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Our understanding of the complex, transcriptional feedback loops in the circa-

dian clock mechanism has depended upon quantitative, timeseries data from

disparate sources. We measure clock gene RNA profiles in Arabidopsis thaliana
seedlings, grown with or without exogenous sucrose, or in soil-grown plants

and in wild-type and mutant backgrounds. The RNA profiles were strikingly

robust across the experimental conditions, so current mathematical models

are likely to be broadly applicable in leaf tissue. In addition to providing

reference data, unexpected behaviours included co-expression of PRR9 and

ELF4, and regulation of PRR5 by GI. Absolute RNA quantification revealed

low levels of PRR9 transcripts (peak approx. 50 copies cell21) compared

with other clock genes, and threefold higher levels of LHY RNA (more than

1500 copies cell21) than of its close relative CCA1. The data are disseminated

from BioDare, an online repository for focused timeseries data, which is

expected to benefit mechanistic modelling. One data subset successfully con-

strained clock gene expression in a complex model, using publicly available

software on parallel computers, without expert tuning or programming. We

outline the empirical and mathematical justification for data aggregation in

understanding highly interconnected, dynamic networks such as the clock,

and the observed design constraints on the resources required to make this

approach widely accessible.
1. Introduction
Circadian clocks are found widely among organisms from archaea to mammals

[1,2]. These internal time-keepers generate approximately 24 h rhythms in the

expression of 10–30% of genes, even without environmental cues. In natural con-

ditions, circadian rhythms are entrained by light and temperature cycles. Their

function is to coordinate internal processes with the external day/night cycle

[3,4] and also, through photoperiodism, relative to the seasonal cycle [5]. The cir-

cadian system of each organism includes a phylum-specific gene regulatory

network that is required for most rhythmicity [6], as well as non-transcriptional

oscillator(s) that are less well characterized in eukaryotes [7].

In plants, the clock gene network includes highly connected, negative regula-

tors forming a complicated circuit. This has been best studied in Arabidopsis
thaliana. One simplification (figure 1a) visualizes the circuit as a three-loop
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Figure 1. The clock gene network and experimental protocols. (a) The clock gene network summarized in the activity-flow language of SBGN v. 1.0 [8], with the
principal connections in the P2012 model [9]. The repressilator is denoted by green lines; morning loop components are filled yellow; LHY/CCA1, red; evening loop
components, blue. Light inputs are shown in electronic supplementary material, figure S1 and all modelled connections of P2011 [10] in electronic supplementary
material, figure S2. (b) Peak-normalized RNA profiles of genes depicted in (a), in plants of the Col-0 accession under a 12 h light : 12 h dark cycle (LD 12 : 12;
experiment 2b of panel (c)). (c) Graphical representation of the growth conditions. Experiments 1, 4, 5, 6 and 7 used seedlings grown in LD 12 : 12 for the number
of days indicated; experiments 2 and 3 used plants grown on soil in LD 12 : 12 for the number of days indicated. Sucrose concentrations, growth temperatures and
genotypes tested are shown for each experiment. Open box, light interval; black box, dark interval; light grey box, predicted darkness in constant light; dark grey
box, predicted light in constant darkness; red box, red light. Sampling time in ZT (h), relative to lights-on of the first day of sampling or the last dawn before
experimental treatment (ZT0). Ros, rosette; sd, seedling.
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structure of morning and evening loops coupled around a

repressilator [10,11]. The morning loop includes the MYB-

related transcription factors LHY and CCA1, which activate

expression of the pseudo-response regulators PRR9 and PRR7
[12,13], but inhibit expression of later-expressed genes includ-

ing PRR5 and TOC1 (PRR1). PRR9, PRR7, PRR5 and TOC1

bind to and inhibit LHY and CCA1 expression, as predicted

by modelling [10,14] and demonstrated by experiments

[15–18]. LHY and CCA1 also inhibit expression of ELF3,
ELF4 and LUX (PCL1), whose protein products interact to

form another repressor, the evening complex (EC) [19–22].

The EC is thought to inhibit the expression of at least ELF4
and LUX, forming a negative feedback loop, whose continued

function might explain the damped oscillation of clock gene

expression observed in lhy cca1 double mutant plants [10].

GI, a large plant-specific protein, is also rhythmically expres-

sed but functions at a post-translational level through, for

example, stabilization of the TOC1-degradation factor ZTL

[23]. Light signalling controls multiple processes (electronic

supplementary material, figure S1) that entrain the clock circuit

to the day–night cycle. A growing number of identified pro-

cesses and components remain to be fully integrated into the

circuit, though even the components described are challenging

to analyse.
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Formal, mathematical models have been helpful in under-

standing the plant clock, because its components are highly

interconnected by nonlinear regulation (electronic supple-

mentary material, figure S2; reviewed in [24]). Model

development was necessarily based upon timeseries data,

where the system was manipulated using mutations and by

varying light or temperature inputs. More detailed models

demanded greater precision and breadth in the data, which

raised two major issues. First, data collation was laborious,

because the numerical data underlying published timeseries

graphs were rarely accessible [25]. Although the potential

benefits of data sharing are recognized [26,27], in practice,

useful sharing requires cyber infrastructure, which is currently

best-developed for omics data rather than the many focused

studies in the clock literature [28]. Second, the published data

on Arabidopsis clocks used several genetic backgrounds

and growth conditions, introducing ill-defined variation to

the results.

To provide directly comparable data, we conducted large-

scale qRT-PCR assays for the RNA levels of multiple clock

genes. Overlapping studies in four laboratories using different

growth stages and conditions highlighted the robustness of

most expression profiles and the few instances where they

varied. Visualizing the data as phase plane plots suggested

new dynamic interactions and their genetic regulators. Absol-

ute RNA quantification revealed the low expression levels of

ELF3 and PRR9. To facilitate similar projects, we introduce

data aggregation in the online BioDare resource, and illustrate

the utility of our datasets by reoptimizing the P2011 clock

model [10] with the open-source application SYSTEMS BIOLOGY

SOFTWARE INFRASTRUCTURE (SBSI) [29], highlighting key areas

for future experiments.
2. Results
2.1. Large-scale measurement of clock gene RNA

profiles
This study was motivated by two projects that integrated circa-

dian regulation into research on other plant physiological

systems, which were incompatible with the growth conditions

used in earlier circadian research. The Regulation of Biological

Signalling by Temperature (ROBuST) project studied the

interactions of ambient temperature with circadian and light

signalling circuits; exogenous sucrose inhibits light signalling

[30,31] and was therefore excluded. The Timing of Metabolism

(TiMet) project studied circadian regulation of the starch path-

way, among others, which is best characterized in rosette plants

grown on soil. To measure the rhythmic expression in a set of

clock-related genes (figure 1b), we used automated systems in

Golm and Edinburgh to quantify mRNA levels for components

of the clock circuit every 2 h, in multiple conditions and mutant

backgrounds [32,33] (figure 1c). The ROBuST dataset tested

13-day-old, wild-type (WT) and mutant seedlings grown at

178C on agar medium without additional sucrose. Datasets

from the TiMet project tested 21-day-old rosette plants grown

at 208C on soil (TiMet ros) and 13-day-old seedlings on soil

(TiMet sd1). The TiMet rosette data were collected from WT

and clock mutant Arabidopsis thaliana plants grown under

light : dark (LD) cycles in two experiments, followed by con-

stant light (LL) or constant dark (DD) in one study. Three

further studies were compared, from seedlings grown on sterile
agar media without sucrose (TiMet sd2, using the same

medium as the ROBuST data), or with exogenous sucrose

under white (McWatters, this paper; and Edwards et al. [34])

or red light (Southern, this paper; and [21,35]).

2.2. Data presentation
Time is expressed as zeitgeber time (ZT) in hours since the

last dark–light transition, by convention; the first dark–light

transition within the sampling interval is 0 h on our plots.

