell lines
separated clearly from controls in the MT dataset whereas OH and TK datasets exhibited
more heterogeneity, with some mutant samples forming distinct clusters. Owing to this
apparent heterogeneity, we employed WGCNA, a strategy designed to extract coherent
gene expression programs from complex data, to elucidate modules of gene expression in
iPSC transcriptomes that could potentially be altered in MECP2 mutant cell lines.

2.3. iPSCs Generate Modules of Dysregulated Genes

WGCNA was applied to the gene expression data of the MT, OH and TK iPSC datasets
to examine gene groups (gene modules) whose expression profiles were highly correlated
across samples. The gene modules contained subsets of genes with similar biochemical
and functional properties, thereby enabling the discovery of common dysregulated gene
modules and convergent molecular pathways in patients with different mutations. We first
constructed co-expression networks on the individual iPSC datasets comparing RTT and
controls. Gene expression profiles were classified into modules for each dataset, with the
expression levels of each module summarised according to the correlation coefficient, either
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positive or negative, at significance level of p < 0.05. Correlations between mutant and
control cell lines in the three datasets are shown, with green for negative correlation (darkest
green being most negatively correlated) and red for positive correlation (darkest red being
most positively correlated) (Figure 4). Seven significantly expressed gene modules were
identified in the MT dataset and one in the TK dataset, whereas the OH dataset did not
reveal any significant modules, reflecting the study heterogeneity. Of the seven modules
identified in the MT dataset, one module was positively correlated [16], consistent with an
overall upregulation of gene expression. Six modules were negatively correlated (green),
indicating that the predominant impact of the MECP2 mutation in the iPSCs results in
gene repression.
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2.4. Altered Gene Expression Networks Are Enriched for Specific Biological Processes

To determine which cellular pathways were implicated in the significantly correlated
modules (MT: black, floralwhite, mediumorchid, yellowgreen, plum4, mistyrose, and
lavenderblush; TK: orange), we tested the modules for pathway enrichment using the
Kyoto Encyclopedia of Genes and Genomes (KEGG) [20] pathway analysis (Supplementary
Table S2). Three out of the seven gene modules from the MT dataset were enriched in at
least one KEGG pathway (adj. p value < 0.05). The significant module (orange) identified
in the TK dataset was not enriched for any cellular pathways. The two enriched modules
in the MT dataset, lavenderblush (1824 genes, second largest module) and floralwhite
(449 genes, tenth largest module) both were negatively correlated and were selected for
further analysis for their likely impact on cellular functions.

Given that the MT dataset was the only dataset to produce significant modules
that were also enriched in at least one KEGG pathway, we performed a preservation
analysis based on the MT dataset to identify whether genes in the respective module
were also preserved in the other two groups. Two enriched modules: lavenderblush and
floralwhite were mapped against the TK and OH datasets. A preservation score below
2.5 is considered poor preservation, whereas above 10 is very good preservation, with the
in-between being moderate (Figure 5A) [19]. While most of the MT dataset modules were
not preserved across the three studies, the lavenderblush module, consisting of 1824 co-
ordinately expressed genes, reached a preservation score of 10.5 when compared with the
respective modules in the TK dataset (MT vs. TK) and a preservation score of 22 when
compared with the OH dataset (MT vs. OH) (Figure 5B) indicating that the lavenderblush
module represents a gene network co-expressed in all three studies but not necessarily that
the module is altered in the trait.
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To evaluate whether the lavenderblush genes would provide insight into other MECP2-
mutants tested, we investigated the clustering of the samples for each dataset according to
the expression pattern of genes in lavenderblush by Principal Component Analysis (PCA).
RTT and control samples of the MT dataset remained segregated (Figure 5B). In contrast,
RTT and controls samples in the OH and TK datasets did not show a clear segregation
(Figure 5B), demonstrating that, while the module was preserved in the datasets, the gene
expression of the module could not be used to stratify other MECP2 mutations.

