
CPT Pharmacometrics Syst Pharmacol. 2022;11:653–664.	﻿	     |  653www.psp-journal.com

Received: 1 October 2021  |  Revised: 16 March 2022  |  Accepted: 21 March 2022

DOI: 10.1002/psp4.12803  

A R T I C L E

Proarrhythmic risk assessment of drugs by dVm/dt shapes 
using the convolutional neural network

Da Un Jeong1   |   Yedam Yoo1  |   Aroli Marcellinus1  |   Ki-Suk Kim2   |   Ki Moo Lim1,3

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any 
medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and 
Therapeutics.

1Department of IT Convergence 
Engineering, Kumoh National Institute 
of Technology, Gumi, Korea
2R&D Center for Advanced 
Pharmaceuticals and Evaluation, Korea 
Institute of Toxicology, Daejeon, Korea
3Department of Medical IT 
Convergence Engineering, Kumoh 
National Institute of Technology,  
Gumi, Korea

Correspondence
Ki Moo Lim, Department of Medical 
IT Convergence Engineering, Kumoh 
National Institute of Technology, Gumi 
39248, Korea.
Email: kmlim@kumoh.ac.kr

Funding information
This research was partially supported 
by the Ministry of Food and Drug 
Safety (22213MFDS3922), the National 
Research Foundation of Korea (NRF) 
under the Basic Science Research 
Program (2022R1A2C2006326), and the 
Ministry of Science and ICT (MSIT), 
Korea, under the Grand Information 
Technology Research Center support 
program (IITP-2022-2020-0-01612) 
supervised by the Institute for 
Information & communications 
Technology Planning & Evaluation 
(IITP).

Abstract
Comprehensive in vitro Proarrhythmia Assay (CiPA) projects for assessing proar-
rhythmic drugs suggested a logistic regression model using qNet as the Torsades 
de Pointes (TdP) risk assessment biomarker, obtained from in silico simulation. 
However, using a single in silico feature, such as qNet, cannot reflect whole char-
acteristics related to TdP in the entire action potential (AP) shape. Thus, this 
study proposed a deep convolutional neural network (CNN) model using differ-
ential action potential shapes to classify three proarrhythmic risk levels: high, 
intermediate, and low, considering both characteristics related to TdP not only 
in the depolarization phase but also the repolarization phase of AP shape. We 
performed an in silico simulation and got AP shapes with drug effects using half-
maximal inhibitory concentration and Hill coefficients of 28 drugs released by 
CiPA groups. Then, we trained the deep CNN model with the differential AP 
shapes of 12 drugs and tested it with those of 16 drugs. Our model had a better 
performance for classifying the proarrhythmic risk of drugs than the traditional 
logistic regression model using qNet. The classification accuracy was 98% for 
high-risk level drugs, 94% for intermediate-risk level drugs, and 89% for low-risk 
level drugs.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
We suggested a deep convolutional neural network (CNN) classifier using  
dVm/dt as an input for assessment of drug's proarrhythmic risk, making it pos-
sible to classify drugs with high performance without using a dynamic model.
WHAT QUESTION DID THIS STUDY ADDRESS?
The classical assessment algorithms require high-computation resources and 
evaluate the Torsades de Pointes (TdP) risk by focusing on the ion channel 
changes by drugs. The proposed deep CNN model achieved better classification 
performance by using dVm/dt, which is derived from the action potential (AP) 
shape generated by electrophysiological characteristics of myocardial cells.
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INTRODUCTION

In developing a new drug, it is necessary to evaluate the 
drug's cardiac safety, the possibility of causing cardiac  
arrhythmias. The International Council on Harmonization 
(ICH) established guidelines for E141 and S7B2 to assess 
the potential of drugs to induce cardiac arrhythmias.3,4 
Among them, a nonclinical evaluation guideline, S7B, 
is a drug assessment strategy to evaluate the inducibility 
of Torsades de Pointes (TdP), one of the fatal arrhythmia 
symptoms, based on a human ether-à-go-go-related gene 
(hERG) channel current and a QT interval. This method 
can accurately classify high-risk drugs through a single 
analytical evaluation through hERG channel-based single 
assay evaluation focusing on ventricular repolarization.2 
Indeed, this method successfully has prevented the many 
drugs that can induce TdP from going on the market. 
However, due to its high sensitivity and low specificity, 
this guideline imposes strict regulations on even drugs 
that do not have the potential to induce arrhythmias, and 
negatively affects new drug development.5 As a result, 
some drugs that prolong the QT interval but do not in-
duce TdP were restricted from the market or discontin-
ued in the development of the drug having a beneficial 
potential.6 For example, ranolazine, phenobarbital, and 
tolterodine prolong the QT interval but do not cause TdP. 
Verapamil blocks the hERG channel but does not lead to 
TdP, and amiodarone prolongs the QT interval but only 
very rarely induces TdP.7 As an alternation of these classi-
cal ICH evaluation guidelines’ limitations that would halt 
the development of potentially valuable therapeutics, a 
Comprehensive in vitro Proarrhythmia Assay (CiPA) was 
launched in a Think Tank held at the US Food and Drug 
Administration (FDA) headquarters in 2013.7,8 Current 

