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Abstract 

Background:  Clear cell renal cell carcinoma (ccRCC) has been the commonest renal cell carcinoma (RCC). Although 
the disease classification, diagnosis and targeted therapy of RCC has been increasingly evolving attributing to the 
rapid development of current molecular pathology, the current clinical treatment situation is still challenging con-
sidering the comprehensive and progressively developing nature of malignant cancer. The study is to identify more 
potential responsible genes during the development of ccRCC using bioinformatic analysis, thus aiding more precise 
interpretation of the disease

Methods:  Firstly, different cDNA expression profiles from Gene Expression Omnibus (GEO) online database were 
used to screen the abnormal differently expressed genes (DEGs) between ccRCC and normal renal tissues. Then, 
based on the protein–protein interaction network (PPI) of all DEGs, the module analysis was performed to scale down 
the potential genes, and further survival analysis assisted our proceeding to the next step for selecting a credible key 
gene. Thirdly, immunohistochemistry (IHC) and quantitative real-time PCR (QPCR) were conducted to validate the 
expression change of the key gene in ccRCC comparing to normal tissues, meanwhile the prognostic value was veri-
fied using TCGA clinical data. Lastly, the potential biological function of the gene and signaling mechanism of gene 
regulating ccRCC development was preliminary explored.

Results:  Four cDNA expression profiles were picked from GEO database based on the number of containing sample 
cases, and a total of 192 DEGs, including 39 up-regulated and 153 down-regulated genes were shared in four profiles. 
Based on the DEGs PPI network, four function modules were identified highlighting a FGF1 gene involving PI3K-AKT 
signaling pathway which was shared in 3/4 modules. Further, both the IHC performed with ccRCC tissue microar-
ray which contained 104 local samples and QPCR conducted using 30 different samples confirmed that FGF1 was 
aberrant lost in ccRCC. And Kaplan–Meier overall survival analysis revealed that FGF1 gene loss was related to worse 
ccRCC patients survival. Lastly, the pathological clinical features of FGF1 gene and the probable biological functions 
and signaling pathways it involved were analyzed using TCGA clinical data.

Conclusions:  Using bioinformatic analysis, we revealed that FGF1 expression was aberrant lost in ccRCC which 
statistical significantly correlated with patients overall survival, and the gene’s clinical features and potential biological 
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Background
Rising from renal tubular epithelial cells, renal cell carci-
noma has been a common malignant tumor, which ranks 
only second to bladder carcinoma in adults urinary tract 
malignant tumors [1]. And within RCC, 65 ~ 70% is clear 
cell renal cell carcinoma (ccRCC), which possess specific 
microscopic appearance other than the other RCC sub-
types. Attributing to the rapid development of molecular 
pathology, the classification and diagnosis of renal cell 
carcinoma have been increasingly evolving [2, 3]. Cur-
rently, many molecular genetic abnormalities have been 
reported to exist in RCC, including chromosome number 
or structural abnormality, genes mutation, amplification 
or fusion genes resulting from chromosome translocation 
[4]. In ccRCC, the most classic molecular genetic char-
acteristics are the changes of related genes on the short 
arm of chromosome 3 (3p), especially the VHL gene. The 
“first hit” of cancer usually comes from the change of 
VHL gene (gene mutation or promoter methylation), fol-
lowed by "second hit"—3p chromosome deletion, which 
leads to tumor occurrence, and the 3p variation occurs 
in nearly 90% of ccRCC cases [5]. Besides the VHL gene, 
some other 3p gene variations have also been reported 
in ccRCC, for instance SETD2 [6] and BAP1 [7], whose 
mutation have been reported to be related with worse 
patients prognosis, as well as PBRM1 [8], which was 
associated with better patients survival.

As for the clinical cure methods, besides the tradi-
tional surgery and stereotactic body radiation therapy, 
great improvements have been taking place in molecu-
lar targeted therapies. At present, 13 drugs in 6 catego-
ries have been approved for metastatic ccRCC, including 
VEGFR, mTORC1, c-Met and FGFR inhibition, as well 
as cytokines and anti PD-1/PD-L1 immune checkpoint 
inhibitors [9–11]. These drugs have been showing prom-
ising curative effects and increasing the median patients 
survival time from 15 to 30 months in the past 10 years 
[4]. However, the curative effective obviously vary among 
different individuals indicating the heterogeneity in drug 
mechanisms, tumor molecular genetic changes and host 
immune situations. It is of great importance to keep iden-
tifying new potential prognostic biomarkers as well as 
probable drug targeting genes thus aiding more precise 
understanding of the disease.

Currently, with the gradual maturity and promotion 
of molecular pathological detection technologies, for 

instance tissue microarray, protein chip, next generation 
sequencing (NGS) and single cell sequencing which have 
been bringing in tremendous molecular data, it is more 
convenient for us to identify more potential disease-caus-
ing gene alterations and better understand the molecular 
basis of cancer development [12–15].