TiMet data are presented as absolute values [33], obtained by

calibrating RNA extraction efficiency with heterologous control

RNAs (electronic supplementary matetial, table S1) to calcu-

late the number of copies of each RNA per gram fresh weight

(gFW). Estimated cell numbers per gFW (see electronic sup-

plementary material) were used to calculate RNA copies per

cell. The other datasets are normalized relative to a control

transcript (ACTIN7 for ROBuST; ACTIN2 for Edwards and

Southern; bTUBULIN4 for McWatters). ACTIN2 and GAPDH
controls were also assayed with two amplicons each in the

TiMet assays, for comparison among datasets. Data were repli-

cated in biological duplicate or triplicate samples and in

equivalent sampling on successive days (0–12 h and 24–36 h

in the TiMet and Edwards datasets). Data are presented on

linear scales to reflect the potential for protein synthesis and

hence regulatory effects on downstream targets (in keeping

with most of the literature; figures 2 and 3; electronic sup-

plementary material, figure S5) and on logarithmic scales to

reveal the full dynamic range of RNA expression, and hence

the influence of multiple upstream regulators (figures 4–6;

electronic supplementary material, figure S3 and S4). Further

technical comparison among the studies is presented in the

electronic supplementary material.

2.3. Similarity and specific variations of wild-type RNA
profiles across datasets

Clock gene RNA expression profiles in WT plants of two

accessions (Col and Ws-2) grown in LD are presented in

figure 2; profiles were similar across the TiMet and ROBuST

datasets, despite major differences in growth conditions.

The morning clock components, CCA1 and LHY, peaked as

expected at dawn (figure 2a,b), followed by PRR7 (ZT6;

figure 2c,d), PRR5 and GI (ZT8; figure 2e–h). Expression of

the evening components, LUX, ELF4 and TOC1, peaked at

ZT8–12 (figure 2e–j); peak expression of LUX was delayed

by about 2 h in Col plants relative to Ws-2 in both datasets

(figure 2g,h; replicated in LL data). ELF3 had a low-amplitude

profile in both datasets, with lowest expression around ZT4.

The TiMet and ROBuST datasets differed at particular

timepoints for PRR9, GI and TOC1. PRR9 expression was

highest at ZT2–6 in both cases, with a clear peak at ZT2 in

the ROBuST seedling data (consistent with many other

reports from seedlings) but a broader profile in the TiMet

data (figure 2c,d). After its major peak at ZT8–12, TOC1
expression is consistently observed (since [36]) to increase

around ZT18, but the level of this night-time peak varied

(figure 2e,f ). The ROBuST data for seedlings showed a peak

of GI expression at ZT2 (figure 2f ); little induction is evident

at ZT2 in the TiMet rosette data on a linear scale (figure 2e)

though the logarithmic scale reveals the response (electronic

supplementary material, figure S3e). The morning peak in
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Figure 2. Clock gene expression in wild-type plants under LD cycles. Transcript levels in Col-0 and Ws-2 WT under LD 12 : 12 were measured by qRT-PCR, in
experiment 2 (TiMet ros) including eight external RNA standards to allow absolute quantification in Col-0 and Ws-2 (a,c,e) and in experiment 1 (ROBuST) normalized
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GI is likely to be an acute response to lights-on. Rapid

sampling in the Southern data [35] and in a follow-up micro-

array study [10] suggested that induction is rapid but

transient, and therefore sensitive to sampling time. Nonethe-

less, the data suggest that either the magnitude or kinetics of

light responsiveness vary across the conditions tested. The

difference in PRR9 profiles could reflect slower activation of

PRR9 in the TiMet data, consistent with lower light respon-

siveness in rosettes than in seedlings or with faster

repression of PRR9 in seedlings. The level of GI transcripts

at ZT12 also varied from 4% to 40% of the peak level, with

the lowest level in rosettes of Ws-2 (figures 2e,f and 3c). GI
expression is light sensitive at this phase [37], so our results

are consistent with variation in light responsiveness.

Sucrose modestly increases expression of the evening

clock components TOC1 and GI [38], particularly in dark-

ness [39], and can repress PRR7 with subsequent effects

on CCA1 under low light [40], along with transcriptome-

wide effects under LD cycles [41,42]. We therefore compared

the expression profiles for CCA1, TOC1 and GI in plants

grown without (ROBuST and TiMet data) or with exogenous
sucrose (McWatters, Edwards and Southern datasets;

figure 3). To facilitate comparison, TiMet data were normal-

ized to control transcripts (two amplicons each in GAPDH
and ACTIN2), as for the other studies. Each profile was

normalized to its maximum. Expression profiles of CCA1
across the different timeseries matched closely despite

the differences in accession and experimental protocols

(figure 3a). The times of peak, mid-rising and mid-falling

phases differed by at most 2 h (one sampling interval)

among datasets. In the falling phase at ZT4, the profiles

in McWatters, TiMet ros and TiMet sd2 data were delayed

relative to the other data. The night-time expression of

TOC1 at ZT18 varied from 20% to 60% of the main peak

level (figure 3b), with high expression in ROBuST, Edwards

and TiMet sd2 datasets. The expression of GI at ZT2 in the

TiMet and Edwards seedling data was about 20% of the

main peak level (figure 3c, also in Southern data [35]), inter-

mediate between the levels in ROBuST and TiMet rosette data

(discussed above). These features of the expression profiles

showed no clear relationship with growth medium or

developmental stage.
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2.4. Absolute quantification of clock gene transcripts
The absolute quantification in the TiMet ros data, which is

based ultimately upon the certified amounts of synthetic

commercial standards [33], revealed wide variation in peak

RNA levels among clock genes in WT plants (figure 4). High-

est RNA levels were detected for LHY at 1000–2100 copies

per cell, similar to the control genes GAPDH and ACT2.

PRR9 was least abundant at the peak, with 40–70 copies

per cell; LUX and ELF3 peaked at 105–130 copies per cell;

PRR7, PRR5, GI and TOC1 at 120–270 copies per cell; ELF4
and CCA1 at 250–600 copies per cell. RNA copy number of

LHY was threefold greater than that of CCA1 (figure 4a,b).

Peak levels for the evening-expressed genes (figure 4f– j)
were slightly higher in Ws-2 than Col-0 plants, by 1.2-fold

(LUX) to 2.0-fold (ELF4), average 1.6-fold. Several clock gene

RNAs fell to low copy numbers per cell at the trough. Conse-

quently, rhythmic amplitudes (defined here as peak divided
by trough levels) also varied greatly among clock genes. The

TOC1 and ELF3 profiles showed only eight- to 20-fold ampli-

tude in Col-0, and generally smaller amplitudes in other,

mutant genotypes than the other clock genes (figure 4f,i),
whereas LHY, CCA1, GI, ELF4 and PRR5 RNAs showed over

100-fold amplitude. This distinction was consistent in other

datasets [21,34]. Amplitude estimates can be significantly

affected by variation in the very low trough levels, which

were higher in the TiMet sd1 dataset relative to the TiMet

rosette data for LHY and all the evening-expressed genes in

the Ws-2 accession, for example (figure 4). Transcripts with

high-amplitude profiles might be expected to control circadian

timing more effectively than the low-amplitude profiles of

TOC1 and ELF3.
2.5. Regulation of clock genes under environmental and
genetic manipulation

The TiMet project measured clock gene expression in LL and

DD following LD entrainment, in seedlings of two WT and

four clock mutant backgrounds (figure 5), revealing novel

aspects of clock gene regulation as well as replicating regulation

observed in many earlier, smaller studies. The results are dis-

cussed below with respect to the upstream regulators of each

gene, rather than the effect on the gene’s downstream targets.

The RNA data are therefore presented in semi-logarithmic

plots that show regulator activity even at low RNA levels.

Comparing the three environmental conditions, peak

RNA expression levels tended to fall in LL, consistent with

the loss of dark-dependent regulation. The acute gene induc-

tion at the dark–light transition, faster degradation of PRR

repressors in darkness and of the EC in the light are all

expected to enhance rhythmic amplitude in LD. Expression

levels of the clock RNAs were maintained in the first cycle

in DD, except for the strongly light-regulated ELF4 [43,44].