CiPA teams are steering with the members of prominent 
organizations; the FDA, the Health and Environmental 
Science Institute (HESI), the Cardiac Safety Research 
Consortium (CSRC), the Safety Pharmacology Society 
(SPS), the European Medicines Agency (EMA), Health 
Canada, and the Japan National Institute of Health 
Sciences, Pharmaceutical and Medical Device Agency 
(PMDA).9

The CiPA paradigm assesses the proarrhythmic risk of 
drugs using in silico simulation with multiple ion chan-
nels as the comprehensive evaluation method instead of 
the single assay methods with only hERG channel or a sin-
gle associated electrocardiogram (ECG) characteristics.7,8 
The CiPA paradigm consists of four components, which 
are the in vitro assessment of drug effects in multiple ionic 
currents, the in silico computer modeling to predict risk, 
the in vitro ECG biomarker in phase I clinical trials, and 
in vitro effects on human stem cell derived ventricular car-
diomyocytes.8 The first part assesses the torsadogenic risk 
of a drug through in vitro experiments with multiple car-
diac ionic currents focusing mainly on hERG, late sodium, 
and L-type calcium currents. The second part estimates 
the drug toxicity using an in silico model mimicking the 
human ventricular myocyte, with in vitro dataset as input. 
The third part checks the unexpected in vitro effects on 
human stem cell-derived ventricular cardiac myocytes. 
The fourth part determines the unanticipated human im-
pact of drugs that may result from human-specific meta-
bolic characteristics through in vivo ECG biomarkers in 
phase I clinical trials.8

Recently, several studies have demonstrated that an 
in silico cardiac simulation is a valuable tool for pre-
dicting drug effects10,11 and assessing a drug's cardiac 
safety.12,13,14 As we mentioned above, the CiPA initiative 

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The deep CNN model proposed in this study showed drug TdP risk group classi-
fication performance almost similar to qNet logistic regression considering hERG 
dynamics, despite using APs obtained through in silico simulation without hERG 
dynamics. This result suggests that when assessing the proarrhythmic risk of the 
drug, it is necessary to consider the comprehensive physiological characteristics, 
such as AP of all ion channels changed by the drug and all myocardial cells ac-
cordingly, not only the specific ion channel.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
We proposed a deep CNN model using dVm/dt to classify the TdP risk of drugs 
into three levels: high-risk level, intermediate-risk level, and low-risk level. 
The proposed deep CNN model using dVm/dt waveform as an input can make 
an excellent performance by considering both characteristics related to TdP 
not only in the depolarization phase but also the repolarization phase of the 
AP shape.
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presented a method to confirm the influences of multi-
ple ion channels by drugs through in silico simulation 
using in vitro experimental data through patch clamps 
as inputs (the second component in CiPA). Crumb et al. 
identified 30 clinical drugs’ effects to the seven ion cur-
rents proposed by the CiPA initiative.15 Li et al.16 calcu-
lated a qNet, the net charge of ions passing through the 
cell membrane, using in silico simulation and confirmed 
the TdP-inducing potential of the drug through a logistic 
regression model using the qNet. Parikh et al. showed the 
better classification performance of TdP-inducing drugs 
in the logistic regression using qNet compared to other 
metrics commonly used as physiological characteristics 
of myocardial cells, such as the action potential period 
(APD90) and calcium diastole. They demonstrated that 
the higher sensitivity of qNet to the inhibition of the late 
sodium channel was related to the high classification 
performance through a global sensitivity analysis.17 In 
addition, Li et al. showed the importance of the hERG 
channel for assessing drugs’ cardiac risk by classifying 
TdP occurrence possibility of drugs into high-risk and 
low-risk groups through qNet calculated through in silico 
simulation considering hERG dynamic characteristics 
and in silico simulation without hERG. They validated 
in silico modeling with drug-hERG channel interaction 
can help improve the assessment of drug’ proarrhythmic 
risk.16,18

Several research groups have also conducted studies 
applying advanced algorithms, such as machine learning 
to evaluate the proarrhythmic drug risk. Lancaster and 
Sobie suggested a quantitative systems pharmacology 
approach combining physiological dynamic modeling, 
statistical analysis, and machine learning to address the 
issues in the classical assays of drug-induced cardiotox-
icity. They successfully developed the machine-learning 
classifier with the remarkable prediction of TdP risk 
using the metrics computed from the AP trace and intra-
cellular calcium trace.19 Polak et al.20 proposed a new al-
gorithm to predict the risk of TdP occurrence as a method 
for quantifying cardiac toxicity in the early stages of drug 
development. They extracted some in silico biomarkers, 
such as APD90, APD50, Pseudo ECG signals, QRS width, 
QT interval, early repolarization time, and late repolariza-
tion time from a cardiac safety simulator with a biophys-
ically detailed myocyte model using information about 
inhibition and exposure of ion channels. From the ex-
tracted features, they classified the risk of TdP occurrence 
of drugs by using various machine-learning algorithms 
of the decision tree, random forest, and support vector 
machine and proposed the empirical decision tree with 
the best classification performance as the optimal TdP 
risk assessment model (accuracy of 89%, moderate sensi-
tivity of 71%, and high specificity of 96%).20 Parikh et al. 