Gene Expression Omnibus(GEO) has been a widely 
used online cancer research database for providing high-
throughput genes expression data submitted by research 
institutions all over the world. In the study, different GEO 
datasets were used to screen the differently expressed 
genes (DEGs) in ccRCC comparing to normal kidney 
tissues, followed by series of bioinformatic analysis, for 
instance protein–protein interacting (PPI) network con-
struction, function modules analysis and Kaplan–Meier 
survival analysis to identify the key genes that potentially 
regulate ccRCC development. Further, local hospital pat-
ents samples were used to explore the potential clinical 
significance of the key gene. The results shall provide use-
ful insights to the unearth of potential new prognostic 
biomarkers and drug targeting gene candidates for clini-
cal ccRCC patients.

Materials and methods
Data source: cDNA expression profiles from GEO database
From GEO online database [16], we picked four ccRCC 
cDNA expression profiles GSE53757 [17], GSE53000 [18], 
GSE71963 [19] and GSE68417 [20] based on the sample 
number (only the profiles that contain at least 40 sam-
ples covering both cancer and normal tissues were con-
sidered). And of the four profiles, GSE53757 was based 
on agilent GPL570 platform [HG-U133_Plus_2] Affym-
etrix Human Genome U133 Plus 2.0 Array, containing 
72 ccRCC and 72 kidney normal samples. And GSE53000 
profile was based on agilent GPL6244 platform [HuGene-
1_0-st] Affymetrix Human Gene 1.0 ST Array, containing 
56 ccRCC samples and 6 kidney normal tissues. Mean-
while, GSE71963 was based on agilent GPL6480 platform 
Agilent-014850 Whole Human Genome Micro array 
4×44K G4112F and contains 32 ccRCC and 16 normal 
kidney samples, as well as GSE68417 which was based 
on agilent GPL6244 platform [HuGene-1_0-st] Affym-
etrix Human Gene 1.0 ST Array, contains 29 ccRCC and 
14 normal samples(Detailed information and accessing 
weblink in Additional file 1: Table S1).

functions were also explored. However, more detailed experiments and clinical trials are needed to support its poten-
tial drug-target role in clinical medical use.

Keywords:  GEO database, Protein–protein interaction network (PPI), Clear cell renal cell carcinoma (ccRCC), FGF1 
gene, PI3K-AKT signaling pathway, Molecular pathology



Page 3 of 16Zhang et al. Cancer Cell Int          (2021) 21:222 	

Screen the DEGs in ccRCC comparing to normal renal 
tissues
After the four cDNA expression profiles being down-
loaded from GEO database, GEO2R [21], which has 
been a widely used genes expression analyzing tool and 
commonly provided paired with GEO profiles online 
was used to screen the DEGs between ccRCC versus 
normal tissues. The criteria for DEGs identification 
were set as adjusted P value < 0.05 and |log2FC|≥ 2. 
Further, Venn diagram [22] was used to identify the 
DEGs that were shared in all four cDNA profiles fol-
lowed by the shared DEGs’ basic interpretation includ-
ing their main biological processes, molecular functions 
and the signaling pathways they mainly enriched in 
using Gene ontology analysis (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) software [23].

DEGs PPI network construction and key genes 
identification
To search the association between different genes, 
STRING [24], which is short for the Search Tool for the 
Retrieval of Interacting Genes was used to construct 
the PPI network among shared DEGs, and the con-
struction criteria was set as confidence score ≥ 0.4 and 
maximum interactors number = 0.

Followed the DEGs PPI network construction, 
Molecular Complex Detection (MCODE) plug-in of 
Cytoscape3.6.0 software [25] was used to analyze the 
gene function modules based on the network and the 
analysis cut-off values were set as degree = 2, node 
score = 0.2, k-core = 2, and max.depth = 100. Using 
MCODE analysis, we identified the top four gene mod-
ule (gene clusters sharing similar function) and ana-
lyzed the signaling pathways module genes mainly 
enriched in, meanwhile, the genes that were shared in 
different modules indicating their probable connect-
ing core genes’ role in the network were highly focused, 
and the potential core gene’s connectivity degree with 
surrounding genes was also validated by the Cytohubba 
plug-in of Cytoscape3.6.0 software.

Kaplan–Meier survival analysis and clinical pathological 
features exploration
Kaplan–Meier plotter [26], which contains a total of 
54,000 genes in 21 types pan-cancers has been a widely 
used online service for assessing various genes’ overall 
survival correlation. In the study, Kaplan–Meier plotter 
was used to validate the probable core gene’s correla-
tion with ccRCC patients survival and draw the survive 
curve. Meanwhile, UALCAN [27], which has been an 
openly accessed online service based on TCGA data 

was applied to explore gene’s association with ccRCC 
clinical parameters.

GEPIA and Oncomine gene expression analysis
GEPIA [28] has been a commonly used online software 
for worldwide researchers to explore certain genes’ 
expression and perform survival analysis in various can-
cers based on the sequencing databases of 9736 cancer 
and 8587 normal samples from TCGA and GTEx pro-
grams. In the study, GEPIA was used to preliminary 
explore the expression change of FGF1 gene in ccRCC 
comparing to normal renal tissues.

Besides GEPIA, Oncomine database is also a widely 
used web-based data mining platform for genes expres-
sion analysis. In the study, we additionally used 
Oncomine to explore the FGF1 expression in broad spec-
trum human cancers.