2.5. Key Cellular Pathways Involved in Protein Translation Are Dysregulated in Rett iPSCs

Interrogation of the dysregulated pathways in the preserved lavenderblush module re-
vealed enrichment of several pathways related to protein translation and degradation. The
most significant pathways identified included ribosome biogenesis in eukaryotes (#03008;
22 genes, p = 3.00 × 10−6), protein processing in the endoplasmic reticulum (#04141;
31 genes, p = 0.0003), aminoacyl t-RNA biosynthesis (#00970; 15 genes, p = 1.48 × 10−5)
and the proteasome (#03050; 12 genes, p = 0.0003) (Table 2, Figure 6A). The protein-protein
interaction networks among the genes in these pathways were then plotted using String
(default settings; medium interaction score (0.400), FDR stringency of 5%) [21] (Figure 6B)
which showed that these pathways represent distinct but interconnected processes. To-
gether, these data demonstrate that the lavenderblush gene network is comprised of
multiple key biosynthetic pathways that are preserved in multiple iPSCs experiments. The
dysregulation of this module observed in the MT dataset, whilst not a global feature of
all MECP2 mutations tested in this study and based on data from a patient harbouring
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a c.1155del33 mutation, may suggests a role of these pathways in undifferentiated cells
of RTT. To unravel whether these alterations could be linked to the more symptomatic
molecular phenotype of RTT, we then investigated their expression changes in parental
fibroblast cells and iPSC-derived neuron expression profile.

Table 2. Pathways with KEGG enrichment identified in lavenderblush.

ID Description Gene Ratio p Value p Adjust q Value Gene ID Count

hsa03008
Ribosome
biogenesis

in eukaryotes
22/729 3.00 × 10−6 0.00094864 0.00092589

REXO5/NOL6/
LSG1/NOP58/

GTPBP4/UTP6/
WDR75/RIOK1/
WDR43/WDR3/
REXO2/NOP56/
MDN1/GNL3L/

DKC1/RAN/
UTP4/RPP30/

UTP14A/NAT10/
TCOF1/RPP40

22

hsa00970
Aminoacyl-

tRNA
biosynthesis

15/729 1.48 × 10−5 0.00233317 0.00227721

KARS/RARS/
LARS/EPRS/
HARS/IARS/
GARS/TARS/

DARS2/NARS/
YARS/WARS/

AARS/
MARS/NARS2

15

hsa04141

Protein
processing in

endoplas-
mic reticulum

32/729 0.00036708 0.03107943 0.03033403

AMFR/HSPA2/
EIF2AK4/HSP90AA1/
SEC24A/HSPA5/
HERPUD1/DNAJA1/
SEC23B/UBXN8/
HSPA8/BAG2/

MOGS/HSPH1/
DERL1/SEC24D/
CAPN2/SSR2/

RPN1/LMAN2/
EIF2AK3/TRAM1L1/
CALR/DERL2/

SAR1A/MAN1A1/
HYOU1/SEC13/
NPLOC4/STT3A/

PDIA4/P4HB

32

hsa03050 Proteasome 12/729 0.00039341 0.03107943 0.03033403

POMP/PSMD13/
PSMC5/PSMA4/
PSMD7/PSMD11/
PSMD12/PSMB1/
PSMC4/PSMA7/

PSME3/
PSMA5

12

2.6. Ubiquitin Genes Are Dysregulated in Fibroblasts

To determine whether the dysregulated pathways observed in the RTT iPSCs were
shared by the parental fibroblast cell lines, we examined the gene expression profile of
the preserved dysregulated lavenderblush module in the iPSC cell lines (Figure 7A) and
compared them with the differentially expressed genes in the fibroblast cell lines of the MT
dataset. When the gene expression of the RTT parental fibroblast cell lines was compared
to their controls, we observed 17 genes out of the 1726 in the lavenderblush module to be
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upregulated (Figure 7B) and 35 downregulated (Figure 7C). After performing pathway
enrichment, four genes were implicated in the ubiquitination pathway: NEDD4L, ARRDC4,
HCN1, KLHL13, (Table 3) and three genes in Pyridoxal Phosphate pathway: MOCOS, CTH,
PSAT1 (Figure 7C). Notably, NEDD4L gene expression perturbations represent a unifying
molecular feature of patient cells harbouring a mutation at c.1155del33 and therefore may
be implicated in the pathogenesis of RTT.
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Table 3. Descriptions of the four genes related to ubiquitination (KLHL13, NEDD4L, ARRDC4 and HCN1) that are
downregulated in RTT fibroblasts (information from UniProt).