produced maximum classification accuracy performance 
of 85, 85%, and 86%, respectively, through binary classifi-
cations of logical regression, support vector machine, and 
natural network model, which use an inhibition rate of 
ion channels measured through in vitro experiments as 
direct feature inputs. Then, they suggested logical regres-
sion as an optimal classifier for assessing proarrhythmic 
risk.21

The studies we have’ just mentioned earlier proposed 
machine-learning models using in silico biomarkers gen-
erated based on data measured through in vitro exper-
iments or machine-learning models using raw in vitro 
experimental data as direct features. However, if not con-
sidering the uncertainty of in vitro dataset, some risks of 
over-interpreting minor differences between values may 
occur.22 Furthermore, using insufficient in vitro data-
sets to the machine-learning models, especially the neu-
ral network model, can occur overfitting or underfitting 
the model performance.23 In this study, we tried to solve 
this problem by using in silico waveform computed from 
bootstrapped in vitro datasets to be sufficient for machine 
learning. Thereby, we proposed a deep convolutional neu-
ral network (CNN) model using differentiation (dVm/dt) 
of the AP shape to classify the TdP risk of drugs into three 
levels: high-risk level, intermediate-risk level, and low-
risk level. The proposed deep CNN model using dVm/dt 
waveform as an input can make an excellent performance 
by considering both characteristics related to TdP not only 
in the depolarization phase but also the repolarization 
phase of the AP shape.

METHODS

Figure 1 shows an overall conceptual diagram of the pro-
posed algorithm for evaluating the proarrhythmic risk of 
the drug. The proposed method consisted of three steps as 
follows (Figure 1a). (1) To generate a sufficient number of 
drug experiment data, an in vitro patch experiment data 
was bootstrapped into 2000 drug samples. (2) The stage 
of in silico simulation computed the AP shape using the 
bootstrapped drug sample data as an input. (3) After dif-
ferentiating the computed AP shapes to get the slopes of 
entire waveform, the TdP risk of a drug is classified into 
three levels of high-risk, intermediate-risk, and low-risk 
through the proposed deep CNN model.

Pre-processing of in vitro 
experimental dataset

We used in vitro datasets of 28 drugs released on the CiPA 
project website (https://github.com/FDA/CiPA). The 

https://github.com/FDA/CiPA
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released datasets are the patch-clamp experimental data 
conducted by Li et al.16,18 and include the inhibition rates 
of calcium channel, hERG channel, inward rectifier potas-
sium channel, slow-delayed rectifier potassium channel, 
Kv4.3 channel, late sodium channel, and peak sodium 
channel according to drug concentration. These inhibi-
tion rates of seven ion channel currents were bootstrapped 
using the uncertainty quantification algorithm based on 
the Markov-chain Monte Carlo (MCMC) model24,25 to 
generate 2000 Hill curves, which are ion channel current 
graphs according to different concentrations. From each 
Hill curve, we got the half-maximal inhibitory concentra-
tion (IC50), which is a drug concentration when the ion 
channel current is blocked by 50%, and a Hill coefficient, 
which is a slope value at IC50. Finally, we used IC50s and 
Hill coefficients of 2000 bootstrapped for each drug in 
in silico simulation. We used the uncertainty quantifi-
cation algorithm implemented by Chang et al.16,24 with  

R programming language (https://github.com/FDA/CiPA/​
tree/Model​-Valid​ation​-2018/Hill_Fitti​ng/data).

In silico simulation protocol

To effectively identify drugs’ effect on the ionic channels 
of myocardial cells, we used the O’Hara Rudy ventricu-
lar cell model optimized for drug stability evaluation by 
Dutta et al.26,27 (Dutta-ORD). The optimized O’Hara Rudy 
model was modified by applying the following inhibition 
factors to the ion channel conductance of hERG channel, 
inward rectifier potassium channel, slow-delayed rectifier 
potassium channel, L-type calcium channel, and late so-
dium channel models.

(1)inhibition factor =
1

1 +
(

IC50∕[D]
)h

F I G U R E  1   Schematic of proposed algorithms. (a) Flow chart of the whole process; (b) the convolutional neural network model 
structure. AP, action potential; dVm/dt, differential action potential; IC50, the half inhibitory concentration