CcRCC tissue microarray production
The ccRCC patients tissues used for microarray pro-
duction were all collected from local hosptital surgeries 
at General Surgery Department and sent for pathology 
examination at our Pathology Department and then 
stored at Pathology Department Biobank. The Informed 
consent from the patients as well as the approval by the 
Hospital Institutional Board were both obtained (Second 
Hospital of ShanXi Medical University, China).

Further, 104 ccRCC patients samples were picked from 
the biobank after HE staining confirmation of the dis-
ease diagnosis and evaluation of cancer percentage by 
two local hospital pathologists. Meanwhile, four areas in 
each sample (including two cancerous and two paracan-
cerous normal areas. Two independent cancerous areas 
were used to eliminate tumor heterogeneity) were cir-
cled under microscope for further study and the recep-
tor wax block were made with 1.5 mm needle according 
to operating instructions (Chloe, BeiJin, China). Further, 
tissue microarray was obtained by serial sectioning of 
the receptor wax block and stored at 4  °C refrigerator 
(Department of Pathology, Second Hospital of ShanXi 
Medical University, China).

Immunohistochemistry (IHC) experiments
Regents and tissue samples
IHC experiment was conducted using the ccRCC tis-
sues microarray to validate the gene’s expression differ-
ence between cancer and paracancerous normal renal 
tissues. And it was performed on VENTANA platform 
(Roche) in local hospital Pathology Department. The 
primary antibody of FGF1 gene was purchased from 
abcam (ab179455), and the secondary antibody (Envision 
/HRP kit) and DAB detection kit were from ZSBG-Bio. 
Other reagents including H2O2, antigen retrieval citrate 
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solution, phosphate-buffered saline (PBS) and hematoxy-
lin stain were from local hospital Supply Department.

IHC experimental protocol
The ccRCC tissue microarray slides were firstly taken 
out of 4 °C refrigerator and rewarmed at room tempera-
ture for 30 min. And then the slides were dewaxed and 
rehydrated with gradient ethanol followed by antigen 
retrieval using 10 mmol/l citrate solution. Meanwhile, to 
inhibit the activity of endogenous peroxidase, the slides 
were maintained in 0.3% H2O2 containing methanol for 
20 min. Further, the slides were soaked in bovine serum 
albumin for 30  min and then incubated with primary 
FGF1 antibody (dilution 1:200) overnight at 4 °C followed 
by a 40  min secondary antibody incubation at 37  °C. 
Finally, the slides were processed with horseradish perox-
idase (HRP) and visualized in DAB for results evaluation.

IHC results evaluation
The IHC result was evaluated based on both the micro-
array tissue cores’ staining intensity and staining area 
which were scored by two experienced pathologists reg-
istered in local hospital Pathology Department with no 
prior information of the clinical or pathological details 
of the patients. The staining intensity was scored with 
the criteria set as: None (0), mild (1), moderate (2) and 
strong (3), meanwhile, the staining area was classified 
as: < 5% (0), 6–25% (1), 26–50% (2), 51–75% (3) and > 75% 
(4). The section’s final score equals the multiplication of 
staining intensity and staining area, and the final result 
of each patient’s cancer or paracancerous normal tissue 
was recorded as the average of two independent micro-
array cores’ scores, and if the final score < 4, the result 
was defined as negative, meanwhile, if final score ≥ 4, the 
result was classified as positive.

Quantitative real‑time PCR (QPCR) experiments
The total mRNA of 30 ccRCC cancer tissues and adjacent 
paracancerous normal renal tissues (independent of the 
104 cases used for microarray production) were extracted 
using RNAiso-Plus (TAKARA, DaLian, China). And 
then1 μg extracted mRNA was used for cDNA synthe-
sis with cDNA synthesis kit (TAKARA, DaLian, China) 
according to operating instruction. Further, qPCR was 
performed on Roche z 480 and the primers used were 
listed as below:

FGF1:
Former: CAC​ATT​CAG​CTG​CAG​CTC​AG
Reverse: TGC​TTT​CTG​GCC​ATA​GTG​AGTC​
GAPDH:
Former: AGA​AGG​CTG​GGG​CTC​ATT​TG
Reverse: AGG​GGC​CAT​CCA​CAG​TCT​TC

The PCR cycling condition was set as: 95  °C 5  min 
for 1 cycle; 95  °C 5  s, 62  °C 30  s, and 72  °C 34  s for 35 
cycles followed by the melting curve stage. And the rela-
tive gene expression in each sample was recorded as the 
average 2^ − ΔΔCT calculation result of three replicates. 
Further, T-test was used for detailed statistical analysis. 
P < 0.05 was considered statistically significant.

Gene’s physicochemical properties
ProtParam [29] is a newly developed online software 
and it is commonly used for computing the physical and 
chemical parameters of certain proteins including their 
molecular weights, theoretical isoelectric point, ami-
noacid composition, extinction coefficient, estimated 
protein half life, protein instability index and grand aver-
age of hydrophilicity.