Gene Function

KLHL13

Kelch-like protein 13; Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3
ubiquitin-protein ligase complex required for mitotic progression and cytokinesis. The

BCR(KLHL9-KLHL13) E3 ubiquitin ligase complex mediates the ubiquitination of AURKB
and controls the dynamic behaviour of AURKB on mitotic chromosomes and thereby

coordinates faithful mitotic progression and completion of cytokinesis.

NEDD4L

E3 ubiquitin-protein ligase NEDD4-like; E3 ubiquitin-protein ligase which accepts ubiquitin
from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly

transfers the ubiquitin to targeted substrates. Inhibits TGF-beta signalling by triggering
SMAD2 and TGFBR1 ubiquitination and proteasome-dependent degradation. Promotes
ubiquitination and internalization of various plasma membrane channels such as ENaC,

Nav1.2, Nav1.3, Nav1.5, Nav1.7, Nav1.8, Kv1.3, KCNH2, EAAT1 or CLC5.

ARRDC4

Arrestin domain-containing protein 4; Functions as an adapter recruiting ubiquitin-protein
ligases to their specific substrates (By similarity). Plays a role in endocytosis of activated G

protein-coupled receptors (GPCRs) (Probable). Through an ubiquitination-dependent
mechanism plays also a role in the incorporation of SLC11A2 into extracellular vesicles (By

similarity). May play a role in glucose uptake.

HCN1
Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 1;

Hyperpolarization-activated ion channel exhibiting weak selectivity for potassium over
sodium ions. Contributes to the native pacemaker currents in heart (If) and in neurons (Ih).
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2.7. Dysregulated Genes in iPSC-Induced Neurons

To examine whether the genes in the preserved dysregulated pathways of RTT iPSCs
and fibroblasts were shared in iPSC-derived RTT neurons, we compared the gene expres-
sion profile of the preserved dysregulated module of the iPSCs and iPSC-derived neurons
of the OH dataset. Of the 1726 genes in the module, we identified 27 genes downregulated
in the RTT iPSC-derived neurons and 13 upregulated genes (Figure 8). After performing
pathway enrichment, no significant pathways were identified.
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2.8. RTT Fibroblasts, iPSC and iPSC-Induced Neurons Share Commonly Dysregulated Genes

Of the 1824 genes in the lavenderblush preserved module identified in the of the
iPSC datasets, 52 were dysregulated in the patient fibroblasts of the MT dataset, and
42 were dysregulated in iPSC-derived neurons of the OH dataset (Figure 9). Two genes,
TNFAIP6 and PBK were dysregulated in all three cell lines (iPSCs, Fibroblasts and neurons)
(Figure 9B). These data represent a valuable resource for determining common features of
the molecular changes underpinning the pathogenesis of RTT.



Int. J. Mol. Sci. 2021, 22, 9954 12 of 19

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 12 of 19 
 

 

9B). These data represent a valuable resource for determining common features of the 
molecular changes underpinning the pathogenesis of RTT. 

 
Figure 9. Venn diagram demonstrating the differentially expressed genes in iPSC-derived neurons 
and fibroblasts. (A) The number of genes in each data set and whether they are up or down regu-
lated are shown where the size of the circles represents the relative proportion of those genes that 
correspond to the genes in the preserved module. (B) Diagram showing the genes preserved from 
lavendersblush across neurons and fibroblasts. Fbr up/down stand for fibroblast (MT) genes up or 
down regulated (bolded genes represent ubiquitination related genes), OH Neu down/up represent 
the iPSCs derived neurons (OH) and lavBlu represents the lavenderblush module obtained in the 
iPSCs. 