Comparing the six genotypes, mutations that removed the

repressors revealed the key connections in the clock circuit

(figure 1a). The gi mutation, in contrast, had small or negli-

gible effects on the timing and levels of expression except

for PRR5, as noted below.
2.5.1. LHY and CCA1

Our results are consistent with PRR repressors controlling both

the rising and falling phases of LHY and CCA1 expression at

the transcriptional level [14,16–18,45]; several observations

suggest that this activity is light-dependent. Both transcripts

retain strikingly higher expression in the prr7;prr9 double

mutant than in the WT, at ZT6–12 in LD and LL (figure 5a,b;

p , 0.05; 20- to 30-fold higher at ZT8), consistent with the

absence of repression from PRR9 and PRR7 proteins. By the

second day in LL, the trough of LHY and CCA1 expression at

ZT44 (68 h in figure 5) was also 20-fold higher than the WT

trough level at ZT36–38 (60–62 h). Comparing LD and LL

data with DD conditions revealed broader peaks of LHY and

CCA1 RNA in DD (figure 5k,l), consistent with slower degra-

dation of these transcripts in darkness [34,46]. In darkness,

however, LHY and CCA1 levels in the prr7;prr9 mutant behaved

very similarly to the WT, both during the falling phase in DD

(ZT28–38; figure 5k,l) and during the rising phase in LD

(ZT16–22; figure 5a,b). By dawn in LD, both transcripts

peaked at the WT level, consistent with previous reports
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Figure 4. Range of transcript abundance for clock genes in clock mutants. The bars show the highest and lowest mean values for the absolute abundance of
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Figure 5. Clock gene expression in wild-type plants and clock mutants in LD, and after transition to constant light (LL) or darkness (DD). Col-0 and Ws-2 WT, the
lhy-21 cca1-11 and prr7-3 prr9-1 double mutants, and the toc1-101 and gi-201 single mutants were grown in a 12 h photoperiod for 20 days, harvested through a
LD cycle and then transferred to LL (a – j) or DD (k – t; TiMet ros, dataset 2 of figure 1c). Transcript levels for clock genes were measured by qRT-PCR, including eight
external RNA standards to allow absolute quantification. (a,k) LHY, (b,l) CCA1, (c,m) PRR9, (d,n) PRR7, (e,o), PRR5, ( f,p), TOC1, (g,q) LUX, (h,r) GI, (i,s) ELF3,
( j,t) ELF4. The results are the mean of duplicate samples, error bars show SD. Open box, light interval; black box, dark interval; light grey box, predicted darkness
in LL; dark grey box, predicted light in DD.
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[12,13]. Thus, the misregulation of LHY and CCA1 in the light

in the prr7;prr9 double mutant was abolished during the

dark in LD.

Removing TOC1, the last of the PRR repressors to be

expressed, would be expected to allow an earlier rise in

expression of LHY and CCA1 during the night in the toc1
mutant under LD. This effect was relatively small (two- to

2.5-fold higher at ZT18, p ¼ 0.02). LHY and CCA1 levels in

toc1 mutants differed less than fourfold from WT at any

point in LD. The mutant phenotype was not enhanced

in the first DD cycle (figure 5k,l). In LL, however, LHY
and CCA1 expression in the toc1 mutant peaked at ZT22

(46 h in figure 5) rather than at ZT26 (50 h) in Col, reached

only 30–50% of WT peak level consistent with earlier data

[47], and fell much earlier than the WT (19- to 27-fold

lower at ZT30, time 54 h in figure 5a,b). Thus, the mole-

cular phenotypes of both prr7;prr9 and toc1 mutants were

light-dependent.

The elf3 mutant reduced peak expression of both LHY and

CCA1 by five- to 10-fold (figure 6a,b; electronic supplementary

material, figure S5g), with greatest effects at ZT20–24. This

effect is thought to be indirect, as the EC (comprising ELF4,

ELF3 and LUX) is proposed to repress the PRRs (figure 1a),

as well as LUX and ELF4 [10,19,20,22]. De-repression of PRR
expression in mutants of the EC should therefore explain the

effects of elf3 on LHY and CCA1.

2.5.2. PRR9 and PRR7

PRR7 was the most severely affected gene in the elf3 mutant

under LD, maintaining 25–85% of the WT peak level at all

times (figure 6d ), consistent with de-repression of the PRR7
promoter [21]. The resulting, 30- to 50-fold overexpression

of PRR7 in elf3 at ZT20–24 is consistent with reduced

expression of LHY and CCA1 at this time. PRR9 transcript

levels retained a 100-fold rhythmic amplitude under LD in

the elf3 mutant, indicative of ELF3-independent regulation

(see Discussion). Nonetheless, PRR9 expression was also

de-repressed from ZT10 in elf3 ( p ¼ 0.05), rising 2–4 h

before dawn (figure 6c), and presumably also contributing

to reduce LHY and CCA1 expression.

The early-expressed PRRs are thought to be repressed by

the later-expressed PRR5 and TOC1 (figure 1a). The toc1
mutation had modest effects on PRR9 or PRR7 profiles

under LD cycles (figure 5c,d), though the changes observed

(such as an early rise in PRR7 at ZT20–24) were not consist-

ently significant in the TiMet and ROBuST datasets, or in DD

in the TiMet data (figure 5n). toc1 also had little effect on LHY
and CCA1 levels in these conditions (figure 5a,b). In LL, how-

ever, removing TOC1 prevented full repression of the PRRs.

The trough of PRR7 expression was at a 10-fold higher

level than in the WT ( p , 0.05) and 8 h earlier (ZT12 rather

than ZT20, 36 h rather than 44 h in figure 5d ). Higher

expression of the repressor PRR7 at 38–52 h (figure 5d ) is

consistent with the lower peak expression of CCA1 and

LHY in toc1 under LL (figure 1a [9]). Taken together, these

results suggested that TOC1 repressor function was most

effective under constant light conditions, where the toc1
mutant was originally identified [48].

Light-dependent regulation was also evident in WT plants.

Peak PRR9 expression levels fell less than twofold in the first

cycle of DD ( p . 0.16; figure 5m). Peak PRR7 expression

tended to increase (threefold or less) in all genotypes in DD
(figure 5n; electronic supplementary material, figure S4c).

The gi mutant was an exception, which slowed the rise of

all the transcripts in DD except ELF3 and ELF4 (figure 5k–t;
electronic supplementary material, figure S5d). Peak

expression for some genes was reduced in gi below WT

levels, including PRR7 ( p ¼ 0.02–0.03 at ZT26–28 h). Trough

RNA levels in the WT plants rose more dramatically in

DD, for PRR7 and other clock genes (except for LHY): the

lowest expression of PRR7 in Col was 1.5+0.4 copies per

cell at ZT20 but 65+6.8 copies per cell at ZT40 (electronic sup-

plementary material, figure S4c). The Edwards dataset showed

similar de-repression of CCA1 and GI trough levels in DD (elec-

tronic supplementary material, figure S4a,b [34]). Lastly, we

tested the effect of CCA1 and LHY on the PRR transcripts,

using the lhy;cca1 double mutant. In the WT, the repression

of the evening-expressed genes by LHY and CCA1 in the

early day delays the expression of these and other target

genes until the evening. The double mutation advanced the

peak phase of all the other clock genes to ZT2–4, as expected,

except for ELF3 (see below). Despite the de-repression, peak

levels were not consistently increased relative to the Ws-2 con-

trol. Peak expression of PRR9, PRR7 and PRR5 (figure 5c–e)

was slightly reduced (up to twofold) in the lhy;cca1 background

under LD, consistent with earlier results [12]. By ZT8 (or ZT4

for PRR9), all the clock genes were expressed at lower levels

in lhy;cca1 than in the WT ( p , 0.01–0.04), consistent with

expression of all the PRR repressors. In the lhy;cca1 double

mutant in DD, however, the PRR genes had broad peaks that

rose earlier than in the WT (ZT22–30) but did not fall earlier

(ZT34–40; figure 5m–o; electronic supplementary material,

figure S4d). The absence of early repression in DD again

suggests that inter-regulation of the PRRs is light-dependent.

2.5.3. PRR5 and TOC1

The later-expressed PRRs are repressed by LHY and CCA1, so

longer expression of LHY and CCA1 in the prr7;prr9 double

mutants delayed their expression in LD and LL conditions

(figure 5e,f), as expected. In contrast, under DD conditions,

PRR5 expression in prr7;prr9 rose indistinguishably from the

WT at ZT26–34 h and peaked slightly (twofold) above the WT

level (figure 5o). The lhy;cca1 double mutant caused the phase

advance noted above, as the loss of LHY and CCA1 repressors

increased TOC1 levels in the early day. Peak TOC1 RNA levels

in the lhy;cca1 mutant did not change consistently from

WT levels in the TiMet data under LD (figure 5f), and were

lower than the WT in the ROBuST dataset ( p , 0.01; electronic

supplementary material, figure S5c).