Besides ProtParam, ProtScale [30] is also a widely used 
online service for computing the aminoacid scales on a 
selected protein, and the most frequently used scales are 
the hydrophobicity, hydrophilicity and secondary struc-
ture conformational parameters.

In addition to ProtParam and ProtScale, Human Pro-
tein Atlas [31] is also an openly accessed online service 
for targeting proteins information. Using integration of 
various technologies, including antibody-based imaging, 
mass spectrometry-based proteomics, transcriptomics 
and systems biology, Human Protein Atlas is aiming to 
map various human proteins in cells, tissues and human 
organs.

In the study, we used Human Protein Atlas to pre-
liminary explore the cellular location of FGF1 protein in 
ccRCC cells. And ProtParam and ProtScale were used to 
interpret the gene’s basic physicochemical parameters.

Related signaling pathways and potential biological 
functions analysis
Gene ontology analysis (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) have been two effectively 
used online services for annotating lists of genes and 
interpreting networks of signaling pathways. In the study, 
to explore the potential biological functions and probable 
signaling pathways of FGF1 gene, STRING was firstly 
used to reveal the surrounding genes that relate mostly 
with FGF1. And then, GO and KEGG were used to anno-
tate the the signaling pathways that centered on FGF1, 
and the gene’s potential biological functions were also 
preliminary explored.

Results
Identification of 192 DEGs in ccRCC comparing to normal 
renal tissues
Four cDNA expression profiles from GEO database 
were used to screen the DEGs in ccRCC vs. normal 
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Fig. 1  The DEGs screened from GEO expression profiles. Up-regulated (red-colored spots) and down-regulated (green-colored spots) DEGS in 
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renal tissues, and eventually a total of 1286 (Fig.  1a), 
1142 (Fig.  1b), 437 (Fig.  1c) and 257 (Fig.  1d) DEGs 
were identified in GSE53757, GSE71963, GSE68417 and 
GSE53000 profiles respectively. And of all the DEGs, 
192 genes were shared in all four profiles including 39 
genes that were shown to be up-regulated (Fig. 1e) and 

153 down-regulated genes (Fig.  1f ) in cancer compar-
ing to normal tissues (Additional file 1: Table S2).

Basic interpretation of 192 DEGs by GO and KEGG
To preliminary explore the biological functions of the 
192 DEGs, GO and KEGG analysis were performed. 
Excitingly, GO results showed that the biological 
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processes that both the 39 up-regulated (Fig.  2a) and 
153 down-regulated genes (Fig.  2e) mainly enriched 
in were metabolism and energy regulation pathways. 
Meanwhile, the cellular component of 39 up-regulated 
were mostly focused on extra cellular (Fig. 2c), and the 
molecular functions were primary oxidoreductase and 
receptor activities related (Fig.  2b). Further, KEGG/
biological pathway analysis showed the up-regulated 
DEGs were mostly enriched in HIF-1α related hypoxia 
and oxygen homeostasis regulating signaling pathways 
(Fig. 2d).

And as for the 153 down-regulated genes, the cellular 
component were mainly enriched in plasma membrane 
(Fig.  2g), the molecular function were mostly focused 
on catalytic and auxiliary transport protein activities 
(Fig.  2f ), and the KEGG signaling were mainly trans-
membrane transport of small molecules, for instance 
glucose, bile salts and organic related (Fig. 2h).

FGF1 gene works as a core gene in DEGs PPI network
To further scale down the “candidate” genes and iden-
tify the potential key genes regulating ccRCC devel-
opment, we construct the PPI network of 192 shared 
DEGs for further function modules analysis, thus 
understanding the interaction between different genes 
(Fig. 3a). And based on the PPI network, four modules 
were identified revealing signaling pathways that DEGs 
were mainly enriched in, interestingly, an FGF1 gene 
involving PI3K-AKT signaling was identified in 3/4 
modules suggesting it’s potential “core” position in the 
network (Fig. 3b–i).

Additionally, to validate the “core” position of FGF1 
gene in the network, the connectivity between different 
genes in the PPI were also explored, and the result sup-
ported FGF1 as one of the top 30 genes with high con-
nectivity with surrounding genes (Fig.  4a, b). Moreover, 
Oncomine analysis revealed that although FGF1 expres-
sion various in different human cancers, multiple previ-
ous studies supported the FGF1 loss of expression in 
kidney cancers (Fig.  4c, d). And another analysis per-
formed by GEPIA also showed consistent results that 
FGF1 expression various in different human tumors, for 
instance, the expression was higher glioblastoma and 
brain lower grade glioma comparing to paired normal tis-
sues, but its expression in other tumors including ccRCC 
is aberrant lost (Fig. 4e).

Additionally, not only in the solid tissues, FGF1 expres-
sion was significantly lower in ccRCC cell lines compar-
ing to other cancer cells (Fig. 4f ).

Both GEPIA and Oncomine results supported the 
aberrant loss of expression of FGF1 in ccRCC comparing 
to normal kidney in both solid tissues and cell lines.