3. Discussion 
In this study, we have identified the dysregulation of protein translational and deg-

radational pathways as well as neurotransmission changes in RTT fibroblasts, iPSCs and 
iPSC-derived neurons. By module construction and preservation analysis, we showed 
global translational defects in RTT iPSCs as well as proteasome ubiquitin dysfunction. 

Figure 9. Venn diagram demonstrating the differentially expressed genes in iPSC-derived neurons
and fibroblasts. (A) The number of genes in each data set and whether they are up or down
regulated are shown where the size of the circles represents the relative proportion of those genes
that correspond to the genes in the preserved module. (B) Diagram showing the genes preserved
from lavendersblush across neurons and fibroblasts. Fbr up/down stand for fibroblast (MT) genes
up or down regulated (bolded genes represent ubiquitination related genes), OH Neu down/up
represent the iPSCs derived neurons (OH) and lavBlu represents the lavenderblush module obtained
in the iPSCs.

3. Discussion

In this study, we have identified the dysregulation of protein translational and degra-
dational pathways as well as neurotransmission changes in RTT fibroblasts, iPSCs and
iPSC-derived neurons. By module construction and preservation analysis, we showed
global translational defects in RTT iPSCs as well as proteasome ubiquitin dysfunction.
These results are consistent with previous reports of global translational dysfunction in
RTT human and murine neural cells [14] and a recent study showing decreased global
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translation and ribosome engagement of genes in the ubiquitination pathway, leading to
the accumulation of proteins that escape proteasome degradation in RTT iPSC-derived
neurons [22].

RTT is characterised by an apparently normal early development with obvious symp-
toms appearing between 6–18 months of age. However, subtle visible symptoms, such as
hypotonia and limited social interaction, are present during early infancy, indicating that
the manifestation of RTT phenotype in the brain occurs much earlier than the manifestation
of the typical RTT syndromic feature. The precise mechanisms that underlie RTT pathol-
ogy are still unclear; however, impaired neuronal differentiation, synaptic plasticity and
neurogenesis have been implicated [3,23,24]. Studies on patient-specific stem cell-derived
neurons and organoids may unveil the functional changes of the disease target cells at the
different stages of disease progression. Tracking transcriptomic changes in RTT patient
cells using primary cells and stem cells, opens new avenues to unveil the disease-causing
mechanisms and pinpoint potential therapeutic targets for this devastating disorder.

3.1. Dysregulation of Protein Translational Pathways

In this study, global dysregulation of protein translation was identified in RTT iP-
SCs carrying a MECP2 mutation. The four predominant pathways included ribosome
biogenesis in eukaryotes, endoplasmic reticulum, aminoacyl tRNA biosynthesis and the
proteasome (Figure 6A), all critical pathways, essential for normal protein translation.
These findings have been observed in other RTT cell types, where global transcriptional
impairment has been demonstrated in post-mortem RTT human neurons [14]. Furthermore,
progressive depletion of tRNA was shown to affect total cellular RNA content and was
associated with downregulation of many actively transcribed mRNAs, including those for
ribosomal proteins [14]. Moreover, it has also been shown that dysregulated synthetases in
neurons can lead to an intracellular accumulation of misfolded proteins [25]. Nucleolar
size has demonstrated to be indicative of reduced rRNA transcription observed in primary
cortical neurons from a RTT mouse model [26]. More recently, global translational dys-
regulation related to the NEDD4 family of ubiquitin ligases in RTT iPSC-derived neurons
has been reported. In these cells, a decrease in global translation and ribosomal engage-
ment was observed, leading to the accumulation of target proteins that escape proteasome
degradation [22].

