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In their response to the COVID-19 outbreak, governments face the dilemma
to balance public health and economy. Mobility plays a central role in this
dilemma because the movement of people enables both economic activity
and virus spread. We use mobility data in the form of counts of travellers
between regions, to extend the often-used SEIR models to include mobility
between regions. We quantify the trade-off between mobility and infection
spread in terms of a single parameter, to be chosen by policy makers, and
propose strategies for restricting mobility so that the restrictions are minimal
while the infection spread is effectively limited. We consider restrictions
where the country is divided into regions, and study scenarios where mobi-
lity is allowed within these regions, and disallowed between them. We
propose heuristic methods to approximate optimal choices for these regions.
We evaluate the obtained restrictions based on our trade-off. The results
show that our methods are especially effective when the infections are
highly concentrated, e.g. around a few municipalities, as resulting from
superspreading events that play an important role in the spread of
COVID-19. We demonstrate our method in the example of the Netherlands.
The results apply more broadly when mobility data are available.

1. Introduction

The pandemic of COVID-19, caused by the coronavirus SARS-CoV-2, had, by
mid-November 2020, infected more than 50 million people in over 200 countries
and led to more than a million deaths. It is unlikely that the spread can be fully
controlled in the near future and without the deployment of effective vaccines.
Strategies are aimed at curbing exponential growth in case numbers and hospi-
talizations, predominantly to keep national health systems from becoming
overburdened and to reduce infection pressure for people with a high risk of
severe outcomes. Such strategies are limited to personal protection and hygiene,
social distancing measures, reducing contacts and mixing/mobility. Although
the virus is present globally, all countries implement their own strategies and
sets of measures.

At any given moment in the outbreak, there is a mix of countries and regions
where the virus is temporarily under control, countries where the epidemic is
decreasing and countries where the epidemic is increasing. After an initial
peak in cases, countries remain at risk for second and subsequent peaks, even
when no cases are reported in the country for long periods of time. As in prin-
ciple everybody is susceptible to some degree, not reaching herd immunity
after the initial wave of infection leaves a large susceptible population that can
sustain subsequent outbreaks [1]. These new outbreaks can be triggered by
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infected individuals entering the country from outside, as a
result of increased global mobility. Nationally, sustained trans-
mission at relatively low levels can lead to new large
(exponentially growing) outbreaks after the initial peak
because control measures are relaxed or behaviour changes
with respect to (social, temporal and spatial) mixing and per-
sonal protection/social distancing. Mixing increases the
number of new contact opportunities that an infected individ-
ual has in the population and reduced effectiveness of
personal protection and social distancing increases the prob-
ability per contact of transmission. Combined, these effects
can lead to more transmission. Increased mixing not only
reflects larger groups of individuals but also reflects contacts
with individuals from a larger geographical range, allowing
infected individuals to have contacts with people from regions
where infection pressure may hitherto be (very) low, causing
clusters of cases in new areas.

Mobility between areas plays a potentially important role
in increasing transmission, but measures aimed at restricting
mobility also have a potentially large social and economic
impact: mobility and economic activity are often studied as
two sides of the same coin [2]. Where, in the initial wave of
infection, countries to a large extent imposed national mobi-
lity restrictions, the containment strategies for preventing
subsequent waves of infection can perhaps be achieved by
more regional or local mobility restrictions. This has the
advantage of reducing the social and economic burden on
society, but also has the risk that the restrictions may not be
sufficiently effective and need to be scaled-up after all to a
national level at some later point in time. It is, however,
unclear how one could gauge the effectiveness of regional
restrictions based on realistic mobility patterns specific to
the country, balancing trade-offs between mobility and trans-
mission. It is also unclear how large a ‘region” should be for
effective containment and how different choices for recogniz-
able regions (for example, administrative regions such as
provinces, large cities, or postal code regions).

In this paper, we provide a framework to evaluate the
effectiveness of regional strategies aimed at restricting mobility,
allowing for a range of choices of how regions are character-
ized, using the Netherlands as a case study. This is essential
to be able to determine the scale at which interventions can
be effectively imposed or lifted and addresses one of a range
of key modelling questions for COVID-19 and future pan-
demic outbreaks [3]. We base the framework on actual
mobility patterns in the Netherlands. We distinguish between
extreme situations where infection is distributed evenly
between areas and situations where infection is highly concen-
trated in a restricted area, for example as a result of a
superspreading event. We show that regions defined on the
basis of mobility patterns provide better strategies than regions
based on administrative characteristics, and that focusing on
administrative regions therefore leads to sub-optimal strat-
egies. We also quantify and explore the nonlinear relation
between mobility and outbreak size for a range of choices of
trade-off between mobility and transmission.