https://github.com/FDA/CiPA/tree/Model-Validation-2018/Hill_Fitting/data
https://github.com/FDA/CiPA/tree/Model-Validation-2018/Hill_Fitting/data
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Here, IC50 is half maximal inhibitory concentra-
tion, D represents the concentration of the drug, and 
h is the Hill coefficient. In silico simulations for drug 
effect were performed according to 1×, 2×, 3×, and 4× 
maximum plasma concentration, respectively, using a 
conductance-block equation (Equation 2), in which the 
IC50 and D reduce the maximal conductance of the j ion 
channel (gcontrol,j). The gi denotes the modified maximal 
conductance of the j channel by the drug effect. We first 
simulated the single cell simulation without any drug 
effect for the cell to reach the steady-state and save the 
cell's physiological state to use it as a uniform initial 
condition. Then, we produced 1000 AP shapes at a cycle 
length of 2000 ms under the initial cell condition in a 
steady-state through the in silico single cell simulation 
with drug effect. Among the 1000 AP shapes, we used 
the AP shape at maximal dVm/dt beat, which is at pacing, 
where the membrane potential variance is maximum, as 
the input of the deep learning model at the time of repo-
larization. Performing the in silico simulation with drug 
effects, we finally generated 8000 in silico AP shapes per 
drug (2000 bootstrapped samples × 4 concentrations). 
The membrane potential (Vm) of myocardial cells is ex-
pressed through the following equation:

where Itotal denotes the sum of ion channel currents 
passing through the cell membrane, and Istim denotes 
the current caused by an external stimulus. Cm is the 
capacitance of the cell membrane and was set to 1.0 μF 
in this study.27

The all in silico simulator was developed using the 
C++ programming language as the base code, supported 
by several libraries, such as the CVode, for solving the dif-
ferential equations. Additionally, the simulation worked 
out using CPU and GPU parallelization implemented 
with MPI and CUDA interfaces, respectively, to divide 
large simulation tasks. We used a single instruction mul-
tiple data method to process the abundant data in the par-
allel interface.

Deep CNN model train and 
performance evaluation

The structure of the deep CNN model proposed in the 
study is shown in detail in Figure 1b. We computed AP 

shapes with a cycle length of 2000 ms from the AP simu-
lation by the time resolution of 2  ms. Each AP shape 
has 1000 data points, and the dVm/dt waveform derived 
from the AP shape has 999 data points, which feeds into 
the CNN model as input. The model consisted of three 
1D CNN layers, the first CNN layer (16, 1), the second 
CNN layer (8, 1), and the third CNN layer (4, 1) with 
four Kernels. Each CNN layer was connected to the 1D 
Max Pooling layer. The first Max Pooling layer was ap-
plied with a four-sized window moving by two spaces, 
and the other Max Pooling layer was applied with a 
two-sized window moving by two spaces. Subsequently, 
after dropping out at a rate of 20%, it passed through a 
Flatten layer and a Dense layer with 20 neurons (nodes). 
Then, finally, it classified the TdP risk of the drug into 
three levels: high-risk, medium-risk, and low-risk. We 
applied the ReLU activation function to all CNN and 
Dense layers except the output layer, which uses the 
softmax function to classify the risk level. The proposed 
deep CNN model was trained using the “Adam” opti-
mization and Category cross-entropy loss functions. 
Among the 28 drugs released by CiPA, we used 12 drugs 
for training the model: “bepridil,” “dofetilide,” “qui-
nidine,” “sotalol,” “cisapride”, “terfenadine,” “ondan-
setron,” “chlorpromazine,” “verapamil,” “diltiazem,” 
“ranolazine,” and “mexiletine” and used the remaining 
16 drugs for the test: “ibutilide,” “vandetanib,” “azi-
milide,” “disopyramide,” “domperidone,” “pimozide,” 
“astemizole,” “droperidol,” “clarithromycin,” “clozap-
ine,” “risperidone,” “tamoxifen,” “loratadine,” “nitren-
dipine,” “nifedipine,” and “metoprolol” (Table  1). We 
implemented all codes for the machine learning and the 
evaluation of the model using Python 3.8.8 languages in 
the Spyder console. We shared the simulation code of 
our proposed model in the Supplementary Materials S1.

Performing in silico simulation using the bootstrapped 
drug samples as inputs, as we mentioned above, we gen-
erated a total of 224,000 AP shapes (2000 bootstrapped 
samples × 28 drugs × 4 concentrations). We randomly ex-
tracted 500 AP shapes per concentration among the AP 
shapes of 12 training drugs, a total of 2000 AP shapes 
per drug, and differentiated them to use in the training 
of our proposed model. To evaluate the model's classifi-
cation performance, we used the 10,000-testing protocols 
presented in the CiPA project (Figure 2).16 First, we made 
a 10,000 dataset of 16 drugs by randomly extracting one 
sample from 8000 dVm/dt shapes in each drug. Next, the 
model evaluating process produced 10,000 receiver oper-
ating curves (ROC) of high-risk, medium-risk, and low-
risk drugs through 10,000 datasets. Then, we statistically 
evaluated the model performance by calculating the area 
under the curve (AUC) from 10,000 ROC and performing 
a likelihood ratio test to assess the model's goodness of fit. 