Aberrant FGF1 loss of expression in ccRCC​
To reveal the clinical value of FGF1 loss of expression in 
ccRCC. Kaplan–Meier plotter survival analysis was firstly 
conducted. And the overall survival analysis based on 
530 kidney renal clear cell carcinoma samples revealed 
that FGF1 statistical significantly correlates with patients 
overall survival (OS), but not recurrence free survival 
(RFS), higher FGF1 gene expression directly associated 
with better patients overall survival indicating its poten-
tial tumor inhibitor function in ccRCC (Fig. 5a, b).

To reveal the expression of FGF1 in ccRCC, besides the 
previous online analysis, IHC as well as QPCR experi-
ments using local hospital patients tissues were also con-
ducted (Detailed samples information see Additional 
file 2: Table S4). Consistent with the GEPIA online analy-
sis (Fig. 5c), the result of qRT-PCR which was conducted 
using 30 local hospital ccRCC and paired normal renal 
tissues also supported the FGF1 loss of expression in can-
cer (Fig. 5d).

Meanwhile, the immunohistochemistry (IHC) carried 
out in 104 local hospital ccRCC and paired normal renal 
tissues (different from the 30 samples used in qRT-PCR 
experiment) also revealed that FGF1 expression was sig-
nificantly lower in cancer comparing to normal tissues. 
Significant loss of expression (less than 1%) was observed 
in ccRCC versus the much higher expression ratio 
(48.7%) in normal tissues (P < 0.01) (Fig. 5e).

The association between FGF1 gene and ccRCC clinical 
features
The association between FGF1 expression and ccRCC 
clinicopathological parameters was analyzed using Ual-
can, which is an public online service based on TCGA 
data containing a whole of 533 ccRCC and 75 normal 
renal samples. The analysis result showed not only that 
FGF1 expresses much less in cancer comparing to nor-
mal renal tissues (Fig. 6a), but also the expression tends 
to decrease as the cancer grade and stage advancing 
although the difference was not statistical significant. 
Also, the expression of FGF1 tends to be lost more 
in older patients with lympho nodes metastasis than 
patients with younger age and no lympho metastasis, but 
the difference was not statistical significant. Meanwhile, 
no significance relationship was found between FGF1 
expression and patients race and gender (Fig. 6b–g).

Besides Ualcan online analysis, we also down-
loaded the original patients data from TCGA 
website(containing 539 ccRCC and 72 normal renal 
samples, detailed TCGA patients barcods in Addi-
tional file  1: Table  S3) to validate the clinical param-
eters of FGF1 in ccRCC. Another interesting fact was 
found that FGF1 expression decreased in patients after 
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b c

d e

f g

h i

Fig. 3  Genes’ function modules analysis based on DEGs’ PPI network. a The PPI network of 192 DEGs and four main function modules analyzed 
based on the network (four red circles and each represents one gene module). b, d, f, h The diagrammatic sketch and c, e, g, i containing main 
signaling pathways as well as involving genes of four main modules in the PPI network. (* The FGF1 gene involved PI3K-AKT signaling pathway was 
revealed in 3/4 modules.)
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a b

c d e

f

Fig. 4  Aberrant FGF1 loss of expression in ccRCC comparing to normal renal tissues. a Top 30 genes in the PPI network with high connectivity with 
surrounding genes (higher color represents stronger connectivity). b The top 30 genes in the PPI network with high connectivity with surrounding 
genes listed in descending order. (* FGF1 gene is 23rd of the 30 top genes). c Expression of FGF1 in different types of human cancers revealed by 
Oncomine analysis. Different colored squares indicated the numbers of datasets with FGF1 mRNA over-expressed (red) or down-expressed (blue) in 
cancer vs. normal tissue. d Aberrant loss of expression of FGF1 in ccRCC comparing to normal renal tissues revealed by GEPIA analysis. e Expression 
of FGF1 in different types of human cancers by GEPIA analysis (*FGF1 expression in KIRC which is short kidney renal clear cell carcinoma, another 
name of ccRCC). f Expression of FGF1 in different cancer cell lines
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radiation therapy, which was consistent with the blood 
test which showed that white cell count was much 
higher in patients with high FGF1 expression (Table 1).

Physicochemical properties of FGF1 gene
Two online services ProtParam and ProtScale were 
used to predict FGF1′s physicochemical properties, 
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and the results revealed that FGF1 protein is composed 
of 155 amino acids, including 19 negatively charged 
amino acid residues (ASP+Glu) and 18 positively 
charged amino acid residues (Arg+Lys). The molecular 
formula of FGF1 protein is C777H1208N210O238S5, 
the molecular weight is 17.5KD, and the theoretical iso-
electric point is 6.51.

Meanwhile, the estimated half-life of FGF1 protein is 
30 h in mammals and the instability index is computed 
to be 40.67 indicating the protein tends to be cellular 
unstable.

Additionally, ProtParam computed the hydrophobic 
value of FGF1 is 73.61 and the average hydrophilicity is 
− 0.620. ProtScale also revealed that FGF1 protein har-
bors several hydrophilic regions and shall be classified 
as a hydrophilic protein (Fig. 6h). Also, the result of Pro-
tein Atlas analysis supported FGF1 locating both in the 
nucleoplasm and is predicted to be secreted, suggesting 
its potential biological function as a hydrophilic signaling 
pathway particle.