Our detailed datasets also allowed us to compare

expression waveforms. For example, PRR5 rises and falls

10-fold within 5 h in both TiMet and ROBuST data

(figure 5e,o; electronic supplementary material, figures S3g,h,

S5a). This narrow peak indicates highly nonlinear control, con-

sistent with negative autoregulation and/or inhibition by

TOC1 [15,49]. Moreover, our results indicate that this PRR5
waveform depends upon GI function. The gi-201 mutant

had limited effects overall but slowed the fall in PRR5
mRNA in LD and LL (figure 5e), creating an asymmetric profile

in PRR5 RNA that was also observed in the gi-11 tested in the

ROBuST data (electronic supplementary material, figure S5a,b).

Repression by the EC might also contribute to the falling phase

of the PRR5 profile. Removing this repression in the elf3 mutant

resulted in moderate de-repression of PRR5 and TOC1 in the
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late night ( p , 0.01, ZT0/24; p ¼ 0.01 for PRR5 ZT22) and

potentially in the early morning ( p ¼ 0.06–0.08; ZT2–4;

figure 6e,f). In contrast, de-repression of the early PRRs in elf3
was greatest in the early night (see above), indicating that the

profile of regulators varies among the PRR family members

(see Discussion).

2.5.4. GI

The main peak of GI expression in the late day behaves simi-

larly to PRR5, with delayed expression in the prr7;prr9 double

mutant owing to longer expression of LHY and CCA1 under

LD and LL but not DD, and an advanced phase in the

lhy;cca1 double mutant (figure 5h,p). In contrast to PRR5
but similarly to PRR9 and PRR7, GI was de-repressed from

ZT10 in the elf3 mutant ( p , 0.01), consistent with [21] and

the Southern dataset (electronic supplementary material,

figure S5f ). The Southern dataset showed that the expression

of GI was similar in elf3 and elf4 mutants, but there was much

less effect on CCA1 in elf4 than elf3 (electronic supplementary

material, figure S5g), indicating that the effects of the EC

components can be distinct.

2.5.5. ELF3

The ELF3 rhythmic profile has low amplitude, as noted

above, with a trough at ZT2–4 and peaks at both ZT8 and

ZT18–20 in WT plants under LD in the TiMet and ROBuST

datasets (figure 5i,s; electronic supplementary material,

figures S3i– j, S5d). The trough of ELF3 expression is de-

repressed at ZT4 in the lhy;cca1 double mutant ( p , 0.01),

though there is no peak at this time, in contrast to all the

other clock genes. The rise in ELF3 expression is delayed in

the prr7;prr9 double mutant ( p , 0.01–0.05, at ZT6–10), con-

sistent with repression by increased levels of LHY and CCA1

(figure 5i). The elf3–4 allele contains a small deletion in the

coding region [50] and accumulates the mutant RNA. The

mutant expression profile suggests de-repression at ZT2

( p ¼ 0.06; figure 6i), consistent with lower expression of

LHY and CCA1 in elf3 (noted above).

2.5.6. ELF4 and LUX

The two remaining EC components tested, ELF4 and LUX,
share the evening expression peak determined by LHY/CCA1-
mediated repression, with a phase advance in lhy;cca1 and a

delay in prr7;prr9 in LD and LL conditions (figure 5g,j). Strik-

ingly, however, the phase separation among the clock genes

was lost in the lhy;cca1 double mutant under LL, such that

PRR9 and ELF4 peaked together at 50 and 66 h (discussed

below). Thus, LHY and CCA1 contribute to the 4 h separation

of peak times between PRR9 (54 h) and ELF4 (58 h) in the

Ws-2 control under LL. In DD, peak expression of ELF4 was

the most reduced of all the genes, to less than 10% of the LD

peak level ( p , 0.01 in Col and Ws; figure 5t), consistent with

the loss of light activation [44] and/or sugar signalling. ELF4
was also de-repressed earlier in the toc1 mutant under DD

than the other genes (ZT28–36 h; figure 5j), rising as early as

in the lhy;cca1 double mutant. Under LD conditions, the toc1
mutant de-repressed ELF4 at ZT2–6, earlier than WT. Peak

expression of LUX did not fall significantly in DD (figure 5q).

LUX was broadly de-repressed in the elf3 mutant, remaining

at the WT peak level at ZT6–22 h (figure 6g), in a similar pattern
to PRR7. This result is consistent with LUX binding to its cog-

nate promoter [20] resulting in negative autoregulation

(figure 1a [10]). ELF4 expression in the elf3 mutant, in contrast,

showed a pattern more similar to TOC1 and PRR5 (see above),
with de-repression only from ZT22–ZT6 h (figure 6j).

2.6. Alternative visualization gives new insights into
co-regulation of clock genes

Data visualization is critical in analysing the complex inter-

actions within the clock gene circuit, in order to generate

new hypotheses. Timeseries plots do not show these inter-

actions directly. They can be revealed in phase plane diagrams

that plot the levels of two components against each other

(figure 7), though this format is less familiar (see electronic sup-

plementary material). First, phase plane plots emphasize the

relative timing of clock components, rather than control by the

light : dark cycle. For example, GI rose without (before) TOC1,

especially in Col plants of the TiMet and ROBuST datasets

that were grown without exogenous sucrose. High TOC1
levels extended later than high GI, particularly in Ws-2 plants

of the TiMet datasets (figure 7a). Second, this visualization can

reveal interactions among the components plotted. Forexample,

figure 7b shows TOC1 RNA levels in younger plants were main-

tained at 35–55% of the peak level at ZT20–22, when CCA1
expression rose above 50% of its peak level. TOC1 levels were

lower for the same CCA1 level in rosette plants. The logarithmic

scale shows this more clearly (figure 7c). This suggests that

CCA1 protein is not yet an effective repressor of TOC1 at this

phase, especially in younger tissues.

Finally, the phase plane diagrams can show how the inter-

action of two genes depends upon a third regulator. Expression

peaks of PRR9 and ELF4 were far out of phase in the WT

(figure 7d), for example. Data from LL (filled symbols) suggest

a negative correlation in the subjective night, when ELF4 falls

as PRR9 rises. However, the two genes peak then fall together

in the lhy cca1 double mutant under LL, at ZT26 and ZT42

(figure 7e; equivalent to timepoints 50 and 66 h in figure 5),

creating a diagonal with a positive gradient (red dashed line,

figure 7f). PRR9 also had an earlier peak that was not shared

by ELF4 (ZT22 and ZT38, or 46 and 62 h in figure 5; black

arrowheads in figure 7f ). Both features were reproduced on

two successive cycles, though PRR9 expression was less than

1% of the WT peak level. Thus LHY, CCA1 and the LD cycle

all differentiate PRR9 expression from ELF4, but in their

absence, PRR9 and ELF4 expression profiles are similar for

much of the circadian cycle (six of eight timepoints in the

short, 16 h cycle of the mutant), presumably controlled by

the other PRRs and/or the EC. Likewise, phase plane diagrams

for the prr7;prr9 double mutant (electronic supplementary

material, figure S6) suggested that not only CCA1 and LHY,

but also the PRRs repress ELF4 in the WT. In addition to visu-

alization, many other aspects of data management benefit

significantly from online data infrastructure.

2.7. Online infrastructure for data sharing
Our open-source BioDare (Biological Data repository) [51] sup-

ports data from many small-scale experiments that collectively

represent a significant resource (table 1). Empirical evidence

indicates that these data are essential to understand complex

biological regulation, and mathematical analysis shows why
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this is the case (see Discussion). In addition to six rhythm-

analysis algorithms [52] and protocols for analysis, statistical

summary and visualization [53], BioDare facilitates data shar-

ing and public dissemination by providing a stable identifier

for each experiment. Detailed metadata (experimental descrip-

tion) ensure that the data can be reused appropriately. Results

can be compared across studies and laboratories (‘data
aggregation’) by searching the metadata for genotype,

marker gene and other terms (figure 8). Increased expression

of GI in the elf3 mutant, for example, is highlighted despite

the greater technical variability of manual assay preparation

in the Southern dataset compared with the later, robotized

assays in the TiMet data (figure 6h; electronic supplementary

material, figure S5f and Methods).