(2)gi = gcontrol,j

[

1+

(

[D]
[

IC50
]

j

)]−1

(3)
dVm
dt

=
1

Cm

(

Itotal + Istim
)
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T A B L E  1   List of 28 drugs

Proarrhythmic risk level

Train drugs Test drugs

Name Cmax (nM) Name Cmax (nM)

High-risk Quinidine 3237 Disopyramide 742

Sotalol 14,690 Ibutilide 100

Dofetilide 2 Vandetanib 255.4

Bepridil 33 Azimilide 70

Intermediate-risk Cisapride 2.6 Clarithromycin 1206

Terfenadine 4 Clozapine 71

Chlorpromazine 38 Domperidone 19

Ondansetron 139 Droperidol 6.33

Pimozide 0.431

Risperidone 1.81

Astemizole 0.26

Low-risk Verapamil 81 Metoprolol 1800

Ranolazine 1948.2 Nifedipine 7.7

Ditiazem 122 Nitrendipine 3.02

Mexiletine 4129 Tamoxifen 21

Loratadine 0.45

Abbreviations: CiPA, Comprehensive in vitro Proarrhythmia Assay; Cmax, maximum plasma concentration; Tdp, Torsades de Pointes.
It accumulated the confusion matrices of 10,000-test using 16 test drugs (a), and all 28 drugs (b). All drugs were selected by the CiPA research group and 
categorized into high-, intermediate-, and low-risk levels according to the TdP risk. The drugs dataset consists of 12 for training and 16 for the test decided by 
clinical cardiologists and electrophysiologists based on publicly available data and expert opinion.

F I G U R E  2   Testing algorithm for evaluating the model performance; this algorithm was suggested by the CiPA research group based on 
the central limit theorem; AUC, area under the receiver operating curves; CiPA, comprehensive in vitro proarrhythmia assay
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The likelihood ratio test assesses the model fitness using 
a positive likelihood rate (LR+) with a value range of one 
from infinity and a negative likelihood rate (LR−) with a 
range of zero to one, which were calculated from the sen-
sitivity and specificity of the model.28

 

Here, TP is the true positive and denotes a case where the 
model predicts the true answer as true. TN is the true nega-
tive and represents a case where the actual false answer is 
predicted as false. FP is the false positive, indicating that the 
actual false answer is incorrectly predicted as true, and FN is 
the false negative, meaning that the case where the actual 

true answer is incorrectly predicted as false. In addition, we 
evaluated the performance of the deep CNN model with the 
normalized cumulative confusion matrix of 10,000 confu-
sion matrices generated through 10,000 tests and calculated 
accuracies and F1 scores. Here, the F1 score is the harmonic 
mean of sensitivity (recall) and precision and can evaluate 
the model's performance considering the imbalance in the 
TdP risk labels of drugs used for the test.
 

RESULTS

Figure  3 and Table  2 show the results of evaluating the 
performance for classifying the risk of TdP occurrence 
of drugs through the deep CNN model proposed in this 
study. The classification performance of each model was 

(4)Sensitivity (Recall) =
TP

TP + FN

(5)Specificity =
TN

TN + FP

(6)LR+ =
Sensitivity

1 − Specificity

(7)LR− =
1 − Sensitivity

Specificity

(8)Accuracy =
TP + TN

TP + TN + FP + FN

(9)Precision =
TP

TP + FP

(10)F1 score = 2 ×
Precision × Recall

Precision + Recall

F I G U R E  3   Histogram results of the 10,000-test using 16 test drugs. Distribution of AUCs in the 10,000 ROC curves for high-risk drugs 
(a), intermediate-risk drugs (b), and low-risk drugs (c); (d) distribution of final model accuracy; (e) F1 scores distribution of the 10,000 
confusion matrices. AUC, area under the ROC curves; ROC, receiver operating curves
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tested using a set of 10,000 drugs generated randomly for 
each test drug, and AUC was calculated from 10,000 ROCs 
generated according to 10,000 repeated tests. Figure 3a–c 
shows AUCs distribution in 95% confidence intervals for 
the TdP risk levels of 16 test drugs classified through the 
proposed model. When classifying high-risk drugs, AUC 
of the deep CNN model was 0.98 (95% confidence inter-
val: 0.94–1.0), which was improved from that of logistic 
regression using qNet obtained through in silico simula-
tion considering hERG dynamic characteristics proposed 
by Li et al. (0.89 with 95% confidence interval from 0.94 
to 0.95). However, the AUC for low-risk drugs was 0.89 
(0.82–0.91), lower than the classification result of low-risk 
drugs in the hERG dynamic logistic regression model. The 
TdP risk level classification performance of the proposed 
deep CNN models was the lowest for low-risk drugs; when 
classifying intermediate-risk drugs, the AUC was 0.94 
(0.78–1.0).

To statistically verify the differences among the three 
risk levels of drugs classified through the proposed deep 
CNN model, we performed the likelihood ratio test and 
calculated an LR+ and an LR−. As a result, low-risk drugs 
were 8.8 (median of LR+ with 95% confident interval from 
2.2 to infinity) times more likely to be accurately classified 
as low-risk level. Intermediate-risk drugs were 7.7 (1.92 –  
infinity) times and high-risk drugs 6.0 (4.0–12.0) times 
more likely to be accurately classified as intermediate-
risk level and high-risk level, respectively. In addition, the 
likelihood of high-risk drugs being classified as other risk 
levels, not high-risk level, was close to zero (median of  
1/LR−  =  ~454,545 times), and there was no likelihood 

that medium of 1/LR−, and the possibility of medium-
risk drugs and low-risk drugs being classified as other risk 
levels was 3.4 and 4.5 times lower, respectively.

