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H_, cluster synchronization problem for a class of neutral complex dynamical networks (NCDNs) with Markovian switching is
investigated in this paper. Both the retarded and neutral delays are considered to be interval mode dependent and time varying.
The concept of H, cluster synchronization is proposed to quantify the attenuation level of synchronization error dynamics against
the exogenous disturbance of the NCDNs. Based on a novel Lyapunov functional, by employing some integral inequalities and the
nature of convex combination, mode delay-range-dependent H, cluster synchronization criteria are derived in the form of linear
matrix inequalities which depend not only on the disturbance attenuation but also on the initial values of the NCDNs. Finally,

numerical examples are given to demonstrate the feasibility and effectiveness of the proposed theoretical results.

1. Introduction

During the past decades, the research on the complex dynam-
ical networks (CDNs) has attracted extensive attention of
scientific and engineering researchers in all fields domestic
and overseas since the pioneering work of Watts and Strogatz
[1]. One of the reasons is that the complex networks have
extensively existed in many practical applications, such as
ecosystems, the Internet, scientific citation web, biological
neural networks, and large scale robotic system; see, for
example, [2-4]. It should be noted that the synchronization
phenomena of CDNs have been paid more attention to and
intensively have been investigated in various different fields;
please refer to [5-10] and references therein for more details.

Since time delay inevitably exists and has become an
important issue in studying the CDNs, synchronization prob-
lems for complex networks with time delays have gained
increasing research attention and considerable progress has
been made; see, for example, [5-16] and references therein
for more details. However, in some practical applications, past
change rate of the state variables affects the dynamics of nodes
in the networks. This kind of complex dynamical network
is termed as neutral complex dynamical network (NCDN),
which contains delays both in its states and in the derivatives

of its states. There are some results about the synchronization
design problem for neutral systems [17-21]. In these works,
(18, 19] had studied the synchronization control for a kind of
master-response setup and further extended to the case of
neutral-type neural networks with stochastic perturbation.
References [17, 20] had researched the synchronization prob-
lem for a class of complex networks with neutral-type cou-
pling delays. Reference [21] had investigated the robust global
exponential synchronization problem for an array of neutral-
type neural networks. However, much fewer results have been
proposed for neutral complex dynamical networks (NCDNs)
compared with the rich results for CDNs with only discrete
delays.

Recently, as a special synchronization on CDNs, cluster
synchronization has been observed in biological science, dis-
tributed computation, and social contact networks. Because
most of these networks have the clustering characteristic,
many individuals maintain close contact with others in a
same cluster, while only a few individuals link with an outside
cluster. Hence, the individuals are synchronized inside the
same cluster, but there is no synchronization among the clus-
ters. Many researchers have made a lot of progress on the
cluster synchronization problem; see, for example, [22-26].
In [24], cluster synchronization criteria are proposed for
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the coupled Josephson equation by constructing different
coupling schemes. Then, in [26], a coupling scheme with
cooperative and competitive weigh couplings is used to real-
ize cluster synchronization for connected chaotic networks.
In [22], cluster synchronization in an array of hybrid coupled
neural networks with delays has been investigated and a new
method is proposed to realize cluster synchronization by con-
structing a special coupling matrix. Besides, in the latest two
years, cluster synchronization is considered for an array of
coupled stochastic delayed neural networks by using the pin-
ning control strategy in [23]. Linear pinning control schemes
are given for cluster mixed synchronization of complex net-
works with community structure and nonidentical nodes in
[25]. However, most of the research results in general complex
networks ensure global or asymptotical synchronization, but
the external disturbance is always existent, which may cause
complex networks to diverge or oscillate. Therefore it is
imperative to enhance the anti-interference ability of the sys-
tem. To our knowledge, not much has been done for H, clus-
ter synchronization for continuous-time complex dynamical
networks with neutral time delays and Markovian switching.
The purpose of this paper is to minimize this gap. In addition,
due to the complexity of high-order and large-scale networks,
network mode switching is also a universal phenomenon
in CDNs of the actual systems, and sometimes the network
has finite modes that switch from one to another with
certain transition rate; then such switching can be governed
by a Markovian chain. The stability and synchronization
problem of complex networks and neural networks with
Markovian jump parameters and delays are investigated
in [15, 27-30] and references therein. Motivated by the
above analysis, the H, cluster synchronization problem for
a class of NCDNs with Markovian switching and mode-
dependent time-varying delays is investigated in this paper.
The addressed NCDNs consist of M modes and the networks
switch from one mode to another according to a Markovian
chain.

In this paper, H, cluster synchronization of the NCDNs
with Markovian jump parameters is studied for the first time,
which is first introduced to quantify the attenuation level of
synchronization error dynamics against the exogenous dis-
turbance of NCDNs with Markovian switching. It is assumed
that the neutral and retarded delays are interval mode
dependent and time varying. By utilizing a new augmented
Lyapunov functional, H., cluster synchronization criteria,
which depend on interval mode-dependent delays, distur-
bance attenuation lever, and the initial values of NCDNS,
are derived based on the Lyapunov stability theory, integral
matrix inequalities, and convex combination. All the pro-
posed results are in terms of LMIs that can be solved numeri-
cally, which are proved to be effective in numerical examples.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the problem and preliminaries. Section 3
gives the main results, which are then verified by numerical
examples in Section 4. The paper is concluded in Section 5.

Notations. The following notations are used throughout the
paper. R" denotes the n dimensional Euclidean space and
R™" is the set of all m x n matrices. X < Y (X > Y),
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where X and Y are both symmetric matrices, meaning that
X —Y is negative (positive) definite. I is the identity matrix
with proper dimensions. For a symmetric block matrix, we
use * to denote the terms introduced by symmetry. & stands
for the mathematical expectation, ||v|| is the Euclidean norm

1/2
of vector v, and ||v| = (v[v) / , while ||Al| is spectral norm

of matrix A and A = (Ao (AT, AL ominm (A) is the
eigenvalue of matrix A with maximum (minimum) real part.
The Kronecker product of matrices P € R™" and Q € RP*
is a matrix in R which is denoted by P ® Q. Let ¢ > 0
and C([—¢, 0], R") denotes the family of continuous function
¢, from [, 0] to R" with the norm |¢| = sup_ 4., ll9(O)].
Matrices, if their dimensions are not explicitly stated, are
assumed to have compatible dimensions for algebraic oper-
ations.

2. Problem Statement and Preliminaries

Given a complete probability space {Q), #,P} where Q is
the sample space, & is the algebra of events and P is the
probability measure defined on . Let {r(¢t),t > 0} be
a homogeneous and right-continuous Markov chain taking
values in a finite state space S = {1,2,3,..., M} with a
generator Y = (y;;), .1, j € S, which is given by
VijAt +o (At) i#j
L+y;At+o(At) i=j,
)

where At > 0, limy, _, o(0(Af)/At) = 0,9; 2 0 (i, j € S,i# j)
is the transition rate from mode i to j and, for any state or
mode i € §, it satisfies

M
Yie = — Z Yij>
j=Lj#i

P(r(t+At):j|r(t):i):{

7 = max {~y,}. )

Moreover, it is assumed that r(t) is irreducible and available
at time ¢.