3.2. Dysregulation of the Ubiquitin Pathway

Our study demonstrated that three of the genes (NEDL1, NEDD4L and AMRF), be-
longing to the highly correlated and significantly dysregulated lavenderblush module,
were involved in the ubiquitination pathway. Two of these genes, namely NEDL1 and
NEDD4L, which were down-regulated in RTT iPSCs, are involved in protein ubiquitin
ligation and belong to the “Neuronal precursor cell-expressed developmentally downregu-
lated 4” (NEDD4) family of E3 ubiquitin ligases, of which there are nine family members.
Ubiquitination is a post-translational protein modification critical for several cellular pro-
cesses and plays a crucial role in regulating proteins post-translationally. Recent reports
have shown that decreased NEDD4L leads to the accumulation of target proteins that
escape protein degradation in iPSC-derived neurons [26] and NEDD4L was also signifi-
cantly downregulated in RTT iPSCs and fibroblasts [22,27]. The third ubiquitination related
gene identified, Scavenger Receptor Class B Member 2 gene SCARB2 (AMRF), which
was also downregulated, is responsible for catalysing the ubiquitination and endoplasmic
reticulum-associated degradation of proteins.

Interestingly, of the 12 genes that were enriched in the proteasome pathway, 11 are
related to protein deubiquitylation, suggesting that not only is there a decreased function
of E3 ligases but also deubiquitinating enzymes (DUBs) [28].
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3.3. Differentially Expressed Genes in RTT Parental Fibroblast

In our gene expression comparisons between the fibroblast gene signature and the
iPSCs in the MT study (Figure 7), four ubiquitin genes (KLHL13, NEDD4L, ARRDC4 and
HCN1) were observed to be downregulated in fibroblasts lines. Interestingly, NEDD4L
was again shown to be dysregulated. These findings have been previously reported [27].
Many of the genes of the lavenderblush module in fibroblasts belong to inflammatory
and cytoskeletal processes. This is in agreement with the literature, where MECP2 has
been reported to influence the regulation of the cell cycle, cell cytoskeleton, adhesion, and
extracellular matrix in different tissues [29]. In addition, chronic inflammation is widely
reported in the literature, where the dysregulation of immune cells and production of
pro-inflammatory signals are proposed to contribute to the development and progression
of some of the clinical features of RTT (as reviewed by [30]).

3.4. Common Genes Identified between iPSCs, iPSC-Derived Neurons and Fibroblasts

Two genes of the lavenderblush module were observed to be dysregulated in iPSCs,
iPSC-derived neurons and fibroblasts, namely TNFAIP6 (TSG-6) which as downregulated
and PBK (MAPK) which was upregulated. TNFAIP6 (Tumour necrosis factor-inducible
gene 6 protein) has been described to potentially be involved in cell-cell and cell-matrix
interactions during inflammation and tumorigenesis whereas PBK (lymphokine-activated
killer T-cell-originated protein kinase) phosphorylates MAP kinase, activates lymphoid
cells and reported to be active only in mitosis [31]. To date no reports have linked MECP2
and these two genes.

TSG-6 is the secreted protein product of the TNF-stimulated gene-6 (TNFAIP6) [32] pro-
duced by mesenchymal stem cells, immune cells (e.g., neutrophils, monocytes, macrophages,
myeloid dendritic cells) and by stromal cells (e.g., fibroblasts and smooth muscle cells)
often in response to pro-inflammatory mediators including TNF-α and interleukin (IL)-
1β [33–35]. TSG-6 predominantly exhibits anti-inflammatory and tissue protective prop-
erties and is produced in response to inflammatory signals [32], where it regulates the
immune system, specifically leukocyte migration, macrophage polarisation, chemokine
function and inflammatory signalling [35].TSG-6 released from mesenchymal stem cells
ameliorates the inflammatory phenotype of microglia conferring neuroprotection and anti-
neuroinflammatory effects [36]. This is particularly relevant to Rett considering inflamma-
tion has been advocated as a common central disease mechanism with MeCP2 being critical
for the normal functioning of immune cells including microglia and macrophages [37]. It is
unclear whether MeCP2 directly regulates the expression of TNFAIP6 or whether TNFAIP6
is dysregulated in response to the inflammatory state of neural and immune cells and
further experimental evidence into how TNFAIP6 contributes to the pathology of RTT
is required.