FGF1 gene centered biological functions and related 
signaling pathways
To further explore the potential biological functions of 
FGF1 gene in ccRCC and the probable signaling pathways 
involved, GO and KEGG analysis were performed. And 
GO results showed that the biological processes FGF1 
gene participated in were mainly focused on fibroblast 
growth factor receptor activities, phosphatidylinositol-
3-phosphate biosynthetic processes and phosphatidylin-
ositol-3-phosphate biosynthetic associated processes. 
And the molecular functions FGF1 played were most 
enriched in fibroblast growth factor receptor binding, 
1-phosphatidylinositol-3-kinase activity, phosphatidylin-
ositol-4,5-bisphosphate 3-kinase activity and protein 
tyrosine kinase activities (Fig. 6i, Table 2).

Meanwhile, KEGG analysis revealed the signaling path-
ways FGF1 gene involved were mainly RAS signaling, 
Rap1 signaling, PI3K-AKT signaling and MAPK signal-
ing pathways related (Table  3). Considering our previ-
ous gene module analysis based on PPI network which 
showed that FGF1 involved PI3K-AKT signaling shall 
play a core role in the network, it’s of potential clinical 
value to further investigate the potential drug-targeting 
role of FGF1 gene or other FGF1 interacted PI3K-AKT 
signaling proteins in the development of ccRCC, thus 
aiding more precise understanding of the disease.

Discussion
Renal cell carcinoma has been a common malignant 
tumor of urinary tract, ranking only second to bladder 
carcinoma in morbidity of all adults urinary tract malig-
nant tumors. Although the clinical treatment situation is 
still challenging given the tumor heterogeneity and evo-
lutionary nature of cancer [32, 33], the increasing devel-
oping molecular pathology has been bringing promising 
effect for ccRCC in both molecular diagnosis and target-
ing treatment. Especially in current precise medicine era, 
the various bioinformatic analysis tools has been making 
it more practicable for worldwide researchers to explore 
the molecular genetic abnormalities in cancers [34, 35]. 
In the study, we combine used four different GEO cDNA 
expression profiles together with multiple bioinformatic 
analysis methods to explore the potential new prognostic 

Table 1  The association between FGF1 and ccRCC clinical 
pathological features

Parameters FGF1 (%) P value

−  + 

Gender

 Female 69 (39.9) 104 (60.1) 0.608

 Male 122 (37.5) 203 (62.5)

Race

 White 157 (37.0) 267 (63.0) 0.154

 Black 30 (50.0) 30 (50.0)

 Asia 3 (37.5) 5 (62.5)

Chemotherapy

 Yes 185 (39.0) 289 (61.0) 0.168

 No 6 (25.0) 18 (75.0)

White cell count

 Low 5 (62.5) 3 (37.5) 0.028

 Normal 96 (39.5) 147 (60.5)

 Elevated 48 (29.1) 117 (70.9)

Radiation

 No 165 (36.3) 290 (63.7) 0.002

 Yes 26 (60.5) 17 (39.5)

Tumor grade

 I 99 (33.3) 198 (66.7) 0.042

 II 64 (32.0) 136 (68.0)

 III 50 (43.1) 66 (56.9)

 IV 50 (45.5) 60 (54.5)

T stage

 T1 91 (33.2) 183 (66.8) 0.065

 T2 24 (41.4) 34 (58.6)

 T3 71 (45.5) 85 (54.5)

 T4 5 (50.0) 5 (50.0)

N stage

 N0 84 (38.4) 135 (61.6) 0.123

 N1 9 (64.3) 5 (35.7)

M stage

 M0 143 (35.0) 265 (65.0) 0.005

 M1 31 (52.5) 28 (47.5)
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indicators in ccRCC development, and we identified a 
specific FGF1 gene which was proved to be aberrant lost 
expression in ccRCC comparing to normal renal tissues, 
and the FGF1 lose of expression was indicated to be a 
worse overall survival indicator in ccRCC patients.

GEO database has been one of the most commonly 
used public databases for worldwide researchers to 
explore the genetic abnormalities in various cancers [36–
39]. In the study, we firstly picked four different cDNA 
expression profiles GSE53757, GSE53000, GSE71963 
and GSE68417 from GEO database to analyze the dif-
ferently expressed genes in ccRCC comparing to normal 
renal tissue, and the result revealed 192 genes that were 
shared in four profiles including 39 up-regulated and 153 
down-regulated genes. Interestingly, although mainly 

enriched in different cellular locations and involved in 
various signaling pathways, both the up and down regu-
lated DEGs were mostly participated in metabolism and 
energy regulation related biological processes.