The following neutral complex dynamical network
(NCDN) consisting of N identical nodes with Markovian
jump parameters and interval time-varying delays over the
space {Q), %, P} is investigated in this paper:

X (8) = C(r (0) %, (t = 7 (¢, 7 (£)))
= A(r () x (£) + B(r (1) x; (t = d (6,7 (1)))

N
+ Y gy @), (r () x, (1)
=1

N
+ Zgl(j) (T' (t)) rz (r (t)) xl (t — d (t’ r (t)))
l;l 3)
i Zg’(j) (r@®) I (r () %, (t — 7 (8,7 (1))
I=1

+D(r (1) fi (x ()

+E@r®) f (x (¢ —d(t7 (D))
+F(r(t) f3 (X t-T(t,r (t))))
+ H (r () wy (1),
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2z, (t) = L(r () x; (1) » (4)

where x;(t) = (xkl(t),xkz(t),...,xkn(t))T € R" and z,(¢t) =
(zkl(t),zkz(t),...,zk,,(t))T € R" are state variable and the
controlled output of the node k € {1,2,..., N}, respectively.
wi(t) € R is the exogenous disturbance input. r(¢) describes
the evolution of the mode. A(r(t)), B(r(t)), C(r(t)), D(r(t)),
E(r(t)), and F(r(t)) € R™" represent the connection weight
matrices and the delayed connection weight matrices with
real values in mode r(¢). H.(r(t)) € R" (k = 1,2,...,N) is
the disturbance matrix in mode r(¢). L(r(t)) € R is a para-
metric matrix in mode r(¢). In this paper, these parametric
matrices of NCDN (3) and (4) are known constant matrices
in certain mode r(t). fi, f5, f3 : R" — R" are continuously
nonlinear vector functions which are with respect to the
current state x(t), the delayed state x(t — d(t, r(¢))), and the
neutral delay state x, (t —7(t, 7(£))). I (r(t)) € R™", T, (r(t)) €
R™", and T5(r(t)) € R™" represent the inner-coupling matri-
ces linking between the subsystems in mode r(#). GO(r(t) =
[glg)]NxN’ G(r() = [gl(j)]NxN’ and G (r(1)) = [91(3)]N><N
are the coupling configuration matrices of the networks rep-
resenting the coupling strength and the topological structure
of the NCDNs in mode r(t), in which g](('l") is defined as
follows. If there exists a connection between kth and Ith
(k #1) nodes, then g,(('l")(r(t)) = gl(,:")(r(t)) > 0; otherwise

g’ (r(®) = g (r(t)) = 0 and

g™ (r (1)
N N
==Y gPewn=- g’ ), ©)
I=1,l#k I=1]#k

m=1,2,3 k=1,2,...,N.

7(t,r(t)) and d(t,r(t)) denote the mode-dependent time-
varying neutral delay and retarded delay, respectively. They
are assumed to satisfy

0<T,<T,(t)<1,,<T= masx{rz,»},
1€

T (t) < <1, (6)

0<d;<d;(t)<d,, whenr(t)=ics

where 1,;, 7,;, dy;, and d,; are real constant scalars and ¢ =
maX;es{7y;, dy;}.

The nonlinear vector functions, f;, f,, and f;, are
assumed to satisfy the following sector-bounded condition
[31]:

(A& -F0)-WD (-]

x[fix) - fH()-W (x-p)] <0, VxyeR",
[0 - £ (0) - W (- 2)]

x[fx)-f(0)-W (x-p)] <0, VxyeR",
(@ £0)-W2 (x- )]

x[fi) - f;(0)-W (x-p)] <0, VxyeR",

7)

where Wl(l) and Wz(l), I = 1,2,3, are two constant matrices
with Wz(l) - Wl(l) > 0. Such a description of nonlinear
functions has been exploited in [32-34] and is more general
than the commonly used Lipschitz conditions, which would
be possible to reduce the conservatism of the main results
caused by quantifying the nonlinear functions via a matrix
inequality technique.

For simplicity of notations, we denote A(r(t)), B(r(t)),
C(r(t)), D(r(1)), E(r(t)), F(r(t)), G"™ (r(£)), T, (r(t)), (m =
1,2,3), Hi(r(t)), and L(r(t)) by A;, B;, C;, D;, E;, F, G, T, .,
(m = 1,2,3), Hy, and L; for r(t) = i € S. By utilizing the
Kronecker product of the matrices, (3) and (4) can be written
in a more compact form as

x () =A;x )+ Bx (t—d; (1)
+Cix (t — 7, (1) + D;F, (x (1))

(8)
+EF, (x(t-d; (1))
+EF (x(t-17,(1)) + How(t),
z(t) =Lix (@), 9

where
A =Iy®A;+GV eI,
B, =Iy®B +G” el
C,=Iy8C +G? Ty,
D, =Iy®D;, E, =Iy®E,
F=Iy®F, [L,=Iye®L,
H; = diag {H,;, Hy;, ..., Hyi}
x(t) =col{x; ), x, (),.... x5 (t)},
x(t—d; () =col{x, (t—d; (t)),x, (t -d; (1)),...,
xy(t-d; )},
x(t-7@) =col{x, (t-7,), % (t-7,@1),...,
iy (t-1,0))},
Fy (x (1) = col {f, (x, (0) > f1 (%, (D) 5, fi (en (D)}
Fy (x(t-d; (1))
= col{f, (x; (t =d; (1)), £ (x, (t = d; (1)) ..,
Ly (t=d; )}
F (x(t-7(1))
= col{f; (%, (t— 7, (1)), f5 (%, (t ~ 7 (1)) » .
£ Gy (E= T, O},
w(t) = col{w, (t),w, (t),...,wy (1)},

z(t) = col{z, (£),z, (t),...,zx ()} .
(10)



Assumption 1 (see [22]). The coupling matrix Glfm) can be
expressed in the following form:

(m) (m) (m)
Nif? Nig Nilr;lc
(m) (m) (m)
Glgm) _ Nipi" Nigy o+ Ny m=1,2,3. (11)

m) O )
Nikl Nikz Nik

It should be especially emphasized that we do not assume that
the coupling matrix is symmetric or diagonal. However, most
of the former works about network synchronization are based
on symmetric or diagonal coupling matrix.

Before moving onto the main results, some definitions
and lemmas are introduced below.

Definition 2 (see [35]). Define operator ® : C([—¢, 0], R") —
R" by D(x,) = x(t) — Cx(t — 7). D is said to be stable if the
homogeneous difference equation

D(x,) =0,
xo =y € {$ € C(I=5,0],R") : D¢ = 0}

is uniformly asymptotically stable. In this paper, that is, | Iy ®
C,+GY®C < 1.

t>0,
(12)

Definition 3 (see [36]). Define the stochastic Lyapunov-Kra-
sovskii function of the NCDNs (3) and (4) as V(x(¢),r(t) =
i,t > 0) = V(x(t),i,t) where its infinitesimal generator is
defined as

TV (x (£),i,t)

. 1
= AltlgoA_t [E{V (x(t+ At),r(t + At),

t+At) | x(t) =x, r(t) =i}
-V (X (t) > i> t)] (13)

0 . 0 N
= aV(x(t),z,t)+ aV(x(t),l,t)x(t)

N
+ ZT[UV (x (@), j.t).
=1

Definition 4 (see [26]). A network with N nodes realizes
cluster synchronization if the N nodes are split into sev-
eral clusters, such as {(1,2,...,my),(my + 1,my; + 2,...,
my),...,(my_y + Lmy_y + 2,...,my), my = 0, m = N,
m;_; < m;}, and the nodes in the same cluster synchronize
with one another (i.e., for the states x;(¢) and x j(t) of arbitrary
nodes i and j in the same cluster, lim, _, . I|x;(t) — xj(t)ll =0
holds). The set

S = {x: (xl (5)’x2(5):~--,XN(S)):x1 (s) =X, (s)="---
= X, ()5 X 11 (8) = X,y 4y (8) = -+

= X, ()}
(14)

= Xm, (s)... > Xy +1 (s) = ) (s) =

is called the cluster synchronization manifold.
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Lemma 5 (see [37]). Let G be an N x N matrix in the set
T(R, K), where R denotes a ring and T(R,K) = {the set of
matrices with entries R such that the sum of the entries in each
row is equal to K for some K € R}. Then the (N —1) x (N —1)
matrix X satisfies MG = XM, where X = MGJ,

1 -1
1 -1
M= 1 _1 >
1 -1 (N-1)xN
111 -1 (15)
01 1 -1
. 1
T=lo0 - 11
00 0 - 0]y

Furthermore, the matrix X can be rewritten explicitly as fol-
lows:

9
X,,= kz (Gpx = Gporg)> forprqe{l,2,...,N-1}.
=1
(16)

Lemma 6. Under Assumption I, the (N — k) x (N — k) matrix
X' satisfies MG™ = X" M, m = 1,2, 3, where

(m)
Ny
(m)
N N, )
T gm)
Nikk NxN
M,
M= M : (17)
My (N-K)XN
I
= J
J= 2
Jk Nx(N-k)

m _ FINMT N x (my=1)x
And X;™ = MN;J, N0 € R™ "0, M € R, ], €
R™* ) and p = 1,2,..., k.