Table 1. Usage statistics of BioDare (Feb 2015), from originating groups and selected external users. An experiment represents a dataset similar to one of the
above-described studies, which includes multiple timeseries, from samples of multiple genotypes, assays or reporters and/or environmental conditions. Totals
include minor users that are not listed individually; the total number of data points is over 41 million.

research group location experiments % total experiments timeseries % total timeseries

A. J. Millar Edinburgh, UK 332 14 41 890 18

A. Hall Liverpool, UK 261 11 79 228 34

D. Bell-Pedersen Texas A&M, USA 138 6 1428 1

J. Agren Uppsala, Sweden 18 1 9370 4

K .J. Halliday Edinburgh, UK 230 10 5043 2

L. Larrondo Santiago, Chile 75 3 6429 3

M. Jones Essex, UK 89 4 3148 1

M. Hastings MRC LMB, UK 1071 45 58 770 25

S. Harmer UC Davis, USA 37 2 11 353 5

S. A. Kay USC, USA 38 2 12 972 6

All BioDare 2344 232 844

PEDRO

data
description

PEDRO

156 fields

naive
3705 fields

data
retrieval

text search
394 exp’ts

‘aggregate’
6 exp’ts

Figure 8. Computational infrastructure for systems chronobiology. Customized wizards in the PEDRO XML editor capture detailed metadata (right panel, showing CCA1 :
LUC in sample wizard). Rather than filling 3705 metadata fields for this experiment, as a naive spreadsheet would require, PEDRO captures the information with only 156
entries. After uploading the metadata and numerical data to BioDare, results can be displayed in the web browser (centre panel) with powerful secondary processing
functions. The left-hand sidebar in this screen has shortcuts to common tasks and recent activity. A naive text search for ‘CCA1’ returned 394 experiments (exp’ts),
whereas BioDare’s ‘aggregate’ function retrieved six specific results by searching the structured metadata, with secondary filters. The search shown (right panel) aggre-
gated qPCR assays of CCA1 in wild-type plants (see main text) including datasets 1, 3, 4 and 6 of figure 1c. The export button above the graph downloads the data shown
to a spreadsheet-compatible file.
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2.8. Optimizing clock models with public resources
One goal of such comparisons is to determine how much of

the available data is matched by a particular mathematical

model: the ROBuST and TiMet experiments were designed to

test models of the clock gene circuit under different growth

conditions. However, testing complex models against large

datasets requires skills that are rare among plant molecular

researchers. We therefore tested whether our comprehen-

sive data and better computational resources could make

modelling more accessible. The open-source SBSI allows

non-programmers to optimize model parameters in order to

match diverse data, on large, parallel computers [29]. As a

test case, we addressed a recognized limitation of the original

P2011 model [10], termed P2011.1.1. The model was developed

to understand circadian clock function under light–dark cycles

and, separately, under constant light. Following a transition

from LD to LL (as in figure 5a–j), the first peak in expression

of the combined LHY/CCA1 component under constant light

occurred at ZT28.4 h (52.4 h in figure 7a), about 2.5 h later

than in the TiMet ros data (as noted [25,54]). The model’s

light–dark function was replaced with the input signal step
function [55] to represent the LD–LL transition in the commu-

nity model exchange format, SBML [56]. The resulting model

P2011.1.2 was optimized in SBSI (see electronic supplementary

material), testing model simulations with many alternative

parameter sets against the TiMet ros RNA dataset, including

the LD–LL transition (figure 5a–j), and against circadian

period values for clock mutants and WT plants [29].

The optimized parameter set of model P2011.2.1 more clo-

sely matched the data, including an earlier peak of LHY/CCA1
in LL at ZT26.5 h (figure 9a) and a closer match to TOC1 and

GI profiles in LD (ZT10–12 h; figure 9b,c), while retaining

other qualitative behaviours. LHY/CCA1 expression rises in LL

after the PRR repressor proteins are degraded. Consistent with

this notion, removing TOC1, the last gene in the PRR repressor

wave, advanced the phase of the entire clock mechanism in LL.

Results for PRR7 are shown in figure 9d,e. PRR protein degra-

dation rates were not strongly affected in P2011.2.1; rather,

overall PRR levels were lower than in P2011.1.2 (not shown).

In the simulated toc1 mutant, the peak of LHY/CCA1 was 1.4 h

earlier than simulated WT in P2011.1.2, 2.5 h earlier in

P2011.2.1, but 4 h earlier in the data (figure 5a,b). The simu-

lations of PRR7 show the same improved timing of the new
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Figure 9. Model re-optimization. Comparison of measured transcript levels from figure 5 (experimental data, symbols), with simulation of models P2011.1.2 (old
model, dotted line) and P2011.2.1 (new model, solid line), which resulted from fitting to these data using SBSI. 0 – 24 h, LD; 24 – 72 h, LL. (a) LHY and CCA1
transcripts are combined in the model, so the average of LHY and CCA1 data is plotted. The peak of LHY/CCA1 under LL was delayed in the P2011.1.2 model (52.4 h)
relative to the peak in the data (50 h), which was closely matched by the P2011.2.1 model (50.5 h). (b) GI transcript, (c) TOC1 transcript and (d ) PRR7 transcript in
Col-0 WT. (e) PRR7 transcript in the toc1 mutant shows a greater phase-advance in LL than either model. Chi-square cost value for match to TiMet ros Col-0 data in
LD-LL was 20.2 for P2011.1.2, 7.6 for P2011.2.1. Chi-square cost for match to TiMet ros toc1 data in LD-LL was 39.7 for P2011.1.2, 13.1 for P2011.2.1.

Table 2. Optimization of model parameters from loose constraints. The starting P2011.1.2 model was optimized in SBSI to fit the TiMet ros dataset and
additional period constraints (see electronic supplementary material, Methods). Model, version number of the resulting model. PlaSMo ID, model identifier in
the PlaSMo resource. Job, computational job code. Start, the default parameters values from P2011.1.2 or nominal values (Nom). Range, the range of
parameter values that were searched, either as fold change above and below the P2011.1.2 values or as a fixed range. Set-up trials, the number of randomly
chosen parameter sets tested to initialize the optimization. Cost, the best cost value (closest fit to all constraints).

model PlaSMo ID internal job ID start range set-up trials cost

P2011.1.2 PLM_71 ver 1 — — — — 171

P2011.2.1 PLM_71 ver 2 .599 P2011.1.2 2 – 3� 5000 77

P2011.3.1 PLM_1041 ver 1 t30 P2011.1.2 100� 2 097 152 175

P2011.4.1 PLM_1042 ver 1 t34 Nom 0.001 – 10 67 108 864 270

P2011.5.1 PLM_1043 ver 1 t37 Nom 0.001 – 10 67 108 864 190

P2011.6.1 PLM_1044 ver 1 t40 Nom 0.0005 – 20 134 217 728 185
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model for the WT (figure 9d) and the toc1 mutant in LD

(figure 9e), but an earlier phase of the toc1 mutant data under

LL. Regulatory interactions among the PRR genes will repay

further analysis [9,10] in future models (see Discussion).

The computation time required for P2011.2.1 was only

approximately 30 core-hours, because the model parameters

were varied within only a narrow range (two- to threefold

change) from their starting values in P2011.1.2 [10]. The
P2011.1.2 parameters had been manually determined to

match a wide range of data and qualitative behaviours in the

clock literature; many were derived from the parent model

P2010 [14]. When the first model of a system is developed, in

contrast, most or all parameter values may be unknown. We

therefore tested our approach in such scenarios (table 2).

Allowing parameter values to differ by up to 100-fold from

the values in P2011.1.2 created a very large parameter space



rsob.royalsocietypublishing.org
Open

Biol.5

15
that was nonetheless centred on a known, viable region. In con-

trast, starting parameters from nominal values (0.1, 1, etc.) and

testing each parameter over the same range (such as 0.001–10)

removed that anchor. Viable parameter sets that gave cost

values similar to the unmodified P2011.2.1 were identified in

each test, with computation times up to four core years for

P2011.6.1, using the UK national supercomputing resource

HECToR. These parameter sets are not intended to replace

P2011.1.2 but to demonstrate that similar results can be

achieved by a more accessible approach using the TiMet data

and SBSI, without new programming or laborious, manual

model development. The P2011 model versions and the cog-

nate graphical network diagram (electronic supplementary

material, figure S2) are publicly accessible from the PlaSMo

repository and elsewhere (see appendix A).
 :150042
3. Discussion
3.1. Robust regulation of clock gene expression
Quantitative timeseries data are crucial to understand the

dynamics of any moderately complex regulatory system. As

understanding advances, more precise questions can be formu-

lated that demand both consistent and comprehensive datasets.