T-lymphokine-activated killer cell-originated protein kinase (TOPK, also known as
PDZ-binding kinase or PBK) plays a crucial role in cell cycle regulation and mitotic progres-
sion and has mainly been described in cancer [38]. However, PBK has also been shown to
be differentially expressed in normal proliferative cells, including neural precursor cells in
the subventricular zone of the adult brain, as well as under pathological conditions, such as
ischemic tissues, including the brain and plays important roles in their physiological func-
tions, including proliferation and self-renewal [39]. PBK phosphorylates p38, JNK, ERK,
and AKT, and activates multiple signalling pathways related to MAPK, PI3K/PTEN/AKT,
and NOTCH1. MeCP2 plays an essential role during embryonic and early postnatal life
when neural progenitor cells are proliferating, and early neurons are being produced.
MeCP2-deficiency impairs cell fate refinement which may explain delayed cortical neuron
maturation in RTT patients [40]. It is unclear whether PBK is a direct transcriptional target
of MeCP2 or whether MeCP2-deficiency leads to aberrant PBK gene expression which in
turn affects the normal phosphorylation of PBK targets and associated signalling pathways
leading to impaired cell reprogramming of cortical neurons.
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3.5. Limitations of Study Design and Mutation Type for Constructing Co-Expression Networks
and Module Enrichment Analysis

The heterogeneity of the molecular landscape observed in this study represents an
important consideration for the study of RTT in iPSC models. The three datasets analysed
in this study were processed separately and identified different co-expression networks and
different gene modules. The MT dataset produced seven significant modules, while the TK
dataset did not generate any significant modules and the OH dataset only produced one
significant module (darkorange) (Figure 4). Subsequently, the OH module was excluded
from further analysis as this module was not enriched for any key biological process. The
discrepancy in the number of modules being altered in the mutant cell lines between
the datasets is most likely contingent on the experimental strategy of these studies: The
MT study employed unaffected controls, whereas the OH and TK studies compared the
patient samples to their isogenic controls. Furthermore, each study investigated the gene
expression profiles of patients with different MECP2 mutations (Figure 2). The apparent
heterogeneity observed between RTT and isogenic controls in the global expression profiles
of TK and OH was reflected in the modules themselves and could not be reconstructed
using gene co-expression modules. This recapitulates that at the IPSC stage, there are very
few molecular differences between RTT and isogenic controls and that gene expression
patterns can vary greatly among the different samples especially with a small sample size
(e.g., [17,27,41]). Some of these differences are hypothesised to stem from the technical
variability arisen in iPSC derivation and the methodology of cell differentiation [42,43]. It
is important to note therefore that even with powerful gene-network based analysis, subtle
molecular changes in undifferentiated cells can be eclipsed by limitations of the model
and technique.

These limitations are reinforced in our study where the MT study consisting of RNA-
sequencing data from two iPSC clones from the same RTT patient, with triplicates of each
cell clone, was the only study that contained enough consistent differences to identify
dysregulated gene modules. Nevertheless, pathway analysis and preservation analysis
demonstrated that the lavenderblush module was associated with key RTT associated
perturbation of protein translational pathways and ubiquitination process and was com-
prised of a set of conserved and correlated genes common to all three datasets. Remarkably,
genes of the lavenderblush module were shown to be dysregulated in fibroblasts and
iPSC-derived neural cells.

4. Materials and Methods
4.1. Data Pre-Processing

Since the data were from different profiling platforms, we performed pre-processing
according to WGCNA authors instructions for the data. Briefly, deposited data for undif-
ferentiated iPSCs were retrieved from GEO for the MT, TK and OH datasets. Raw counts
and probe intensity data were pre-processed using the Limma package [44] in the R envi-
ronment. Counts data were transformed by mean-variance modelling at the observational
level (voom) [45] before all studies were subjected to quantile normalisation and data
quality control as recommended for WGCNA. Finally, for differential gene expression [9]
analysis, raw counts data were voom transformed and array data were log transformed
in the Limma package [44] in the R environment, followed by quantile normalisation and
data quality control.