Proof. From Assumption1 and Lemma 5, it can be easily
obtained that

MG™
M,
_ M,
M,

(m) (m) (m)
Nill Nilz Nnk
(m) (m) (m)
% Npy' Ny o Nizk
) gl g
Nikl Nik2 Nikk
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[ MNP
_ MZNi(ZrZ)
L MkN,‘(IZZ)
[ M, N ], M,
= MzNi(;;)]zMz
i MkN,-(;:Z)]kMk
_ WINYTH - X, a8)
This completes the proof. O

Lemma 7 (see [22]). x € & if and only if%{llMx(t)Ilz} =0,
t — oo, whereM = M ® I.

Proof. Consider

my—1
gliMx Ot =& 1 Y |x ®) - x, O
=1

1

D VIGEE O +--

I=m;+1
m—1 5
+ Y a®-x, 0 -
l=my_ +1
(19)
By Definition 4, it completes the proof. O

Definition 8. The neutral complex dynamical networks (3)
and (4) are H, cluster synchronization with a disturbance
attenuation § and symmetric positive matrix Y > 0, if the
following condition is satisfied:

JOO IMz (t)|*dt < 6° “00 lw (O)]%dt + x* (0) Yx (0)} .
0 0
(20)

The index & is called disturbance attenuation and used
to quantify the attenuation level of synchronization error
dynamics against exogenous disturbances. It is noticed that
(20) depends not only on the attenuation level but also on the
initial values of complex networks.

Lemma 9 (see [38]). Given matrices A, B, C, and D with
appropriate dimensions and scalar «, by the definition of the
Kronecker product, the following properties hold:

(kA)® B= A® (aB),
(A+B)®eC=A®C+B®C,
(A®B) (C® D) = (AC) ® (BD), (1)

(A®B)T =AT®B".

Lemma 10 (see [39, 40]). For any constant matrix H = HT >
0 and scalars T, > 1, > 0 such that the following integrations
are well defined, then

(a)

(1) r_rl x7 (s) Hx (s) ds
t:f t—T; (22)
S—H xT(s)ds]HH x(s)ds],
(b)
- = (Tz - Tf) J: J;e x! (s) Hx (s) ds d@
ot
< - [JTZ Lre x (s)ds d@] (23)

x H [J:l L:a x(s)ds d@] .

Lemma 11 (see [41]). Supposing that 0 < T, < 7(t) < Ty,
B, B,, and Q are constant matrices of appropriate dimensions,
then

() —1,) B +(tyy—T())E, +Q <0 (24)

ifand only if (tp; — 7,,)E; + Q < 0 and (1), — 7,,)8, + A < 0
hold.

3. Main Results

In this section, sufficient conditions are presented to ensure
H_, cluster synchronization for the neutral complex dynam-
ical network (NCDN) (3) and (4).

3.1. Hy, Cluster Synchronization Analysis

Theorem 12. Given the transition rate matrix Y, the initial
positive definite matrix Y = Y' > 0, constant scalars 1y, T;,
v, Ay Aoy and 1,5, d,,; satisfying T); < T,,; < Ty, dy; < dyy; <
d,;, respectively, the NCDN systems (3) and (4) with sector-
bounded condition (7) are H,, cluster synchronization with a
disturbance attenuation lever & if |(Iy + Gl@) ®C;| < 1and
there exist (N —k)nx (N —k)n symmetric positive matrices P, >
0,(€8,Q >0 (j=12...,6, R >0, (k=12...,7),
T, > 0U, > 0andV, > 0, (I,mn = 1,2,...,6) for
any scalars €,,€,,€; > 0 such that the following linear matrix
inequalities hold:

1 1
Qil + 5@,»0 < 0, Qi2 + 5@1-0 < 0,
1 1
Qi3 + 5@1»0 <0, Qi4 + E("Dio <0,
(25)
1 1
IT;; + 5@,0 <0, I, + 5@,0 <0,
1 1
I + §®i° <0, I, + 5@)1-0 <0,



V (0) < 8°x” (0) Yx (0),
where
30
@, = Y E,®,E, + Z (%) + A"JA - (E, - E;)
m=1

x U, (E1T - EZ) —(E, - E\6) Uy (E1T - ElTs)

— (1B, = E;p) Vi (TliElT - ElTo)

- [(Tmi - Tli) E, - E13] v, [(Tmi - Tli) E1T - E1T3]

(26)
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— [(72 = Tni) E1 = E4] V3 [(Tzi - Tpi) E1T - E1T4]
- (dliEl - Ezz) Vy (duElT - Esz)
~ [(dyi = d1s) By = Es] Vs [(di — ) EY — B

~ [(dy = dyi) By = Egg] Ve [(dyi = i) E1 — Esg|
(27)

where E; {i = 1,2, ..., 30} are block entry matrices; that is,

E;=[000I00000000000000000000000000]. (28)

Z is a linear operator on real square matrices by
ZF(A)=A+A", VAeR™,
J=n(T-1;)R + Ry + Ry + 7,U, +d.U,

2 2
+ (T = 71) Uy + (13 = T,) Us

4
T
+ (i — dli)2U5 +(dy - dmi)2U6 + fv1
2 22 2 2 \2
N d—iV4 N (Tmi B Tli) g (Tzi B Tmi) v,
4 4 4
(a2, - dz.)z (2 - d? .)2
L mi 1i . n 2i mi V6,
4 4

—_— —_—
A:<A?+X§”>Ef+<c?+xﬁ3’>E§
® 7; T ® T ® =T
+<Bi + X; >E15+D1.E27+E1.E28

+ FPEL + MH,EL,,

T T
%= E, (RD? +e W 1wt )E2T7
+ E\P,D} Exg + E\PF Eyy + E\ PH,E;
T T
+Es <€2W1(2) + €2W2(2) ) Ex

T T
+ E, <e3W1(3) + ;WY ) El,,

—_— — ——
D= [Pi <A? +BY +CP+ X+ X+ X§3))
T, a
—eIWI( ) Wz( )] + Zyiij +Q, +Q,
j€S

2 2 2
+ 1Ty +dy Ty + (T — 1) T + (15— 1,

mi

)'Ts

+ (dpi — dli)zTS +(dy; — dmi)2T6 + L?TLQ?>

Q3 =Q, - Ry, Dy =Q4— Ry,
Q5 = -Qs, g =—(1-7)R, - €3W1(3)TW2(3)’
O, =R, +R; — R, @3 =R, —R;,
@y = -R,, Q= -T),
D5 = _€2W1(2)TW2(2)’ Q5= Qs ~ Qu
Q)7 = Qs — Qs D5 = -Qs;
@9 = Rs ~ R, @y = R; = Ry,
®,, = -R,, D,, = -2¢1,
Dy = 26,1, Dy = —2651,
O,y = -8’1,

D, =0, (m=2,11,12,13,14,23,24,25,26),
A7 =Dy ®A; B =Iy,®B,
C?=1Iy,;®C, Df=Iy,;®D,

E = Iy ®E, F'=Iy4®F,
L] =Iy;®L;

—
X" =x"er,, (m=123),

QO = —E11T2E1T1 -2 (E13 - Ell) T, (EITS - EITI)
- (E3 - Ez) U, (E3T - EZT) -2 (EZ - E4)
xU, (EZ - EZ) - E14T3EF1F4

~ (B~ E5) Uy (E; - E5),
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Q= _ZEIITZEITI - (E13 - Ell) T, (E1T3

- 2(E3 ‘Ez)Uz (E3T _EZ) - (Ez -

xU, (EzT - E4T) - E14T3E1T4
- (E4 - ES) Us (EZ - EZ) ’

Q= _2E12T3ET2 - (E14 - E12) T; (E?4

- E1T1)

E,)

- ETz)