2. Methodology

In this section, we describe the overview of our approach. Given
a certain set of regions, we envision a situation where mobility is
allowed within the region, but mobility between the regions is

not allowed. The main aim of this paper is to devise regions
that allow for as much mobility as possible, yet restrict infections
as much as possible. For this, we need to strike a careful balance
between mobility and infections, which we formalize in terms of
a trade-off parameter that policymakers need to impose.

This section is organized as follows. We start in §2.1 by speci-
fying the kind of mobility strategies that we consider in this work.
Next, in §2.2, we introduce a way to quantify the performance of
such strategies, by formulating the trade-off between mobility and
infection spread as an explicit optimization problem over the var-
ious choices of regions described in §2.1. This trade-off is
described in terms of the number of infections, for which we
rely on an SEIR model that we introduce in §2.3, and mobility.
In our SEIR model, the infections are described in terms of com-
partments that correspond to particular regions, and the
infection is spread between regions by mobility between them.
Our SEIR model takes such mobility into account, and relies on
mobility information originating from telecommunication data.

The optimization problem that formalizes our trade-off
between mobility and infection containment is inspired by com-
munity-detection algorithms, and is complex to solve explicitly.
In §2.4, we describe how to rigorously and heuristically analyse
such problems. In particular, we provide heuristics that generate
strategies with high performance. We close this section by describ-
ing how the various divisions in regions can be evaluated in §2.5.

2.1. Strategies for mobility restrictions

We consider mobility restriction strategies of the following kind:
given a division of the country into regions, we consider the
scenario where movement is allowed within these regions, and
disallowed between these regions. We represent the country by
a set of atomic areas A. These areas are considered the smallest
possible geographical units between which it is feasible to
enforce mobility restrictions. Then, a region is represented by a
subset D C A between which mobility is allowed. Finally, a div-
ision is represented by a partition D = {Dy, ..., Dip}. In our use
case, we consider Dutch municipalities to be atomic areas.

Many administrative divisions that might serve as examples
for regions D already exist. For example, we could use the div-
isions of the Netherlands and its municipalities into its 12
provinces, or 25 so-called security regions. An advantage of
using such divisions is that they are already known so that
it may be easier to communicate, and thus enforce, mobility
restrictions based on them to the broad public. However, a disad-
vantage is that these divisions have been historically determined
by decisions of governance, and thus their borders do not
necessarily effectively reflect the actual movement of people
throughout the country. As a result, mobility restrictions based
on them may not be the most effective.

An illustrative example is the province of Flevoland (equal to
the security region Flevoland). Almere, the most populous city of
Flevoland, lies close to Amsterdam, where many of Almere’s citi-
zens work. Our mobility data show that more than 90% of the
mobility leaving Almere also leaves the province of Flevoland,
as can be seen in figure 4. Therefore, choosing the division into
provinces or security regions would disproportionately affect
the people of Almere in terms of mobility. In §2.4, we provide
a method to obtain divisions based on the mobility data, by
applying community detection methods. In figure 4, we see
that divisions obtained by this method do consistently place
Almere in the same region as Amsterdam.

Another disadvantage of using existing administrative div-
isions is that these are, by their very definition, inflexible and
hence cannot be tailored to the specific epidemiological situation.
In §2.4, we provide a method to obtain divisions that do take
epidemiological information into account.
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2.2. Objective

On the one hand, freedom of movement has both economic and
intrinsic value. On the other hand, it also facilitates the spread of
the disease. In essence, the problem for control is to find a trade-off
between mobility and infection containment, given the epidemiolo-
gical characteristics and normal mobility patterns. In this section, we
provide a way to formalize this trade-off to allow its characterization.

2.2.1. Trade-off parameter

To formalize the trade-off between public health and mobility,
we introduce a trade-off parameter y. This parameter can be
interpreted as the number of movements between areas that we
are willing to restrict in order to prevent the occurrence of a
single further infection. A higher value for y thus favours more
severe restrictions. The choice for this trade-off parameter reflects
societal values and is hence a political choice that should be
made by politicians or policy makers. Therefore, we refrain
from giving advice about a specific suitable value, but instead
provide a method that advises a strategy given a choice for y.