The mainly focus of DEGs on the metabolism related 
biological processes in the study supported the impor-
tance of the elaborate network of energy consuming in 
cancer development. Metabolomics has been a classic 
theory in cancer research based on the well known fact 
that even in the presence of oxygen, cancer cells perform 
less energy-efficient glycolysis process termed as aero-
bic glycolysis or Warburg effect [40, 41]. Although the 
detailed reasons for Warburg effect are still unclear, one 
of the theories is that increased glycolysis may provide 
cancer cells easier access to accumulation of essential 

Table 2  Biological Process events centered on FGF1

Description Counts Background 
gene counts

FDR Matching proteins in the network

1-Phosphatidylinositol-3-kinase activity 18 44 2.42e−36 FGF4, FGF20, FGF23, FGF2, FGF10, FGF7, FGFR4, FGF19, 
FGF8, FGF3, FGFR3, KL, FGF9, GRB2, FGFR1, FGFR2, 
FRS2, FGF1

Phosphatidylinositol-4,5- bisphosphate 3-kinase activity 18 68 6.57e−34 FGF4, FGF20, FGF23, FGF2, FGF10, FGF7, FGFR4, 
FGF19,FGF8, FGF3, FGFR3, KL, FGF9, GRB2, FGFR1, 
FGFR2, FRS2, FGF1

Ras guanyl-nucleotide exchange factor activity 18 243 3.91e−25 FGF4, FGF20, FGF23, FGF2, FGF10, FGF7, FGFR4, FGF19, 
FGF8, FGF3, FGFR3, KL, FGF9, GRB2, FGFR1, FGFR2, 
FRS2, FGF1

Protein tyrosine kinase activity 17 180 3.34e−25 FGF4 ,FGF20 ,FGF23, FGF2, FGF10, FGF7, NTRK2, FGFR4, 
FGF8, FGF3, FGFR3, FGF9, GRB2, FGFR1, FGFR2, NTRK1, 
FGF1

Growth factor receptor binding 14 131 3.40e−21 FGF4, FGF20, FGF23, FGF2, FGF10, FGF7, FGF19, FGF8, 
FGF3, KL, FGF9, GRB2, FRS2, FGF1

Fibroblast growth factor receptor binding 13 27 7.40e−27 FGF4, FGF20, FGF23, FGF2, FGF10, FGF7, FGF19, FGF8, 
FGF3, KL, FGF9, FRS2, FGF1

Transmembrane receptor protein tyrosine kinase activity 6 61 4.88e−09 NTRK2, FGFR4, FGFR3, FGFR1, FGFR2, NTRK1

Table 3  KEGG signaling pathways centered on FGF1

Term description Counts Background 
gene counts

FDR Matching proteins in the network

Ras signaling pathway 19 228 4.33e−27 FGF4, FGF20, FGF23, PLCG1, FGF2, FGF10, FGF7, NTRK2, FGFR4, FGF19, 
FGF8, FGF3, FGFR3,  FGF9, GRB2, FGFR1, FGFR2, NTRK1, FGF1

MAPK signaling pathway 18 293 1.85e−23 FGF4, FGF20, FGF23, FGF2, FGF10, FGF7, NTRK2, FGFR4, FGF19, FGF8, 
FGF3, FGFR3, FGF9, GRB2, FGFR1, FGFR2, NTRK1, FGF1

PI3K-AKT signaling pathway 18 348 2.42e−22 FGF4, FGF20, FGF23, FGF2, FGF10, FGF7, NTRK2, FGFR4, FGF19, FGF8, 
FGF3, FGFR3, FGF9, GRB2, FGFR1, FGFR2, NTRK1, FGF1

Regulation of actin cytoskeleton 15 205 1.56e−20 FGF4, FGF20, FGF23, FGF2, FGF10, FGF7, FGFR4, FGF19, FGF8, FGF3, 
FGFR3, FGF9, FGFR1,  FGFR2, FGF1

Signaling pathways regulating pluripo-
tency of stem cells

6 138 7.10e−7 FGF2, FGFR4, FGFR3, GRB2, FGFR1, FGFR2

EGFR tyrosine kinase inhibitor resistance 5 78 1.36e−6 PLCG1, FGF2, FGFR3, GRB2, FGFR2

Insulin secretion 3 84 0.0019 STX1A, SNAP25, VAMP2
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metabolic precursors they need for rapid cell prolifera-
tion [42–44].

To further scale down the “candidate” responsible 
genes and identify the potential “key” gene in ccRCC 
development, the PPI network of 192 DEGs was con-
structed to visualize the relationship between genes, and 
then gene function module analysis was successively per-
formed. As a result, four gene modules involving various 
signaling pathways were identified based on the PPI net-
work, excitingly, a FGF1 gene involving PI3K-Akt sign-
aling pathway was shared in 3/4 modules indicating its 
potential core position in the network.

What’s more, the connectivity degree analysis between 
DEGs with surrounding genes also supported FGF1 gene 
as one of the top 30 genes with highest connectivity with 
other DEGs in the network. FGF1 gene, which is short for 
fibroblast growth factor 1, is one of the members of fibro-
blast growth factor (FGF) family and it has been reported 
to play important roles in the regulation of cell survival, 
cell division, angiogenesis, cell differentiation and migra-
tion [45]. In the study, the potential function of FGF1 
gene in ccRCC development was explored.

Firstly, Kaplan–Meier survival analysis based on TCGA 
data revealed that FGF1 gene expression statistical sig-
nificantly correlates with ccRCC patients overall survival, 
higher FGF1 expression was associated with better sur-
vival, suggesting its potential tumor suppressor function.