V, (0) = jo x! (s)M'Q,Mx (s) ds

T

+ J_TH X! (s) MTQzMx (s)ds

+ J X (s) MTQ3Mx (s)ds

0

- (E4 - Ez) U3 (EZ -

E,) - 2(E; - Es)

T T T
xUs, (Ez - Es) —ETLE

_(E3‘E4)U2(E3T—EZ),

+

+

d,

x! (s)M Q Mx (s)ds

1i

mi

—d,i

x" (s) M'Q Mx (s) ds,

Qy = _E12T3E1T2 -2 (E14 - E12) T; (E1T4 - Esz)

~2(E, - E)Us (Ey - Ey)

- (Ez - Es) U3 (Eg - Eg)

|
+J- o M QsMx (s)ds
[,

de

V, (0) = J_ (t) %" (s) MR, Mx (s) ds

— E\yTyE|; — (B - E,) U, (E; —Ey ),

T
Iy = _E23T5E23 -2 (Ezs -

~ (Eys — Ey5) Us (E

~2(E;s — Eyy) Us(

Ezs) Ts (Egs - Esz)

T T
16_E15)

Ep)

+

+

A

Tii

%" (s) M R,Mx (s) ds

T

%! (s) ivd R;Mx (s)ds

X (s) M’ R,Mx (s)ds

- EstsE;Fs — Ei5) Us (E 17~
I, = _2E23T5E23 (Ezs Ey Ts (E 25
~2(E;s - E5) Us( 5)
— (Ey5 — Ey;) Us (Ef5 - Ey,)
- EstsE;Fs — (E17 — E15) Us (E
II; = _2E24T6E2T4 - (Ezs - E24) Ts (E
- (E17 - ElS) Us (E1T7 - ElTs)
- 2(Ey5 — Ey5) Ug (ElTs
- (E16 - E17) Us (E1T6 - E1T7) >
My = —Ey,TEyy — 2 (Eqq — Eyy) Tg (Ex
- 2(Ey; - Ey5) Ug (E1T7 - ElTs)
- (EIS - E18) U6 (ElTs

- (E16 - E17) Us (E1T6 - E1T7) >

\/

T T
17 _EIS)’

T T
26 E24)

T T
- Els) — E,sTsEL

- E;)

T T
- EIS) - EstsEzs

6
V(0) = x" (0)M"PMx (0) + ) V, (0),

k=2

dh

dlx
%! (s) M’ R¢Mx (s)ds

mi

+
d

—di

+ %7 (s) vd R,Mx (s) ds,

I

[
+rx@MRm@

i

.,

dy;

1

0 0
+ J J dl-xT (s) MTT4Mx (s)dsdo
—dy; 0
+ J J (d,; —d);) x" (s) M T,Mx (s) ds df

d,;))x" (s)M'T¢Mx (s) ds db,



Vs (0)

0 0
= J J 7,47 (s) M U, Mx (s) ds d6
. Jo

-1y

-1; (0
o
—T,,; J0

mi

—1,,) %" (s) M'U,Mz (s) ds df
~Ti 0

+ J j (1 — 7,;) X" (s) MU, Mx (s) ds d6
0 0

" J J d,5" (5) MTU, M (s) ds 6
—dy; 0

. J J (d,, —dy,) %7 (s) MTUM (s) ds d6

d,;)x" ()M UM (s) ds df

-1; 0
+J J nx (s)M R \Mx (s)ds do,

2

?”xT (s) M'V,Mx (s) ds dA d6

1l
|
A S
@ S)
> S)
q~‘

2 _ 2
’”"2 i 4T (5) M"V,Mz (s) ds dA d@

+
|
A
@ o
> o

h‘

0 .2 2
j T = Ti T

(s)M” V.Mx (s) dsdA df

=
[\

0 0 0 42
+j j j ST (5) MV, Mk ) dsd) o

—dy; 0 Odz.—dz.
+j J J '”’2 1T (s) MTV,Mx (s) ds dA d6

7dmx 0 0 2. — d2 .
" j J J 2~ i T () MTV, Mk (s) ds dA d6.
-d,, Jo A 2

(29)

Proof. Construct the Lyapunov functional candidate as fol-
lows:

6
V(x(t),it) = Y Vi (x (1)), (30)
k=1

where

V, (x ()i t) = x* () M PMx (1),

The Scientific World Journal
t
V, (x (), t) = L AT (s) MTQ, Mx (s) ds
=1y
+ J x! (s) MTQZMx (s)ds
=1,
+ J x (5) MTQ3Mx (s)ds
+ J X (s) MTQ4Mx (s)ds
t-d,;
t= dlx
+J x! (s) M QsMx (s)ds
t—
+ J Xl (s)M Q¢Mx (s) ds,
=7y
Vy (x (£),irt) = L %7 (s) M'R,Mx (s) ds

—-T; (t)

t
+ J %! (s) MTRZMa'c (s)ds
t Thi

I..
[

t—1,;

+ i (s) MTR3M5C (s)ds

+ X (s) MTR4M5¢ (s)ds

+J %7 (s) MTRsMx (s)ds
t—dy;
t=dy;

+ j %" (s) M"RMx (s) ds
t—d,,;
t_dmi

+ I %7 (s) M'R,Mx (s) ds,
t—d,;

V4 (x (t) > i’ t)

0t
= J J TlixT (s) MTTlMx (s)dsdo
—1); Jt+0

-1y (t
o ]
—T,; Jt+0

mi

— 1) x" (s) M ' T,Mx (s) ds df

(TZ, 7,:) X" (s) M T;Mx (s) ds df

'—“

|

JO Lt dyx" () M T, Mx (s) ds df

+J ) Jt (d,; —dy;)x" (s) M T,Mx (s) ds df
J..

. J dyi) X' (5) M TMx (s) ds df,
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Vs (x(¢),1,t)

( )M U;Mx (s) dsdf

T, — Ty) %' () M U,Mx (s) ds d@
—1,,) %" (s) M UsMx (s) ds d@

0 t
+ I I dx" () M UMz (s) ds d6

dy; Jt
—d,;) %" (s) MTU, M (s) ds d@
i —d) % (s) M UM (s) ds d6

=Ty (t
+J J 11x (s)M R, Mx (s)ds do,
t+

V6 (x (t) > i> t)

YT (5) MTV,Mx (s) ds dA d6

LY
I

2 2

ml 0 .
+J J J i~ Tk 4T (o) MTV, Mt (5) ds dA d6
T, t+A 2

( ) M’ V,Mx (s) dsdA do

a2,
2“ %" (s) MV, Mx (s) ds dA d@

2

_ d X
—mi_ZUgT () MT VoM (s) ds dA d@

2

~dp; 0 ot d2,
+ Z2i Tmi g i ;7 $) MTV. M (s) ds d d6.
(s) sMX (s)
t

¥
>
\S)

(31)

By the structure of M and by Lemmas 6 and 9, we obtain the
following equalities:

M(Iy®A;) = (Iy4 ®A)M = ATM,

M (Iy®B;) = (Iy_ ® B;) M = B/ M,
M(Iy®C;) = Iy ®C;)M=C'M,
M(Iy® D;) = (Iy_ ® D;)M = Di'M,
M(Iy® E;) = (Iy « ® E)M = EYM,

M(Iy®F) = (Iy«®F)M=F'M,

9
M(G"®T,,) = (Mely) (G eT,,)
(MG™) eI, = (X"M)®T,,
= (x"er,)(Mely)
—
= X"M, m=1,2,3,
M(Iy®L;)=(Iy®L;)M=LM.
(32)

Taking I' as its infinitesimal generator along the trajectory of
(8), we obtain the following from Definition 3 and (30)-(3.1):

IV (x(t),it) = iFVk (x(t),i,t), (33)
k=1
=2x" ()M PM
x [A;x (t) + Bx (t — d, (1))
+Cix (t—7; (1) + D;F, (x (1))
+EF, (x(t - d; (1))
7 (1)) + Hiw ()]

+ 3 yx” () MTPMx (t)
jes

I'Vy(x(t),i,t)

+EF; (x(t -

= 2(Mx (1))"P, (A? + @ ) (Mx (1))
+2(Mx ()" P, <B;@ + W > (Mx (1))