2.2.2. Time horizon

Suppose that a certain set of mobility restrictions is in place. We
consider some time horizon H representing the number of days
that the restriction will be in place, and count the number of infec-
tions and movements before this horizon. This time horizon should
thus not be too long, as it coincides with the duration that restric-
tions are in place and sometimes one needs to quickly respond to
changes in the infection spread. Due to the delay to go from a con-
tact moment to an infection, the time horizon should also not be too
short, as otherwise the effect of the imposed restrictions cannot
reasonably be observed. In this work, we use a time horizon of
30 days as an example.

At the end of this time horizon, a new division into regions
may be chosen based on the status of the epidemic at that
moment in time, thus allowing for a dynamical update of the
strategy of mobility restrictions.

2.2.3. Objective function

The above considerations lead to the objective function
Qyu(D) = M(D; H) — ¥G(D; H), 2.1

where M(D; H) and G(D; H) represent the number of movements
and infections, respectively, that occur before the time horizon H,
given a division D. Note that in this formulation the current status
of the epidemic, ie. the number of infectious and susceptible
people at the start of the period H, is included because the value of
G(D; H) depends on that initial status. The objective function (2.1)
should be interpreted as follows: given divisions D and D', if
Qyu(D) > Quu(D), then D is preferred over D' with respect to
the trade-off given by y. Hence, the objective function establishes
an ordering among the divisions. The goal of this study is to provide
amethodology that, given y and H, finds a division D with a (locally)
optimal Q,, (D).

2.2.4. Estimating mobility

The company Mezuro has a platform that produces mobility pat-
terns based on telecom data. It provides information about the
average number of people that move between the different munici-
palities in a given time period; in our case study this is the period
from 1 March 2019 up to and including 14 March 2019. Given a div-
ision, the mobility between two municipalities in the same region is
estimated by the average mobility observed over these two weeks.
The mobility between two municipalities in different regions is
assumed to be zero, corresponding to full compliance to the restric-
tions. By using a daily average, we lose the difference between
weekdays and weekends. Also, the period on which the average

Y
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Figure 1. The SEI,R, compartmental model within municipality i. U, T stand for
‘Untested” and ‘Tested'. The rate of new infections S; — E; consists of a local part
within municipality / and a non-local part which depends on infectious people
from other municipalities via mobility to and from these municipalities.

in our mobility data is based is obviously before the COVID-19 out-
break. We interpret this data as being the mobility benchmark: this
is what people would travel if COVID-19 were not present. Thus,
any mobility that is less arises through the governmental and
societal measures that are put upon our society.

2.2.5. Estimating infections

Infection dynamics are described by a modified version of a com-
monly used compartmental SEIR model [4], where people can be
either susceptible (S), exposed (E), infectious (I) or removed (R).
Exposed people are infected but become infectious after a latent
period. Removed people are recovered from the disease, assuming
life-long immunity, or passed away caused by the disease. Differen-
tial equations govern the rates of infection spread between and
within the different compartments. In our model, we capture the
spatial component of infection spread, population distribution,
and connectivity between different regions. This model is explained
in the next section.

2.3. Region-based epidemiological model

We propose a modified SEIR model that incorporates mobility.
Firstly, to take into account the spatial component and popu-
lation distribution, we divide the total population N into n
smaller groups, designating spatial distinct areas with popu-
lation size N;, i€[1,2,...,n]=A, such that N=3Y " N
Such an approach has been commonly used in epidemiological
models since pioneering work in the mid-nineteen nineties [5-
10]. In the context of COVID-19, metapopulation and network
models have been used to study effects of mobility restrictions
for subdivisions in municipalities and provinces [11-14]. We
call the groups atomic areas. Using municipalities in the Nether-
lands would set =380 (based on 2018). To potentially model
control and behavioural effects on mobility better for SARS-
CoV-2, we distinguish between tested and untested individuals
in infectious and removed compartments, indicated by the super-
scripts T and U, respectively. Figure 1 shows the different
compartments. Because there are two infectious and two
removed compartments, we abbreviate it to SELLR,. Others use
a similar approach to modelling SARS-CoV-2 [15,16].

To model movements between different atomic areas, we
introduce the mobility parameter M;;(t), which is interpreted as
the number of individuals from atomic area j who visit atomic
area i at time f. If areas are taken as municipalities, then we
can use Mezuro mobility data as a proxy for M. People are
assumed to always return home at the end of every day, i.e.
visits to other locations are assumed to be brief.