Figure 4 shows the cumulative normalized confusion 
matrices for the classified TdP risk level of drugs as 10,000 
test results of the proposed deep CNN model. Figure 4a 
is a normalized cumulative confusion matrix that per-
formed 10,000 tests using 16 test drugs, and Figure 4b is a 
normalized cumulative confusion matrix for all 28 drugs. 
The proposed model classified the three cardiac toxicity 
risk groups of drugs at once, resulting in 81% (56–88%) 
accuracy for the 16 test drugs and 83% (61–93%) accuracy 
for the 28 drugs. Furthermore, the final F1 score of the 
proposed deep CNN model was 0.81 (0.56–0.88) for 16 test 
drugs and 0.83 (0.60–0.93) for all drugs.

DISCUSSION

This study proposed a deep CNN model using dVm/dt 
shape as a method for evaluating nonclinical heart tox-
icity of drugs. The previously proposed assessment al-
gorithm for drug toxicity classified the TdP risk level 
based on changes in ion channels due to drugs measured 
through in vitro experiments.15–18,20 These algorithms 
calculated and used biomarkers for the assay through 
the inhibition rate of six to seven ion channels affected 
by drugs; the CiPA research groups calculated the qNet 
as the sum of ion charges passing through six ion chan-
nels (hERG channel, inward rectifier potassium channel, 
slow-delayed rectifier potassium channel, Kv4.3 channel, 

T A B L E  2   Comparison of model performances for classifying the proarrhythmic risk of drugs

Model

Logistic regression 
using qNet without 
hERG (CiPA) [15]

Logistic regression using qNet (CiPA) 
with hERG [16]

Proposed deep CNN model using 
dVm/dt

All drugs All drugs Test drugs All drugs Test drugs

AUCs High 0.86 (0.81–0.90) 0.988 (0.95–1.0) 0.89 (0.84–0.95) 0.97 (0.89–1.0) 0.98 (0.94–1.0)

Intermediate – – – 0.93 (0.76–0.99) 0.94 (0.78–1.0)

Low 0.86 (0.82–0.90) 0.901 (0.88–0.93) 1.0 (0.92–1.0) 0.92 (0.85–0.96) 0.89 (0.82–0.91)

LR+ High 2.01 (1.61–2.84) 8.05 (4.03–9) 12 (4.5–1e+6) 8.75 (2.92–20.00) 6.00 (4.00–12.00)

Intermediate – – – 6.95 (2.06–inf) 7.71 (1.92–inf)

Low 5.00 (3.33–12.5) 7.5e+5 (8.75–1e+6) 4.5 (2.3–5) 16.89 (3.17–inf) 8.80 (2.20–inf)

LR– High 0.118 (1.8e-6–0.284) 0.0677 (1.13e-6–0.18) 1.1e-06 (1e-6–0.3) 0.13 (2.05e-6–0.33) 2.20e-06 
(2.1e-6–2.3e-6)

Intermediate – – – 0.21 (0.09–0.77) 0.29 (0.14–0.80)

Low 0.556 (0.395–0.833) 0.25 (1e-6–0.263) 0.11 (1.2e-6–0.23) 0.22 (0.11–0.53) 0.22 (0.20–0.55)

Accuracy – – – 0.83 (0.61–0.93) 0.81 (0.56–0.88)

F1 score – – – 0.83 (0.60–0.93) 0.81 (0.56–0.88)

Abbreviations: AUC, the area under the receiver operating curve; CiPA, Comprehensive in vitro Proarrhythmia Assay; CNN, convolutional neural network; 
LR+, positive likelihood ratio; LR−, negative likelihood ratio.
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L-type calcium channel, and late sodium channel mod-
els) and the qInward as the sum of charge changes pass-
ing through two ion channels (L-type calcium channel 
and late sodium channel).24 The deep CNN model pro-
posed in this study uses dVm/dt, which is derived from the 
AP shape generated by electrophysiological characteris-
tics of myocardial cells. The AP shape varied depending 
on the ion channel changed by the drug and the changes 
of the integrated ion channels. In the previous study, we 
predicted the changed ion channel from these AP shapes 
through a simple artificial neural network (ANN) model.29 
Furthermore, we validated it by successfully predicting 
the ion channel mainly affected by the drug from the AP 
shapes generated under a specific drug condition.29 The 
proposed ANN model estimated the changes of the ion 
channel conductance due to three kinds of drugs: ibuti-
lide (slow-delayed rectifier potassium channel), dofetilide 
(hERG channel), and diltiazem (L-type calcium chan-
nel) from the difference signal between the control AP 
shape that had not affected anything and drug-affected 
AP shape. AUCs for each drug was 1.00 for ibutilide, 
0.88 for dofetilide, and AUCs for dofetilide (specificity 
and sensitivity; 0.99 and 1.00 for ibutilide, 1.00 and 0.79 
for diltiazem, 0.90 and 0.90 for dofetilide). In this study, 
we used the dVm/dt shape to classify the proarrhythmic 
risk of the drug without a free-drug condition. The pro-
posed deep CNN model can achieve better classification 
performance than the classical models that evaluate drug 
toxicity by focusing on the ion channel change caused by 
drugs. In addition, it showed excellent results, exceeding 
the performance of our other study—Yoo et al. developed 
the ANN model using nine in silico features consider-
ing the morphological information of the AP trace and 
transient calcium trace, including the qNet and qInward, 
which are the ion net charge features.30