+2(Mx (1) P, (c;co + )F; > (Mx (1))
+2(Mx (t))"P.D? (MF, (x (1))
+2(Mx(1))"PE? (MF, (x (t - d; (1))
+2(Mx(1)) P.E? (MF; (% (t - 7; (1))))
+2(Mx (1)) PH;w (f)

+ (Mx (1))" <Zylj

j€S

> (Mx (1)),

IV, (x (t),i,t)
= (Mx ()" [Q, + Q] (Mx (t))

+(Mx(t-7,)))" [Q - Q] (Mx (- 7))
+ (Mx (£ = 7,7)) " [Qs — Q] (Mx (£ - 7,,7))
- (Mix (£ = 75,)) Qs (Mx (£ - 7))
+(Mx (- dyy))" [Qs - Q] (Mx (£ - dy)))
+ (Mx (t - d,,;))" [Qs — Qs] (M (£ - d,1))
— (Mix (£ = d)) Qs (Mx (£ - ),
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I'Vy (x(t),i,t)

= (M ()" [Ry + Rs] (Mt (1))

<

<

+ (M (t - Tli))T [R; + Ry = R, | (Mx (t — 7))

~(1=%,0) (M (¢ - 7, (1)) R, (M (¢ - 7, (1))
— (Mx(t - 15;)) Ry (M5 (£ - 75;))

+ (M (£ = 7,0)) " [Ry = Ry] (M (¢ - 7,,1))
+ (Mx(t-dy;))" [Rg - Rs] (M (£ - dy;))
+(Mx(t-d,)" [R, - Rg] (Mx (t - d,;))

- (Mt - dy)) Ry (M (¢ - dy))

t=1y;
+ Zy,] J i (s) MTRIM)'C (s)ds
j€S -7;(t)

(M ()" [R, + Rs] (Mx (1))
+ (Mx(t-1,;))" [Ry + Ry = Ry] (M (£ - 7,,))

~ (1= % (1) (M (t - 7,(1) R, (M (£ - 7, (1))
— (M (t - 1)) R, (Mx (£ — 1))

+ (M (£ = 7,0)) " [Ry = R] (M (¢ - 7))

+ (Mx (¢ - dy))" [Rg = Rs] (M (£ - d;))

+ (Mx (t-d,;)" [R, - Rg] (M (t —d,;))

- (M (t - dyy)) Ry (M (£ - dy))

t—Ty; T
“Yi| X
t-7

(M (£))" [R, + Rs] (M (£))

(s) M'R,Mx (s) ds

+ (M (t —1,))" [R, + Ry — R, ] (Mx (£ - 1,,))
— (1= ) (M (£ -7, (1)) R, (M (£ - 7, (1))
— (Mx (£ - 75;)) Ry (M5 (£ - 75;))

(M (t = 7)) [Ry = Ry] (M (£ - 7,,1)
+(M5c(t—d1i)) [Rg — Rs] (Mx (t — d;))

+ (M (t - d,,)" [R, - Rg] (M (t - d,,}))

- (Mt - dy)) 'R, (M (¢ - dy))

t=1y;
+7 L %" (s) MR, Mx (s) ds,

-T

The Scientific World Journal
l—“/:1 (x (t) > ia t)
= (Mx (1)) [leiTl +dy Ty + (T — 7,)’T,
2 2
+ (o = i) T + (di — dyi) Ts
+(dy ~ dmi)zTﬁ] (Mx (t))

t
J Thx (s)M T,Mx (s) ds
-1,

1i

Jt " — 1) x" (s) M T,Mx (s) ds
t

T

x (s)M T;Mx (s) ds

t

Jt K (12 =
g

dhx (s) M’ T,Mx (s)ds
tdy;

- dl
J —d;;)x" (s) M T,Mx (s) ds
t-d,,

-l
- dy —d,,; x (s) M T Mx (s)ds,
i mi 6
—dyi

IV, (x (£),i,t)

= (M ()" [Tl,Ul +djU, + (1, le) U,

+ (7 — Tmi)2U3 +(dpi — dli)zUS

+(dyi - dmi)2U6 +1(7-1y) R1] (Mx (1))

t‘r1

Jt Thx (s)M U,Mx (s)ds
J Th)x (s) MTU,Mx (s) ds

t=T7,,

J (T = 7,) %" () M UM (s) ds
t=1,;

t
J dhx (s)M U,Mx (s)ds
t—d,;

t— dl
J mt_ 11 x (S)M U5MX(S)dS
Jt —d,i

2i mz)x (S)M UGMx(S)dS

t—1y;
-n J %" (s) MR, Mx (s) ds,
-

-7
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FV6 (x (t) > i) t)
2
4 d Trzni - Tzi
= (Mx(t)" [fvl F Vs (=) i ) 1A
2 2
T —T d*. — 42
+(214m1) 3+(m1411)V5
(dgi - drzm')z .
+TV6 (Mx (1))

0 t 2
- J J Di 4T () M7V, Mx (s) ds d@
-1; Jt+0 2

_ 2
Tmi T 4T () MTV, M (s) ds d6

|
! |
A
5
T =
fus}
h‘
3

2 T2
mi T
T ( ) M V3Mx (S) dsdof

LT (s) MV, M (s) ds df

—d%
LT (s)M"V M (s) ds d@

~d [t 2‘ _ 72
_ J I i = i —A_Tmi i T (s)MTV M (s) ds d6.
—dy Jt+6 2
(34)

Define
E(t) = col {Mx (t) Mx(t—1,(t)) Mx(t-1y)

Mx(t—1,,) Mx(t-1,) Mx(t-1(t))

Mx (t—1;) Mx(t-7,;) Mx(t-1,)

t li
M x(s)ds M J x(s)ds
t—1;(t)

=1y

t-7;(t
MJ

t=Ty;

MJ x(s)ds Mx (t —d; (t)) Mx(t-dy;)
t-1y;

t—1y;

x(s)ds MJ x(s)ds

t=T,,;

Mx(t-d,;) Mx(t-d,) Mx(t-d;)

t
Mz (t—d,) Mi(t—dy) M J x(s)ds
t=dy;
t—d,; t—d;(t)
MJ x(s)ds MJ x(s)ds
t—d;(t)

t—d,;

t-d,,;

t=dy;
MJ x(s)ds MJ x(s)ds MF, (x(£))

i t=dy;

ME,(x (t - d, (1)) ME,(x(t - 7, () w(t)}.
(35)

1

According to (7), we can obtain the following inequalities for
any €;,€,,€; > 0:

& [MF, (x (1)]" [ME, (x ()]
< 215 (5 0) - £ ()
<[ (5,0) = £ (570 ©)
<3 {1 ) (o )]
xi ()"

WO £ (x5 0) = £ (x10 0)]
= (30 -

X () (0) = 20 () + (3,00 -

T T, a
xj (D) W w;Y

%1 () ]

= &, [MF, (x (£))] "W [M (x (£))]

x (x; (1) -

re[M(x (t))]TW(”T [ME, (x (1)]
— e M (x (O) WO W (M (x (1)
&[ME, (x (t — d; (1)))]" [ME, (x (t - d; (1)))]
< &[ME, (x(t - d,(1))]' Wy [Mx (¢t - d, ()]
+ & [M(x(t - di(0))] "W [ME, (x (¢ - d; (t)))]
6 [M (x (£~ d; 1)) W W
x [M (x (t - d; 1))]»
&[MF, (x (t -1, (t)))]" [MF,
— 7, (1)) W,

+e[M(x(t-1 (t)))]TW1(3)

(*(t-7.))]
< e5[MF; (x (¢ - 3 M (% (t =7 (1))
[MF; (% (t -7, (1)))]

TW1(3)TW2(3) M (x(t-1())].
(36)

—&[M(x(t -7 (1))]

From (33) and (36), we have
IV (x(t),i,t)
6
< DTV (x(8),i,1)
k=1

2¢, [MF, (x (1)]" [MFI (x (1))]