4.2. Co-Expression Network Construction and Disease-Specific Module Identification

The analysis was conducted using WGCNA 1.63 source code in the R environment [19].
Detailed information on the methodology can be found in [19]. Briefly, modules were
created for the three datasets independently, using the already normalised data. Network
construction and module detection were analysed with the “Blockwise Modules” function
in the WGCNA package. The Pearson correlation matrix was calculated for all possible
RNA pairs and then transformed into an adjacency matrix with soft thresholding power
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using the “picksoft Threshold” function. A dynamic tree cut algorithm was used to detect
groups of highly correlated genes. The minimum module size was set according to the
differentially expressed gene (DEG) from each group, and the threshold for merging
module was set to 0.25 as default. Thus, each module, which was assigned a unique colour,
contained a unique set of genes.

4.3. Module-Trait Relationship

After obtaining modules from each group, module eigengene, summarised as the first
principal component of expression dataset, was calculated with the “Module Eigengenes”
function. The module eigengene is a weighted average of module gene expression profile.
Association analysis between a module and the trait of each group was performed as
the function of “corPvalueStudent” based on the module eigengene, p < 0.05 was set for
statistical significance. Trait was defined as disease status, understanding by this whether
the samples were MECP2 mutant or wild type. The modules of interest were then selected
based on having a significant correlation value (p < 0.05) to the trait.

4.4. Module Preservation Analysis

Preservation analysis was carried out for pathway enriched MT modules against
OH and TK datasets using the function “modulePreservation” in the WGCNA package.
This analysis utilises median rank to identify module preservation and Zsummary to
assess the significance of the module via permutation testing. Based on the number of
modules present in the study, a median rank of 8 was chosen as a cut-off to detect weak
preservation. Permutation was performed 200 times. Based on the threshold described
by Langerfeld et al., 2011 [19], modules with a Zsummary score greater than 10 indicate
good preservation, 2–10 indicates weak preservation and less than 2 no preservation
between datasets.

4.5. Module Enrichment

Associations of co-expressed genes modules and cellular pathways was performed
using gene enrichment analysis in ClusterProfiler 4.0 [46]. Enrichment was performed
againts the Kyoto Encyclopaedia of Genes and Genomes (KEGG) to identify enriched
pathways with a Bonferroni-hochberg adjusted hypergeometric distribution p-value cut-off
of 0.05.

4.6. Differential Gene Expression

Six fibroblast gene expression datasets from the MT study were analysed, which
included three replicates from a patient with a 1155del32 variant and three replicates from
a 24yr old wild type control (AG09319-Coriell cell line). In addition, six iPSC-derived
neuron gene expression datasets from the OH study were analysed, including three (RTT
mutant) and three isogenic controls derived from the same patients. Differential gene
expression between the patient samples and controls was performed using the EdgeR (R
Bioconductor) package [47], with a significant fold change cut-off of 1.5. Enriched genes
identified in the lavenderblush module were then manually identified in each significantly
dysregulated dataset.

5. Conclusions

RTT iPSCs, demonstrate dysregulation in the ubiquitination and proteins synthesis
pathways that involve ubiquitinating and de-ubiquitinating related genes. That these
genes are dysregulated in stem cells prior to neural differentiation offers new insight
into the impact of MECP2 mutations. These findings are consistent with a previous
report that protein degradation may be impaired not only at the ubiquitination stage
but also in the de-ubiquitination process, hence leading to accumulation of proteins in
iPSC-derived neurons [22]. Amongst the pleiotropic effects of MECP2 deficiency, impaired
synthesis of ribosomes may be a major contributor to deficit of protein synthesis leading to
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cellular degeneration. A better understanding of the disease-causing mechanism, such as
excessive protein accumulation, particularly in undifferentiated neurons opens the avenue
for identifying amenable therapeutic targets for early treatment RTT.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22189954/s1.
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