We provide such data for the RNA profiles of genes associated

with the Arabidopsis circadian clock, with an online resource

to facilitate comparisons within and across datasets. Our exper-

iments were designed to test clock function under the distinct

conditions required for separate studies, on light signalling

(in the ROBuST project) and carbon metabolism (in the TiMet

project), using different technical platforms. The results pre-

sumably include the variation previously observed among

experiments designed to be replicated across laboratories [57].

We compared two Arabidopsis accessions. Significant differ-

ences in circadian timing have been demonstrated among

Arabidopsis accessions, albeit using long-term, imaging assays

that integrate the effects of small timing changes over many

cycles [58–60]. Importantly, the rhythmic RNA profiles tested

here were remarkably consistent (figure 3). Progress in under-

standing the clock gene network must, in part, be attributed

to this robustness of circadian regulation.

Several clock genes are regulated with high daily ampli-

tude, more than 100-fold for LHY, CCA1, GI, ELF4 and PRR5
under LD (figure 4; electronic supplementary material,

figures S3 and S4 [21,34]), falling to low RNA copy numbers

per cell. Our data necessarily reflect the mean expression

across cells in the rosette, greater than 80% of which are in

the leaf mesophyll [61]. Nonetheless, the absolute calibration

of our RNA assays provides one approach for future estimation

of the average copy number for the cognate proteins.

The most striking variations of RNA profiles among WT

plants involved the acutely light-responsive genes GI and

PRR9. The ROBuST dataset showed the highest levels of GI
and strong induction of PRR9 at ZT2 (figures 2 and 3). This

is consistent with strong light induction, which might be

mediated by direct photoreceptor signalling and/or by indir-

ect sugar signalling. The absence of exogenous sucrose in the

ROBuST conditions was not the sole cause, as the TiMet sd2

data used the same, sucrose-free media but did not show

such strong GI induction (figure 3c). The lower growth temp-

erature in ROBuST conditions (178C rather than 20–228C in

other datasets) might also increase light responsiveness.
Consistent with this notion, both exogenous sucrose and

higher ambient temperature limit other light responses

[30,31].

3.2. Regulation of the PRR repressors
RNA profiles of the PRR gene family varied among datasets

in the WT under LD, as well as among conditions and geno-

types. The variable expression of TOC1 around ZT18

(figure 3b) awaits a mechanistic explanation, as do the de-

repression of multiple genes in DD (for example, figure 5n)

and of PRR5 in the gi mutant (figure 5e; electronic sup-

plementary material, figure S5b). TOC1 is thought to be an

active repressor at ZT18, so variable auto-repression is poss-

ible and might also explain variation in PRR5 expression at

this phase (figure 2g). Alternatively, TOC1 expression might

rise during a transition between one repressor in the early

night (such as the EC) and another in the late night (such

as LHY and CCA1).

The tight interconnections among the clock components

complicate the analysis of these data, though the resulting

combination of direct and indirect effects is now interpret-

able. For example, removing EC regulation in the elf3
mutant de-repressed the direct EC targets PRR9 and PRR7
in the early night, when the EC is active in WT plants.

PRR5 and TOC1 were noted as potential targets based on

mutant RNA profiles [10], but both genes were de-repressed

around dawn in elf3, suggesting that an indirect mechanism

owing to lower LHY and CCA1 levels is more significant

than the loss of direct regulation by the EC in the mutant.

PRR9 and PRR7 are both proposed EC targets (along with

ELF4 and LUX), yet PRR9 (and ELF4) retains rhythmic regu-

lation in the elf3 mutant under LD, whereas PRR7 (and LUX)

is more severely affected (figure 6). To understand such

differences in response, it will now be important to measure

the affinity of regulators for their target genes, extending

initial data [62]. Previous modelling results indicated that

the different daily profiles of the PRR genes allow flexible

responses to dawn and dusk [14], so the mechanisms that

generate the PRR profiles will repay further analysis [10,11].

Several results suggested that regulation by the PRR genes

is light-dependent. First, in the prr7;prr9 double mutant, LHY
and CCA1 expression was de-repressed during the day but

returned to match the WT profile at night in LD (figure 5).

One explanation might be that PRR9 and PRR7 (directly or

indirectly) antagonize the light activation of LHY and CCA1
during the day in the WT [14,63], and the absence of these

PRR proteins in the double mutant has little effect in darkness.

Consistent with this notion, the prr9 single mutant also showed

a day-time de-repression of CCA1 in the ROBuST dataset (elec-

tronic supplementary material, figure S5e), albeit less than in

the double mutant. However, the CCA1 profile in the prr7
single mutant was unaffected in the daytime, but de-repressed

2 h earlier in the night (electronic supplementary material,

figure S5e). Thus, inter-regulation of the early PRR genes is

important, in addition to regulation by TOC1 [10]. Second,

in the lhy;cca1 double mutant, PRR gene expression is

repressed to low levels at the end of the day in LD, consistent

with simultaneous, early expression of all the PRR repressors

in these mutant plants. In DD, however, the falling phase of

PRR expression is the same in WT and double mutant plants

(figure 5). The higher and earlier expression of the PRR RNAs

in the double mutant in DD does not appear to be effective in
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suppressing PRR expression. The faster degradation of the PRR

proteins in darkness presumably contributes to these effects; it

will be interesting to determine whether the interaction of the

photoreceptor PHYB with clock proteins (including TOC1

[64]) also mediates the light sensitivity of this process.

3.3. Effects of exogenous sucrose
Current models of the Arabidopsis circadian clock are necess-

arily based on disparate data, much of it derived from

seedlings grown on media containing high levels of sucrose.

The presence or absence of exogenous sucrose under the con-

ditions tested here affected the clock RNA profiles less, or at

least no more, than other experimental parameters, despite

the widespread regulation of plant genes by sucrose [41,65].

Consistent with this, effects of exogenous sucrose on clock

gene expression in WT plants have previously been reported

under very low light fluence rates or in the presence of photo-

synthetic inhibitors [40], in DD, CO2-free air or the starchless

pgm mutant [39,66,67]. PRR7 was induced in sugar-starved

conditions (extended DD and at night in pgm) and was

repressed by resupply of 3% exogenous sucrose (electronic

supplementary material, figure S7a). Only the TiMet rosette

study tested PRR7 in DD, finding increased PRR7 levels

(figure 5n), especially in the trough of the profile (electronic

supplementary material, figure S4c). Trough levels of CCA1
and GI were also raised in DD in the TiMet data, and in the

Edwards experiment that included 3% exogenous sucrose

(electronic supplementary material, figure S3 [34]). De-

repression of the trough levels in DD is neither specific to

PRR7 nor to sugar limitation. Transcript levels of the TOC1-

and PRR5-degrading F-box protein ZTL, and its homologues

LKP2 and FKF1, also rose slightly in sugar-starved conditions

(electronic supplementary material, figure S7b [67]), suggesting

one possible mechanism for de-repression of PRR7 via faster

degradation of PRR repressors.

3.4. Open resources for small-scale results
Our results will be useful to generate and test many hypoth-

eses beyond those reported here. The potential for such future

value might, in principle, justify the additional effort in cur-

ating and disseminating our data. In practice, future value

motivated little data sharing, compared with present value.

We therefore outline the mathematical understanding of

and empirical evidence for such present value, together

with practical steps that increased both present and future

value relative to the effort involved in sharing data.

No suitable community repository existed for our results.

One reason was the relatively large effort required to describe

accurately many small data files, which deters researchers

and resource developers from sharing such data [68]. The lar-

gest-scale omics and sequencing studies have different data

structures, motivations, stakeholders and economics, which

can facilitate data sharing [69] including exemplary resources

in the circadian field [70–72]. However, mathematical analy-

sis explains why the results of small-scale experiments

are often particularly valuable in understanding biological

systems. Gutenkunst et al. [73] showed that parameters

were ‘sloppy’ in dynamic models of a range of biological

regulatory systems, meaning that a wide range of parameter

values could generate the simple behaviours that they tested.