+ 26, [MF, (x (£)] "W (Mx (1))
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+2¢,(Mx (6)"W®O [ME, (x ()]
=2, Mx ()W WD (M ()]
—26,[MF, (x (t - d; (t)))]" [MF, (x (t - d; (£)))]
+26,[ME, (x (t - d; (1))]" Wy? (Mx (t - d; (1))
+ 26,(Max (¢~ d; (1)) W [ME, (x (¢ - d; ()]
26 [Mx (t - d; () W2 W [Mx (¢ - d; (1))]
— 26;[MF, ( (t - 7, (1)))]" [MF, (% (t - 7, (1)))]
+26,[MF, (x (t - 7; (1)) W (M ( - 7, (1))
+26,(M (1 - 7, (0)) W [ME, (% (¢ - 7, (1))]

26 [ M (1 - 7, ()] WO W M (¢ - 7, (1))
(37)

Noticing (a) of Lemma 10, then

t
- J TlixT (s) MTTlMx (s)ds
t-1y;

t

‘ T
< —[MJ x(s)ds] T, [MJ. x(s)ds]
==& () By T Ejé (1),

_ Jt 7,57 (s) MTU, M (s) ds
<=t (E, - E3)U, (E1T - EZ) &),

t
) J dyjx’ () MU T,Mx (s) ds < =" () By TyEpp§ (1),
t=dy;

_ Jt d,;5" () MTU,Mx (s) ds
t=dy;
<& (t) (E, - E6) U, (EF{ - Efs) &(t).
(38)

Noticing (b) of Lemma 10, then

0 t 2
- J J Di 4T (s) M7V, Mx (s) ds d@
—1y; Jt+0 2

< —ET (t) (1;E, — Eyp) V, (TliElT - ElTo) £,
2

Ty (t —_—
—j J %XT(S)MTVzMx(s)dsdG

—T,,; Jt+0
<& () (i = 71:) By = Eys]

XV, [(Tmi - 1y) E1T - E1T3] &),

The Scientific World Journal

“Tmi 2. — 2 .
- J J %xT (s) M"V, M5 (s) ds dO
t

—Ty Jt+0
< &' () [(1y = Tps) Ey — Ena]

xV; [(Tzi - 7,.) E| - E1T4] &),

2
3T () MTV,Mx (s) ds df

0 t 4
- J-—d” J-t+6 7

< -&"(t) (d\E, - Ep) V, (dliE1T - EZz) £,

it dfni _di‘ .T T .
- J J ———% (s) M V,Mx (s)dsdo
-d,,; Jt+0 2
< _5T (t) [(dmi - dli) E, - Ezs]
x Vs [(dmi —dy) E{ - Esz] £@),
2

dwi (t 42— g2,
- J J 2 _Tmi i T (5)MTV M (s) ds d@
~d,; Jt+0 2

< & (1) [(d; = di) By = Exe)

x Vg [(dy; = dyi) Ey = Exg| € (1)
(39)
If7,(t) € [1y;, T,,,;] and d; () € [dy;, d,;], let
7 () — 7y d; (t)-dy;
Ay () = ——, (t) = )
i ( ) mi — 1i i ( ) dmi - dli (40)

Then the following is held from (a) of Lemma 10:

t=1y;
- J (T, — 7y3) X" (s) M T,Mx (s) ds
t

“Tmi

t-Ty; t—;(t) T T
- “ +I } (T = 711) X7 (5) MTT,Mx (s) ds
t ) t

—7(t ~Tpni
t=1y;
=~ (T — 7 (1)) J ( )xT (s) M'T,Mx (s) ds

t-7;(t
t-1y;

-(r; &) - 1;) J x" (s) M T,Mx (s) ds
t-T;(t)
t=7;(t)

~ (T =7 (1)) J x" ()M T,Mx (s) ds
=T,
t=7;(t)

—(1;(t) -1y, J x! (s) MTT,Mx (s) ds
t-T,

mi

<&@t E11T2E1T15 (t)
~ (1A ) E (O EGTLELE ()
0 (Eys —En)T, <E1T3 - ElTl) £(t)

~ A OE O (B —E) T, (EL - E1T1) ().
(41)
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Similarly,
t—1y;

- J (Tmi -
=T,

t—Ty; t—7;(t) T T
- _ <IJ- +J } (T — T11) X (s) M' T,Mx (s) ds
t t

-7;(t) ~Tmi

;) %" (s) M U, Mz (s) ds

<& (1) (B; - Ey) U, (Ej - E3 ) E(t)
—(1-4,;(O)E" (1) (Es - Ey) U, (E; - E3 ) E(t)
—& W) (B, - E)U, (E; - E{)E®)
= Ay (1) ET (t) (E, - E,) U, (Eg - E4T) &),

t-d,;

_ J (d,

—d,,;

t—dy; t=d;(t)
- “ *J }<dm,~ —dyy) " (M T;Mxx () ds
t~di(t)  Ji-d,,

—d,;)x" (s) M' T,Mx (s) ds

< & (£) Eys TsEnE (1) — (1 = xy; () ET () Ep3 TsEE (8)
- ET (t) (Eys — Ep3) Ts ( 25~ 23) &)
— 11 (1) € (1) (Eys — En3) T (Egs - E;) &),

t—dy;
- d, . —dy;)x" (s) M UMx (s) ds
i i 5
-d

mi

t—dh t_di(t)
LT a0 @MU 9
t-d,t)  Jt-d

mi

<&@ (Eis — Ei5) Us (ET - ETS) (1)

—(1=1; (1) &' (t) (Ey6 — Ey5) Us ( 15) £(t)

— &7 (t) (Eys — Ey;) Us (Ef5 - Ef, ) E(8) — 1y, () ET (1)
x (Eis = Ey7) Us (Efs - E1T7) Et).
(42)
Considering
- Jt’Tm (T3 = Tpi) X' (s) M T5Mx (s) s,
- Jt K (TZI ml) <" (5) MTU3MX (S) dS,
t=T,; (43)

t—d,,

_ J (dy —d,,;) x7 () M T,Mx (s) ds,
~dy
t_dmi

[ -
—dyi

=Ty
- J (T = T,i) X" (s) M" Ty Mx (s) ds
t=Ty;

d )i (s)M'UM (s) ds,

we have

<& (W ELTELE(®),

13
- J':irm (1y - )x (s)M” U,Mx (s) ds
<& (t) (Ey - Es5) Uy (E]
t-d,,
- J (d2i -
t=dy;
< &7 (1) ExgToEseE (1),
—d,;
_ Jt (dy —d,,)) %" (s) MTU M5 (s) ds
t=d,;

<& () (Ey -

ED)E®),

d,;)x" (s) M T,Mx (s) ds

~Ej)Et).
(44)

Eyg) Us (E1T7

In addition, according to (8), we know that Mx(¢t) = A&(¢)

and
M ()]"] [Mx ()] = & () ATJAE (), (45)

where A and J have been defined in Theorem 12.
From (3.1) and (37)-(45), we obtain

IV (x (t),i,t) + [Mz (D)) - 8l (1)
6 T
< D TVi (x ()0, t) = 26, [MF, (x ()] [MF, (x (t))]
k=1

+2¢,[MF, (x (£))] "W (Mx (1)) + 2€,(Mx (£))"
x WO [MF, (x (£))] - 26, [Mx (6] WD W ®

x [Mx (£)] - 26, [MF, (x (t - 4, (1)))]"

x [MF, (x (t - d; (1)))]

+26,[MF, (x (t - d; (t)))]" W (Mx (¢ — d; (1))
+26,(Mox (1~ d; (1)) W [ME, (x (t — d; (1)))]
— 2, [Mx (t - d; ()] "W W [Mx (¢ - d; ()]
-1,0)]" [MF, (% (t - 7 (1))]
(M (t - 7, (1))

- 2¢;[MF; (% (¢
+26,[MF, (x (t - 7, (1)) W
1 26,(Mi (1 - 7, (1)) W [ME, (% (¢ - 7, (1))
26 [Mx (1 — 7, (0)] WO W [Mx (¢ - 7, (1))]
+xT (O MILE LoMx (£) - 820" () w (£)

<E 0 [ + (-1, ) 0+ 2]

®.
L&) [Kli(t)n,.l £ (1 =1y ()T, + 70] E(t).
(46)
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For 7,(t) € [T, y] and dy(t) € [d, 1, dy;], let

7. (1) — T, d; (t) -
A . t — 1 mz) i t — 1 ml.
2 (1) T2i =~ Tmi i (1) dy —dy;

Then, following the above procedure, we can obtain

TV (x (t),it) + [Mz(t)]* - 8 lw(®)]?