Then, to explore the expression of FGF1 in ccRCC 
comparing to normal renal tissues, both online database 
analysis and experiments based on local hospital sam-
ples were conducted. Both online GEPIA and Oncomine 
analysis indicated that although FGF1 expression vari-
ous in different cancers, it was aberrant lost in ccRCC. 
Meanwhile, our IHC experiments conducted on tissue 
microarray which was produced using 104 local patients 
samples supported the loss of expression ratio (less than 
1%) in ccRCC comparing to normal renal tissues (48.7%). 
What’s more, QPCR experiment performed using 30 
different patients samples also validated that FGF1 
expressed less in cancer comparing to matched normal 
tissues.

Since the sample number being used for our IHC and 
QPCR experiments was relatively low (104 cases for 
IHC experiment and 30 for QPCR experiment), and the 
patients with greater than 2, 3, 4 and 5  years follow-up 
was 70, 34, 17 and 13 respectively, the medial follow-up 
of the 134 patients was 33 months. To avoid the limita-
tions of relatively small number samples and short dura-
tion of follow-up, an online service UALCAN which is 
based on TCGA data containing a total of 533 primary 
ccRCC and 72 normal renal samples was used for further 
analyzing the association between FGF1 and ccRCC clin-
ical parameters. And the result showed that FGF1 loss 

expression in broad-spectrum ccRCC patients despite of 
the race, age, cancer grade and stage, and no significance 
relationship was found between FGF1 expression and 
patients gender.

Further, to explore the potential biological function of 
FGF1 in ccRCC development, we computed the basic 
physicochemical parameters of the protein, which result 
revealed that FGF1 is a hydrophilic protein weighting 
17.5KD, and the protein mainly locates in the nucleo-
plasm or to be secreted out of cells, the estimated half-
time is 30 h and tend to be unstable.

Meanwhile, the biological processes FGF1 gene partici-
pated in were mainly focused on fibroblast growth factor 
receptor activities and phosphatidylinositol-3-phosphate 
biosynthetic related processes, and the FGF1 centered 
signaling pathways were mostly RAS signaling, PI3K-
AKT signaling and Rap1 signaling pathways. Given the 
result of our function module analysis which indicated 
that FGF1 gene involved PI3K-AKT signaling shall be 
in the core position of the DEGs PPI network, it’s of 
potential clinical value to further investigate the detailed 
function and the mechanism behind FGF1 related PI3K-
AKT signaling pathways in the regulation of ccRCC 
development.

Actually, PI3K-Akt signaling has been commonly 
known to regulate insulin-based glucose metabolism 
and mutations of the pathway genes resulting in aberrant 
signaling activation, thus leading to higher amount of 
glucose uptake [46]. And activation of PI3K-Akt signaling 
provokes the expression of HIF-1α, which is a transcrip-
tion factor generally known be involved in the cellular 
adaption to hypoxia and modulates cellular anaerobic 
metabolism [47].

Moreover, FGF1 expression was reported to be inhib-
ited in diabetic nephropathy, and exogenous recombi-
nant FGF1 protein not only has excellent function of 
reducing blood glucose level in type 2 diabetes mellitus, 
but also has a very obvious improvement effect on recov-
ering the impaired diabetic renal function [48]. Interest-
ingly, although FGF1 has no hypoglycemic effect on type 
1 diabetes mellitus, it can also improve the renal func-
tion of type 1 diabetes mellitus indicating the improve-
ment function of FGF1 on diabetic nephropathy exists 
independently of the hypoglycemic effect [49]. What’s 
intriguing is that there’s currently no evidence of associa-
tion between ccRCC and diabetic nephropathy, sharing 
a similar genetic abnormality (loss of FGF1 expression) 
might provoke worldwide renal disease researchers’ 
interest for further analysis.

However, although above results shall provide mean-
ingful insights into better understanding of ccRCC, it’s 
not yet enough to classify FGF1 or other PI3K-AKT sign-
aling proteins as new potential drug targets in ccRCC. 
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To distinguish gene aberrations that can cause the dis-
ease and may serve as drug targets with those being 
closely linked to the disease and consequently are asso-
ciated with the disease development, further compre-
hensive experiments and clinical trials are needed to be 
performed.

Conclusion
In conclusion, based on GEO database, we analyzed 192 
DEGs in ccRCC comparing to normal renal tissues, and 
FGF1 gene and PI3K-AKT signaling was identified as a 
core signaling in DEGs’ PPI network. Both online pub-
lic data analysis and local hospital IHC as well as QPCR 
experiments validated the aberrant loss expression of 
FGF1 in ccRCC comparing to normal tissues. Kaplan–
Meier overall survival analysis revealed that low FGF1 
expression was associated with worse patients survival. 
Additionally, FGF1 centered biological processes and 
signaling pathways were preliminary explored. Com-
prehensive studies and clinical trials are needed to con-
firm the findings before promoting the clinical utility 
of FGF1as a new drug target and prognosis indicator in 
ccRCC.
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