Rand et al. [74–76] tested how many parameter changes
could affect the dynamic behaviour of such systems. All

possible behaviours were tested and only a handful of beha-

viours could be readily achieved by changing parameters

(these behaviours have also been termed the ‘dynatype’

of the system, by analogy to the phenotype of an orga-

nism [77]). For circadian clocks, a change in period was the

most accessible behaviour: many different parameter changes

altered period under constant conditions [74]. The related,

empirical result is that genetic screens seeking mutants with

altered circadian period have not only identified clock com-

ponents, but also many genes that affect the clock less

directly [78,79]. Observing a change in period gives little evi-

dence for the role of the mutated gene in the plant and does

not strongly constrain any particular parameter in the model,

but rather has a small constraining effect upon a large

number of parameters, in agreement with Gutenkunst et al.
[73]. A measured period value can therefore easily be accom-

modated without fundamentally changing the model. In

contrast, manipulating the system to test less accessible beha-

viours provides strong constraints, albeit potentially on fewer

parameters [76]. It is much more likely that such results

would not be accommodated by any reasonable parameter

values, falsifying the current model and leading to new under-

standing during the development of a better model. Thus, the

number of manipulations tested is crucial; model analysis can

prioritize the most informative manipulations [80,81].

One consequence for experimental design is that the

number of manipulations is more important than the number

of components tested. This concept is familiar from the statisti-

cal clustering of microarray timeseries. The behaviour of a

single cluster mean can adequately represent hundreds of indi-

vidual transcripts, even for genes with complex light and

circadian regulation [82]. The individual transcript data are

more valuable in identifying coregulated, downstream genes

than in understanding the clock system upstream. Thus, tar-

geted qRT-PCR or reporter gene assays have been more

widely used in understanding the clock gene circuit, although

they lacked a data-sharing resource. Despite the limited justifi-

cation for costly omic assays, targeted data-sharing resources

[67,70] have ensured that a subset of transcriptomics data

have been reused effectively in clock studies.

Empirical evidence for the value of multiple manipula-

tions comes from 10 years of modelling the plant clock gene

circuit and output pathways. Constraining the models with

timeseries data from many conditions was a critical tool [83],

resulting in multiple, experimentally validated predictions.

Gleaning the data from electronic supplementary material or

by ‘scraping’ numerical values from published charts made

this possible. In practice, aggregating the numerical data has

often taken a major effort, after which the data were shared

on author web sites [25,84] or on BioDare [82,85,86].

BioDare [51] was developed to share timeseries data

from relatively small-scale experiments conducted within

individual laboratories (such as the Edwards, Southern and

McWatters datasets) or in collaborative projects with few part-

ners (such as ROBuST and TiMet). A regular user might upload

an experiment with several hundred timeseries each week

[87,88]. However, the user must also provide experimental

metadata that are sufficiently detailed to pinpoint the most rel-

evant experiment among hundreds to thousands of similar

studies (table 1). The resource must therefore streamline the

process of writing the structured metadata to minimize the

weekly effort involved, and then use the metadata to provide
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powerful search functions, for later users to discover relevant

data that were previously unknown to them. Figure 8 illus-

trates metadata capture using ‘wizard’ forms in BioDare,

data aggregation based upon the resulting metadata, and visu-

alization of the data from a small set of relevant experiments,

whereas a naive text search returned an impractically large

number of results.

The potential future value of shared data resulted in fewer

than a dozen datasets being shared in the early phases of

our projects. To provide immediate value from depositing

data, BioDare therefore offers data processing (detrending,

averaging) and visualization along with specialized circadian

data analysis [52,53]. Stable identifier URLs conveniently

direct collaborators to specific datasets and can be cited in

publications [88,89]. The citations will be tracked by the

Thomson Reuters Data Citation Index, giving a metric analo-

gous to publication citations to recognize data-sharing

contributions [90]. BioDare is available as a community

resource that could be linked to organism-specific databases

[91]. BioDare complements our repository of plant systems

models (PlaSMo) [92].

3.5. From visualization to modelling
Our analysis here was model-assisted but manual, so data visu-

alization was important. For example, phase-plane diagrams

can reveal conditional pairwise interactions including subtle

effects at low RNA levels, such as the correlation of PRR9
and ELF4 expression in the lhy cca1 double mutant under LL

(figure 6d–f ). In contrast, PRR9 and ELF4 expression are uncor-

related or anticorrelated in the WT under LD. Such changes in

dynamics are important in forming hypotheses during model

development. Expert modelling has a subjective element.

Objective machine-learning methods can also to contribute to

hypothesis generation [93], though understanding such a con-

ditionally connected network (electronic supplementary

material, figure S2) is challenging by any approach [94].

Dense transcriptional regulatory interactions might be

general for plant environmental response pathways [95], jus-

tifying investment in infrastructure to support their analysis.

Mathematical models can powerfully express hypotheses

about such circuits, so long as the starting model adequately

recapitulates most data. Qualitatively, the variation among

our datasets was smaller than the departure of the model

simulations from the data (figures 3 and 9). The existing cir-

cadian clock models are therefore equally applicable to the

several growth conditions tested, at least in leaf tissue.

The transition from LD to LL is one case where the model

departed from the data, to which it had not previously been

constrained (also noted in references [54,88]). The P2011.2.1

model’s 2 h late phase in LL (figure 9) is caused by the

slower degradation of PRR proteins in the light than in the

dark [16,45]. Without a dark night to reduce PRR levels,

their slow degradation delays the rise in LHY/CCA1 on the

first cycle in LL in the model. PRR9, PRR7 and PRR5 RNA

levels are reduced in the second cycle in LL in both model

and data (figures 5c–e and 9e), restoring an approximately

24 h period in subsequent cycles. It is reassuring but not

surprising that re-optimization of the model could better

match this behaviour, but the models’ detailed behaviour is

non-trivial. Reducing the levels of PRR proteins in the new

parameter set advanced the phase of the first peak in LL.

Simplified models that included only the PRR protein
changes also reduced the effect of the PRRs on the period

of the clock in constant light (data not shown), contradicting

the data. The re-optimization allowed multiple parameter

changes to advance the phase of the P2011.2.1 model under

LL while retaining the observed effects of PRRs on clock

period, such as the short period of the toc1 mutant (figure 9e).

Most significantly, this result was obtained using tools

designed to be accessible to biological researchers with no

specialist computing or mathematical skills. Development of

P2011.2.1 required no new programming, nor the hand-crafted

cost functions that were used to optimize previous models

[25,83–85], nor the laborious, expert parameter exploration

used to construct its parent models [10,14,96]. Our intention

was that the scarcity of these skills should no longer present

an insuperable barrier, though of course they remain beneficial,

not least to keep abreast of relevant method development [80].

To test whether this approach could assist new model develop-

ment, as well as adjustment of an existing model, we repeated

the parameter search within a wide range of values and/or

after setting P2011.1.2 model parameters to nominal values.

Greater computational power is required when there are

fewer constraints on the model’s parameter values; however,

viable solutions were identified (table 2) and suitable comput-

ing resources are increasingly accessible [97]. The approach and

infrastructure presented here allow a wider range of biologists

to engage with complicated models, which will be essential

tools to understand the mechanisms and physiological

functions of complex biological networks.
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Appendix A
A.1. Experimental procedures
Experimental methods were similar or identical to published

protocols [33,88,98], as detailed in the electronic supplemen-

tary material. Statistical significance of comparisons reported

in the results is from two-tailed t-tests compared with the cog-

nate WT plants at the same timepoint, unless otherwise stated.

Homoscedasticity is assumed, because all comparisons

reported are within individual datasets for the same PCR pri-

mers. Significance is not corrected for multiple comparisons

(reducing significance), nor for support from neighbouring

timepoints or replication across cycles or studies (which can

increase significance).
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A.2. Biodare and computational methods
The BioDare online resource (www.biodare.ed.ac.uk) uses a

desktop application to prepare metadata (describe exper-

iments). The XML editor PEDRO [99] was customized for each

experimental protocol to speed up metadata entry, as each

experiment can comprise several hundred samples. Numeri-

cal data are uploaded in a spreadsheet-compatible format,

with the XML metadata, and stored in a relational database.