In several studies, the dVm/dt was identified to be 
helpful to detect the occurrence of TdP or the drug ef-
fects.31,32 Because when drugs make a blockage in the ion 
channels, the dVm/dt in the depolarization phase is re-
duced; Passini et al. observed the main effect of lidocaine 
and mexiletine to the peak sodium through a decreased 
maximal dVm/dt.31 Tomek et al.32 used the dVm/dt  
as the standard for detecting the early after depolariza-
tion formation, which initiated TdP. However, as Akanda 
et al.33 reported in their experimental study, ion channel 
blockage causes a decrease not only in the depolariza-
tion phase but also in the repolarization phase of the AP 
trace. In this sense, we hypothesized the whole dVm/dt 
waveform when the AP shape occurs would be better to 
detect drug-induced TdP compared to the single dVm/dt 
value in the depolarization. To empirically validate our 
hypothesis about dVm/dt and find the optimal inputs 
for assessing the drugs’ cardiac risk, we tested several in 
silico waveforms related to TdP, including the maximal 
dVm/dt in the depolarization. As shown in Table S1, the  
dVm/dt shape has the best performance to classify  
the risk of drug toxicity. Thereby, we finally suggested 
the dVm/dt shape in this study.

To objectively compare with the classification perfor-
mance of the logistic regression using qNet proposed by 
Li et al., we classified all 28 drugs through the deep CNN 
model (Figure S1; Table 2). The AUCs of three risk levels 
for all drugs classified through the proposed model was 
0.9 or higher; the AUC of high-risk drugs was 0.97 (0.89–
1.0), the AUC of medium-risk drugs was 0.93 (0.76–0.99), 
and the AUC of low-risk drugs was 0.92 (0.85–0.96). The 
proposed model significantly improved the classification 
performance over the qNet logistic regression model cal-
culated through in silico simulations without considering 
hERG dynamic characteristics; the AUCs of high-risk and 

F I G U R E  4   Confusion matrix for classification of drug's proarrhythmic risk
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low-risk drugs were 0.86 (0.81–0.90) and 0.86 (0.82–0.90), 
respectively. Compared with the hERG dynamic qNet lo-
gistic regression model, the AUCs of the proposed model 
was 1.8% lower for high-risk drugs (AUC median of 0.988 
with 95% confidence interval from 0.84 to 1.0) but 2.1% 
higher for low-risk drugs (AUC median of 0.901 with 95% 
confidence interval from 0.88 to 0.93).

Among three classification models, the likelihood of ac-
curately classifying the high-risk drugs was highest in the 
proposed deep CNN model; the high-risk drug was 8.75 
times more likely to be classified as high-risk level (me-
dian of LR+; 2.01 times for qNet-logistic regression with-
out hERG and 8.05 times for qNet-logistic regression with 
hERG). The hERG dynamic qNet logistic regression model 
was the highest for the low-risk drugs, being 7.5e+5 times 
more likely to classify the low-risk drugs as low-risk level, 
followed by the deep CNN model (LR+; 16.89). The qNet-
logistic regression model without hERG dynamic was 5.0 
times more likely to classify the low-risk drugs as low-
risk level. The proposed deep CNN model was 7.6 times 
less likely to classify high-risk drugs into other TdP risk 
levels. Still, the hERG dynamic qNet logistic regression 
model was 14.8 times lesser, and the qNet-logistic regres-
sion model without hERG dynamic was 8.5 times lesser. 
However, the proposed deep CNN model had the most 
likelihood of classifying low-risk drugs into other TdP risk 
levels with LR− of 4.5. In contrast, the hERG dynamic 
qNet logistic regression model and the hERG dynamic-free 
qNet-logistic regression model were 4.0 times lesser and 
1.79 times lesser, respectively.

The dVm/dt used in the proposed deep CNN model was 
calculated through in silico simulation using the Dutta-
ORD model without considering the hERG dynamic. The 
CiPA research group noted the importance of considering 
drug-induced hERG dynamic properties in integrated ion 
channel models when using in silico simulations to assess 
the TdP risk in drugs.18 In addition, as can be seen from 
the TdP risk classification results of drugs using the qNet-
logistic regression model they progressed, the distribution 
and classification accuracy of in silico biomarkers may 
vary depending on the presence or absence of dynamic 
characteristics of the hERG channel.16,18 Surely, with the 
use of the hERG dynamic results, the classification re-
sult of our proposed model may also be slightly reduced 
compared with the present performance. However, the 
proposed deep CNN model achieved almost similar per-
formance to the hERG dynamic-qNet logistic regression 
model using dVm/dt obtained from in silico simulation, 
not considering the hERG dynamic.