(47)

< ET (1) [AZi () Qs + (1= Ay (1) Quy + %] &)

2],
(48)

L&) [Ky () Ty + (1= Ky () TL,, + 20

For other situations, where 7,(t) € [7,,, 75], d;(t) €
[dy;»d,,;], and 7,(t) € [1y;,T,,], d;(t) € d,;], we derive
(49) and (50), respectively, as

[dmi’
TV (x (8),i,t) + [Mz(®)]” - 8w (®)]I?

®
<& (1) [A% () Qs + (1 - Ay (1) Qs + 70] E()

+ET () [Kh O, + (1 - &y, () 1L, + 20 ]E(t)
(49)

TV (x (8),i,t) + [Mz(®)]” - 8w (®)]I?

0.

<& O[O0, +(1-2,0) 2+ 22| £ )

+ET (1) |:K21 () Ty + (1 - 1y () T, + ’O]E(t)
(50)

Therefore, with (46), (48), (49), and (50), by Lemma 11,
the following inequality (51) is held for 7;(t) € [r}; 7] and
d;(t) € [dy;, dy;] if (25) is satisfied:

IV (x(t),it) + Mz O - o ®)* <0.  (51)

If (26) is held, integrating the function in (51) from 0 to
00, then we have

ro Mz (8)|*dt < 6* ro lw (®)]*dt + V (0)
0 0

2 [ 2 T
<4 <L lw @)|°dt + x (0)Yx(0)>(. |
52

By Definition 8, the NCDNs (3) and (4) can reach H,
cluster synchronization with a disturbance attenuation . This
completes the proof. O

Remark 13. It should be mentioned that the proposed Lya-
punov functional contains some triple-integral terms. Com-
pared with the existing ones, [39, 42] have shown that such a
Lyapunov functional type is very effective in the reduction of
conservatism. Besides, the information on the lower bound of
the delay is sufficiently used by introducing the integral terms
on [t —1;(t), t — 7], [t =195 t], [E— Tyt — Ty, [t — T £ — T4
and [t-d;(t), t—dy;], [t—d,;, t], [t—dy, t=d, ;) [t—d,, t—=d ;]
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Remark 14. H_, cluster synchronization of the neutral com-
plex dynamical networks with Markovian switching is con-
sidered for the first time. The synchronization conditions are
in the form of linear matrix inequalities (LMIs), which can be
solved by utilizing the LMI toolbox in Matlab. The solvability
of derived conditions depends not only on the attenuation
level but also on the initial values of the complex networks.

In some special situations, the neutral delay may disap-
pear and be regarded as 7;(t) = 0, which can be described
by the following equality and viewed as a general delayed
complex dynamical network with Markovian switching:

x(t) = Ajx () + Bix (t —d; (t)) + D;F, (x ()

+EF, (x(t-d; (1)) + Hw ().

The following corollary is therefore given to guarantee H,
cluster synchronization for this case.

Corollary 15. Given the transition rate matrix Y, the initial
positive definite matrix Y = Y' > 0, constant scalars d,;, do;,
andd,; satisfyingd,; < d,,; < d;, the NCDN systems (53) and
(4) with sector-bounded condition (7) are H, cluster synchro-
nization with a disturbance attenuation lever & if there exist
symmetric positive matrices P, > 0, (i € §), Qj >0, (j =
4,5,6),R. >0, (k=5,6,7),T,>0,U,, >0,andV, > 0, (I,m,
n = 4,5,6) for any scalars €,,€, > 0 such that the following
linear matrix inequalities hold:

€]

IL; +

el
S
N\
L

0 <0, I, +

(54)

@l

IL; +

el
S
N
e

0 <0, I, +

N = N =
N = N

V (0) < 8%*x7 (0) Yx (0),
where
5 .
= > E,0,E, + Z (%)
m=1
—T— — — =T =T
+ X JA- (E, - E,) U, (E, - E,)

- (duE - E9) Vy (d1iE1T - EZ)

~[(dyi = ) By = B) Vs [(dyi - 1) Ey - B
[(d2, mt Ey EIS] Vs [(dzi - dmi) ElT - ET3] >
(55)

where E; {i = 1,2,...,16} are block entry matrices; that is,
E,=[000I00000000000 O],

= 2 2
J = Rs+di Uy + (dy = dy;) Us + (dy; = d,y) Us

2 2
Ay, B h), (Bod),
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A4+ xOVE 4 (52 + xP)E 4 D°F"
=\4; t4 1 H{D +4& y t LBy

+E E +M|]-I]E16,

— T
%=F, (ng’ + W e WV >E +E,PD’E,,
— —_T — T T
+E,PHE ¢ +E, <62W1(2) + W, )
T
O, =2 [ (A +B®+ X(“ + X(Z)) W Wz(l)]

2
+ ZYiij +Qu+ di‘T4 + (dyi — dyi) Ts

jes

+ (dy = ) Te + L?TL?’

_ T
@, = —€2W1(2) Wz(Z)’

64 = Q6 _QS)

O, =R;—-Ry, ®,=R,-R,,

D, = —2¢1,

i _
6=-0, @, =0,

m

— — —_T —
Il;; = —E T5E), - 2 (Elz -

~(B-B)Us(E, - F, ) -2(E, - E,)

xUs(E, -, ) -

x Uy (EZ —EZ),

H
|

-2(E, - B) U, (E

xUs (E, - E, ) - EsTeEy, — (Ey -

x Ug (EZ_EZ),
ﬁiS = _2E11T6 11 (

E,
-E) U6(

515 =261,

(m=9,10,11,12,13),

= —2E,(TsEyy — (B, ~ Fyo) Ts (E

15
My = ~EnTeEy, - 2(Eys - By ) Ty By — By )
-2(E,-E)Us(E, - F, ) - (B, - Es)
xUq(E, - ) - EyTsE,, - (B, - Ey)
xUs (E; - E, ).
(56)
Other notations are the same as those in Theorem 12.

Proof. Since 7,(t) = 0, we choose the Lyapunov functional as
follows:

V(x(t),it) =V, (x(t),i, 1) ka (x(t),it), (57)

where

V, (x(t),i,t) = Li x" (s) M"Q,Mx (s) ds

i

t=dy;
+ J x! (s) MTQSMx (s)ds
t=d,,;

t-d,;
+ J x! (s) MTQsMx (s)ds,
t=dy;

V,(x(t),irt) = Li %" (s) M"RMx (s) ds

i

t=dy;
+ J %" (s) M'RMx (s) ds
t=d,,,;

tdp
+ J %" (s) MR, Mx (s) ds,
t=dy;

Vy(x(8),it)

0t
= J J dlixT (s) MTT4Mx (s)dsdo
—dy; Jt+0

—dy t
+ J J (dyi —dy) x" (s)M"
—d,,; Jt+0

x TsMx (s) ds dO
_dmi t
+ J J (dyi = d,i) x" (syM"
—d,; Jt+6

x TeMx (s) ds dO,
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Vs (x(t),it)

0 t
- J J d, 5" (s) MTU, M5 (s) ds d6
—-d,; Jt+0

—dy t
+ J j (dpy =) & ()M
Ay Jt+0

mi

x UsMx (s) ds dO
-d,; (t
+ J J- (dy = d,p) X" (IM"
—-dy Jt+0
x UMx (s) ds df,

Ve (x(t),it)

0 0t g2
=J J J LT (s)MTV, M (s) ds dA dO
-dy; Jo Jeea 2

_dli 0 ,t d2 o d2~
+ J J J mi 1i XT (S) MT
~d,; 16 Jeer 2
x V:Mx (s) dsdA do

2

~dyi (0t g2 _ 4%
+ J j J 2i mi X’T (S) MT
t

-dy Jo Jria 2

x VeMx (s) dsdA do.
(58)

And we define

E(t) = col {Mx (t) Mx(t-d,(t)) Mx(t-d,)

x(t—dy;) Mx(t—dy) Mx(t-dy)

Mx (t—d,,;) Mx(t—dy) th x(s)ds

t—dy;

t=dy; t=d(t)

MJ x(s)ds MJ x(s)ds
t—d;(t) t—d,;
t=dy; t=d,,;

MJ x(s)ds MJ x(s)ds
t—d t—dy;

“Cmi

MF, (x(t)) MF,(x(t—-d;())) w(t) } .
(59)
Then we follow a similar line as in proof of Theorem 12 and
obtain the result. O
4. Numerical Examples

In this section, numerical examples are presented to demon-
strate the effectiveness of the developed design on H_, cluster
synchronization.