Password-protected access allows controlled data sharing or

public dissemination. Searching the metadata (by genotype,

marker, etc.) allows aggregation of similar data from multiple

sources, followed by secondary processing (detrending,

normalization, averaging), visualization (figure 7a) and down-

load. Rhythm analysis in BioDare was recently described

[52,53]. Model optimization used SBSIVISUAL v. 1.4.5 [29] and

SBSINUMERICS v. 1.2 (see electronic supplementary material,

Methods). Graphical network diagrams used SBGN-ED in

VANTED [38].
A.3. Data, network diagram, model and code
accessibility

The accessibility of resources used in the publication is

summarized at the University of Edinburgh’s institutional

repository, at http://www.research.ed.ac.uk/portal/en/data-

sets/data-code-and-models-for-flis-et-al-rs-open-biology-2015

(fd297498-7d0d-4d57-9040-769af9c65212).html
A.3.1. RNA expression profile data

The RNA datasets reported here are publicly available from

BioDare with the permanent data identifiers listed below,

using login name ‘public’ with password ‘public’. Numbers

below match figure 1.

(1) Pinas-Fernandez and K.J. Halliday (2015) ROBuST RNA

timeseries data at 178C for clock model parameterisation.

BioDare accessions:

ROBuST sd for CCA1, BioDare accession 12820611467827,

https://www.biodare.ed.ac.uk/robust/ShowExperiment.act

ion?experimentId=12820611467827

ROBuST sd for LHY, BioDare accession 3492, https://

www.biodare.ed.ac.uk/robust/ShowExperiment.action?expe

rimentId=3492

ROBuST sd for PRR9, BioDare accession 12820610743262,

https://www.biodare.ed.ac.uk/robust/ShowExperiment.act

ion?experimentId=12820610743262

ROBuST sd for PRR7, BioDare accession 12820611319996,

https://www.biodare.ed.ac.uk/robust/ShowExperiment.act

ion?experimentId=12820611319996

ROBuST sd for PRR5, BioDare accession 12820611188065,

https://www.biodare.ed.ac.uk/robust/ShowExperiment.act

ion?experimentId=12820611188065

ROBuST sd for TOC1, BioDare accession 12820611587928,

https://www.biodare.ed.ac.uk/robust/ShowExperiment.act

ion?experimentId=12820611587928

ROBuST sd for GI, BioDare accession 12820606741450,

https://www.biodare.ed.ac.uk/robust/ShowExperiment.act

ion?experimentId=12820606741450
ROBuST sd for LUX, BioDare accession 12820610913763,

https://www.biodare.ed.ac.uk/robust/ShowExperiment.act

ion?experimentId=12820610913763

ROBuST sd for CAB2, BioDare accession 13228354371807,

https://www.biodare.ed.ac.uk/robust/ShowExperiment.act

ion?experimentId=13228354371807

ROBuST sd for ELF4, BioDare accession 12962296599986,

https://www.biodare.ed.ac.uk/robust/ShowExperiment.act

ion?experimentId=12962296599986

ROBuST sd for ELF3, BioDare accession 12962294335805,

https://www.biodare.ed.ac.uk/robust/ShowExperiment.act

ion?experimentId=12962294335805

(2) Flis, V. Mengin, R. Sulpice and M. Stitt (2015) TiMet

RNA timeseries data from rosette plants for clock model

parameterisation. TiMEt ros, BioDare accession 2841,

https://www.biodare.ed.ac.uk/robust/ShowExpe

riment.action?experimentId¼2841

(3) Flis, V. Mengin, R. Sulpice and M. Stitt (2015) TiMet RNA

timeseries data from elf3 mutant plants for clock model

parameterisation. TiMet sd1, BioDare accession 2842,

https://www.biodare.ed.ac.uk/robust/ShowExperiment.

action?experimentId¼2842

(4) Flis, V. Mengin, R. Sulpice and M. Stitt (2015) TiMet RNA

timeseries data from seedlings for clock model parameter-

isation. TiMet sd2, BioDare accession 2843, https://www.

biodare.ed.ac.uk/robust/ShowExperiment.action?

experimentId¼2843

(5) H. G. McWatters (2015) Clock RNA timeseries in light

and temperature entrainment. McWatters sd, BioDare

accession 3488, https://www.biodare.ed.ac.uk/robust/

ShowExperiment.action?experimentId¼3488

(6) K.D. Edwards and A.J. Millar (2010). Clock RNA time-

series in multiple photoperiods. Edwards sd, BioDare

accession 13227622661196, https://www.biodare.ed.ac.

uk/robust/ShowExperiment.action?experimentId¼1322

7622661196

(7) M.M. Southern and A.J. Millar (2015). Clock RNA time-

series in wild-type and mutant plants under red light.

Independent biological replicates are presented for this exper-

iment, with the same genotypes and markers tested in

replicates (1 þ 2) and (3 þ 4):

Southern sd replicate 1, Biodare accession 1322829828

8040, https://www.biodare.ed.ac.uk/robust/ShowExperi-

ment.action?experimentId=13228298288040

Southern sd replicate 2, Biodare accession 132276198

71305, https://www.biodare.ed.ac.uk/robust/ShowExperi-

ment.action?experimentId=13227619871305

Southern sd replicate 3, Biodare accession 1322835

7055348, https://www.biodare.ed.ac.uk/robust/ShowEx-

periment.action?experimentId=13228357055348

Southern sd replicate 4, Biodare accession 13228357

183121, https://www.biodare.ed.ac.uk/robust/ShowExperi-

ment.action?experimentId=13228357183121
A.3.2. Code

BioDare and SBSI are open-source and available from Source-

forge (www.sourceforge.net).

BioDare: Sourceforge project, http://sourceforge.net/pro-

jects/biodare/. The online resource is available at www.

biodare.ed.ac.uk.

http://www.biodare.ed.ac.uk
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SBSI: Sourceforge project, http://sourceforge.net/pro-

jects/sbsi/. Related materials, plugins and tutorials are

available at www.sbsi.ed.ac.uk.
 .royalsocietypublishing.org
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A.3.3. Graphical network diagram

The diagram of the Arabidopsis clock model (electronic sup-

plementary material, figure S2) is available from the

PlaSMo repository (www.plasmo.ed.ac.uk), which handles

a variety of XML file formats.

D. D. Seaton and A. J. Millar (2015), Graphical network

diagram of the Arabidopsis clock model P2011.1 in SBGN

PD: PlaSMo accession 1045 version 1, http://www.plasmo.

ed.ac.uk/plasmo/models/model.shtml?accession=PLM_10

45&version=1
0042
A.3.4. Models

A. Pokhilko et al. (2012), Arabidopsis clock model P2011.1.1

(published in Molecular Systems Biology, 2012): BioModels

identifier BIOMD0000000412 [100].

The Arabidopsis clock models below are available from the

PlaSMo repository (www.plasmo.ed.ac.uk) and will also be

submitted to Biomodels when the present publication has a
digital identifier. The model versioning convention is

described in the electronic supplementary material.

A. J. Millar and A. Hume (2015) Arabidopsis clock model

P2011.1.2: PlaSMo accession PLM_71 version 1, http://

www.plasmo.ed.ac.uk/plasmo/models/model.shtml?acces

sion=PLM_71&version=1

A. J. Millar and A. Hume (2015) Arabidopsis clock model

P2011.2.1: PlaSMo accession PLM_71 version 2, http://

www.plasmo.ed.ac.uk/plasmo/models/model.shtml?acces

sion=PLM_71&version=2

K. Stratford, A. Hume and A. J. Millar (2015) Arabidopsis
clock model P2011.3.1: PlaSMo accession PLM_1041 version

1, http://www.plasmo.ed.ac.uk/plasmo/models/model.

shtml?accession=PLM_1041&version=1

K. Stratford, A. Hume and A. J. Millar (2015) Arabidopsis
clock model P2011.4.1: PlaSMo accession PLM_1042 version

1, http://www.plasmo.ed.ac.uk/plasmo/models/model.

shtml?accession=PLM_1042&version=1

K. Stratford, A. Hume and A. J. Millar (2015) Arabidopsis
clock model P2011.5.1: PlaSMo accession PLM_1043 version 1,

http://www.plasmo.ed.ac.uk/plasmo/models/model.shtml?

accession=PLM_1043&version=1

K. Stratford, A. Hume and A. J. Millar (2015) Arabidopsis
clock model P2011.6.1: PlaSMo accession PLM_1044 version 1,

http://www.plasmo.ed.ac.uk/plasmo/models/model.shtml?

accession=PLM_1044&version=1
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