It is essential to verify the consistency of drug data 
used in evaluating the proposed model.23 Training or 
testing the model using 50 samples or less data increases 
the risk of overestimating or underestimating the model 

performance.22 This study used 28 drugs and only 16 drugs 
in the model test. In general, it is well known that in the 
medical field, if the number of samples does not exceed 30, 
normality is not satisfied, which means the sample group 
can reflect the population well.34 In addition, the ordinal 
logistic regression works with the assumption that input 
data are independent of each other.16,35,36 However, the 
used drug dataset are conjunctly correlated with each other. 
Thereby, we followed the 10,000-testing algorithm pro-
posed by the FDA in the CiPA initiative.16 This algorithm 
is based on the central limit theorem, which states that if 
random sampling is performed a sufficiently large number 
of times on a sample of <30, the variance of the dataset 
becomes small and approaches a normal distribution.37 
To evaluate the statistical significance in the fitness of the 
deep CNN model, we performed a likelihood ratio test. In 
general, probability used for performance evaluation of ar-
tificial intelligence models or probabilistic models is used 
as statistics to confirm the possibility of a specific phenom-
enon being observed from the parameters. However, in the 
likelihood ratio test, likelihood is a statistic for inferring 
the most likely parameter in a particular phenomenon.28 
Accordingly, LR+ ranges between one and infinity, and the 
closer to infinity, the higher the possibility that the TdP risk 
level of a particular drug is more likely to be classified in 
the appropriate risk level than other risk levels. Likewise, 
LR− ranges between zero and one and denotes that the 
closer to zero, the greater the association with a specific 
risk level. Accordingly, as LR+ is very high and LR− is very 
low, a more remarkable discrimination ability is obtained. 
Consequently, the deep CNN model with dVm/dt as input 
proposed in this study has excellent identification ability.

The 16-drug data used to verify the model have data 
imbalances according to the TdP risk levels (four high-risk 
drugs, seven intermediate-risk drugs, and five low-risk 
drugs). Therefore, to prevent the proposed model from 
being underestimated or overestimated due to this data 
imbalance, the model was evaluated through the F1 score, 
including ROC curves and accuracy. It is why ROC can-
not consider the difference in the number of data between 
classes.38,39 In contrast, precision and recall can confirm 
the model's classification performance considering the 
difference in the number of data. Accordingly, the harmo-
nious mean of precision and recall, F1 score, allows the 
model to be appropriately evaluated considering the drug 
data imbalance according to the TdP risk levels.38

To find the optimal CNN model for assessing drugs’ 
cardiac risk, we tested the classification performance by 
changing the model parameters and structures, such as 
the number of neurons, the ratio of dropout, and the lo-
cation of the batch normalization layer. Among several 
CNN models tested, we showed the structures and the 
performances of five representative models in Table  S2. 
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Comparing the AUCs of each categorized drug toxicity, 
we decided on the present deep CNN model as the best 
parameter model with the highest classification accuracy.

Two methods are usually used to quantify the uncer-
tainty of in vitro datasets.24,31,40 The first is to directly boot-
strap the in vitro dataset based on the MCMC and compute 
the AP shapes, which we used in this study.24 The second 
one calculates the AP shape by setting random parameters 
in the AP simulation.31,40 The former method can reflect the 
generalization of in vitro experimental data but requires an 
effective computing process, such as parallelization to han-
dle large datasets. In contrast, the latter approach is fast, 
but there is doubt whether that can reflect the generaliza-
tion of in vitro data.24 Considering the possibility of reflect-
ing in vitro experimental datasets in this study, we used the 
former uncertainty quantification method.

The proposed deep CNN model used the dVm/dt wave-
form computed from in silico simulation to assess the 
proarrhythmic risk of a drug. Because the CNN model 
captures the morphological information of the waveform, 
the somewhat low time resolution of our AP shape might 
affect classification performances. In fact, when testing 
our proposed model using a new test set changing the ini-
tial data points from the resting state until the right-after 
AP upstroke to random values, the classification perfor-
mance was slightly reduced (Table S3). However, our pro-
posed model still classified the high-risk drugs better than 
the qNet logistic regression model, which indirectly de-
noted that our CNN classifier does not depend on a rough 
calculation dVm/dt during the AP upstroke.

Even though it does not know the exact physiological 
meaning of the extracted machine-learning features from 
the proposed model, we expect they should be related to 
TdP because the dVm/dt waveform has information of the 
whole AP shape, including the repolarization, plateau 
periods, depolarization, etc. The dVm/dt shapes can also 
be calculated from the AP shapes measured through in 
vitro experiments. If our proposed model is trained and 
validated using actual dVm/dt waveform of the in vitro AP 
shape, we think it could be utilized both in silico and in 
vitro. The proposed deep CNN model has been trained and 
tested using limited drug data. Therefore, if the proposed 
model is verified and calibrated with more experimental 
data, it could be used as an auxiliary system at the stage 
of evaluating drug stability in the new drug development 
laboratory.
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