Example 1. A four-node NCDN (3) and (4) with Markovian
switching between two modes is taken into consideration;
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thatis, N = 4 and M = 2. The parametric matrices of the
NCDN are given as follows:

-0.40 —0.15] -0.30 0.09
A1=1 010 -0.60 |’ AZ‘[O.zo —0.40]’
B - [0.20 —0.15] B - 0.31 0.23
17 0.50 -0.50]° 27 1-0.12 017]’
C. = [ 028 0.02] C. < 0.51 0.24
17 -0.06 0.11]° 2710.02 —0.44|°
(020 0O 030 0
b, 0o -015]° D, = [—0.10 0.23]’
E,=F =0, (i=12),
[-0.3 0.1 0.1 0.1 ]
GV 0.1 -03 0.1 0.1
1 7101 01 -03 0.1 |’
| 0.1 01 0.1 -03]
[—0.1 0 0 0.1]
G _ 0.1 -0.1 0 0
2 01 0 -01 o0 |’
e 0 01 -0.]
[-02 0.1 01 0
G? 0 -02 0.1 0.1
1 o1 0 -02 01]° (60)
[ 01 0 01 -02]
[-02 0.1 0.1 0 ]
G 0O 0 O 0
2 7101 01 -02 0 |’
[ 01 0.1 0 -02]
[0 0 0 0 ]
e 0.1 -0.3 0.1 0.1
1710 01 -03 0.1 |’
(01 01 01 -03]
(02 0 0.1 01 ]
) 0.1 -0.2 0.1 0.1
2 710 o o o |’
[ 01 0 0.1 -0.2]
11
10
rli:rzi:F3i:[0 1]’ L;=]10],
ieS={1,2},
0 1
Hk1:[1:|’ szz[o]
(k=1,2,3,4).

The transition rate matrix is considered as follows:

Y = [_21 _12] (61)
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FIGURE 1: Mode-dependent time-varying neutral delays 7,(t) at mode 1 and mode 2.
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FIGURE 2: Mode-dependent time-varying retarded delays d,(t) at mode 1 and mode 2.
Furthermore, as a result of E; = F; = 0, only the nonlinear
function f(x,(t)) is effective and given as
T
£1 (i (£)) = [0.5x (£) — tanh (0.2 (1)) + 0.2, (£) 0.95x,(¢) — tanh (0.75x, (£))] . (62)

Then, it is easy to verify that
W1(1) _ [0.3 0.2] , W2(1) _ [0.5 0.2 ] ‘

The interval mode-dependent time-varying neutral
delays and discrete delays are, respectively, assumed to be

(63)

1, (1)=05(1+sin* (), 7, t) =05(1+cos’ (1)),

d, (t) =0.1+[sint], d, (t) = 0.1+ |cost].

(64)

They are governed by the Markov process {r(t),t > 0} and
shown in Figures 1 and 2. It can be readily obtained that

7, =0,

=1
(65)
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H,, cluster synchronization of this NCDN based on the
above criterion is tested. Choose 7,,,; = 0.2, 7,,,, = 0.3,d
0.4,d,,, = 0.5, and the initial conditions

%, () = [_0(;_11] %)= [8%] :

x5 (s) = [_0(')_33], Xy (s) = [_0(')_32],

s € [-¢,0].

ml =

(66)

Let the disturbance attenuation level § = 0.5, and let the ini-
tial positive definite matrix Y = 3I;. With Theorem 12, by
using the Matlab LMI Toolbox, a group of matrices as a feasi-
ble solution can be obtained in the following (for simplicity,
we only list the matrices for P, and Qpi€S j=12,..., 6):

[1.7802 0.0659 —0.0047 0.0028 ]

b - *  1.0304 0.0012 -0.0015
1= * * 1.8546 0.0326 |°

| * * * 1.1325 ]

[1.6372 0.1644 —0.0042 0.0040 ]

b - % 1.4526 0.0033 —0.0025
2 * * 1.3748 0.0727 |’

| * * * 1.2369 ]

[2.3589 0.0467 —0.0019 0.0016 |

B % 3.1324 0.0016 —0.0015
Q=] « 21046 04326 |’

| = * * 3.1433 |

[3.0811 0.0259 —0.0034 0.0027 ]

B % 3.3245 0.0029 —0.0038
Q=] «  3.6435 00037 |’

| = * % 3.1046 )

[2.3042 0.1654 —0.0003 0.0002 ] (67)

¥  1.6345 0.0018 -0.0014
Q, = * * 1.8673 0.0756 |,

* * % 1.0564

[2.3632 0.0735 —0.0011 0.0007 ]

. % 2.0411 0.0134 —0.0001
Q=1 « 17745 00542 |

| ® * * 1.0643 ]
[3.1822 —0.0453 —0.0003 —0.0005 ]

~ * 3.3314 0 0

Qs = * * 3.2446 —0.0443 |’
| = * * 3.0418 ]
[2.6433 —0.0059 —0.0050 0.0042 ]

B * 2.3074  0.0014 —-0.0005

Q=] ., « 20435 0.0926
| * * * 1.8663 ]

It can be concluded that this neutral complex dynamical
network (NCDN) has achieved H, cluster synchronization,
which illustrates the effectiveness of Theorem 12.
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Example 2. Particularly, consider 7;(f) = 0 in Examplel
and other elements are identical with Examplel. With
Corollary 15, by utilizing Matlab LMI Toolbox, the LMIs (54)
can be solved. Then a group of matrices as a feasible solution
can be obtained as follows (for simplicity, we only list the
matrices for P, and Q;,i € §, j = 4,5,6):

[1.5433 0.0049 —0.0006 0.0003 ]
b - %« 1.0241 0.0018 -0.0017
1= s s 1.0327 0.0034 |’
| * * * 1.0065 |
[1.5638 0.1536 —0.0032 0.0028 ]
b - ¥ 1.3674 0.0026 -0.0011
2" * * 1.2655 0.0424 |’
| * * * 1.0258 ]
[2.1844 0.0632 —0.0009 0.0006
%« 2.0087 0.0136 —0.0001
Q=] , « 17549 0.0466 |’ (68)
| * * * 1.0557
[3.1756 —0.0346 —0.0003 —0.0004 ]
Q. = * 3.3267 0 0
57 * * 3.2338 —0.0365 |’
B * * 3.0344 |
[2.6368 —0.0047 —0.0028 0.0035 ]
Q = * 22866 0.0006 —0.0003
6~ * * 2.0337  0.0677
| * * * 1.8359 |

It also can be proved that the complex dynamical network
(CDN) has achieved H, cluster synchronization, which
verifies the effectiveness of Corollary 15.

5. Conclusions

In this paper, H, cluster synchronization of neutral complex
dynamical networks with Markovian switching is considered
for the first time. By interval mode-dependent delays divid-
ing, a new augmented Lyapunov functional containing some
triple-integral terms is constructed to reduce conservative-
ness. Then the delay-range-dependent H, cluster synchro-
nization criteria are obtained by the Lyapunov stability
theory, integral matrix inequalities, and convex combination.
Finally, numerical examples are given to illustrate the feasi-
bility and effectiveness of the proposed result.
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