In the SEIR model, an important parameter is the transmission
rate 5. We assume the number of contacts per person per unit time
to be independent of the population size, which is called standard
incidence. In this case, Bis the product of the contact rate ¢ (contacts
per person per unit time) and the transmission probability of the
virus €. Our model aims to capture the reduction in contacts a
person has when their mobility is restricted. A lower contact rate
translates into a lower transmission rate of the virus.

To achieve this in our mobility setting, we split ¢ in local con-
tacts within one’s atomic area j, and non-local contacts resulting
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Table 1. Values of the parameters in our epidemic model.

name

fractlon tested
 fraction local contacts
” |nfect|ous perlod
Iatent penod
v ba5|c reproductlon number
peventon mesue efﬁcacy e
” effectlve reproductlon number (W|th preventlon measures)” -
transmlssmn probablllty per contact W|th |nfect|ous person. -
” average contact rate (unique persons) -
mtransm|55|on rate i ol contcs S
” transmission rate via m0b|I|ty related contacts S

from travel to any other another atomic area 7, as described by the
M;;. We assume local contacts to be a fraction p of the overall
average contact rate; cjoc=pc. In the population of size N, the
total number of meetings is cN/2, assuming a contact is only
between two people, of which a fraction p is now accounted
for locally. The remainder of contacts are made through travel-
ling people who visit other areas and mix with the individuals
present there. There are }_; . , Mj; travelling people. We calculate
the contacts per travelling person per unit time using

Cmob = (1

) N
P2 > ijea Mij
In a system where we impose no restriction on mobility, we have an
overall average contact rate equal to ¢, but when mobility between
regions is restricted, the overall average contact rate decreases.

We define Bioc = £Cloc and Pimob = ECmob. We next explain how
Bioc and Pmob can be incorporated in the SEL,R, model. New
infections arise by three different mechanisms. (i) Locally, infec-
tious people infect susceptibles within their atomic area i,
(i) susceptibles from area i visit area j and get infected, or (iii)
infectious people from area j visit area i and infect susceptible
inhabitants of region i. We assume that tested infectious people
minimize their contacts to only local contacts, so that they do
not play a role in spreading the virus to other areas.

This results in the following mean-field differential equations
for the dynamics of the model:

dsi®) _ Si(H)

s _ T U
a Bk,c = (I () + I (#)
U() Mvav(t))
~ Bno +I7 5
b]ZD( N; N;
dE;(t) Si(t)
dt :Bloc N i (t))
S 17" Ei(®)
+Bmob N; Z (M]1 Mij)_T,
jED
dif(v  E  IT®)
=qa -,
dt v 10}
dI’ () E(t) RE0)
dt =0-a—= o
drRT(H)  IF ()
dt
drRP(®)  I7(h)
and =1,
dt 10}

value source
115 estimated
. 1/2 g . iest|mated S
5 days ”Deng et a/ [17]
4days B bshorter than |ncubat|on perlod [18 19]
s Lietal [20]
” 50% » . bestlmated
125 - 50% of Ry
Dot e R‘f}"; . 25 S
1385 ” ”Mossung et al [21]
0.165 Buzhee
0.141 Brnob = Cmob€

Here atomic area i is by convention part of region D. We have the
following parameters: a is the fraction of people which gets tested, v
is the latent period and o is the duration of the infectious period.

We assume these parameters to be constant. For the fraction
of people who get tested this is not entirely realistic: this fraction
depends on the test capacity and government regulations, which
are subject to change over time. However, for the relatively short
time-periods that are simulated, this fraction can reasonably be
considered constant. Estimates of all parameters can be found
in table 1. Summation over j€D means we only allow travel
from atomic area i to and from atomic area j if it is within the
same partition D as atomic area i, where D € D.

It is estimated that the basic reproduction number Ry of
COVID-19 is in the range [2, 3] in a population without additional
measures such as social distancing, sneezing in one’s elbow and
regular hand-washing [20]. In our model, these measures are not
modelled explicitly, but they are accounted for by using an effective
reproduction number Rq without mobility restrictions smaller
than 2. This corresponds to a situation where all mobility is
allowed combined with preventive measures being in place, result-
ing in a lower R.¢ and hence a lower &. For exposition, we use a
value R = 1.25. For such a value, the effective Rx(D) including
the mobility measures will be smaller than 1 when no mobility is
allowed, so that an effective choice of mobility restrictions can in
fact significantly reduce and contain the infection spread.

The choice of £ is based on this effective reproduction
number Reg in the situation where there are no restrictions, so
that all mobility is allowed. Reg is calculated as the dominant
eigenvalue of the next generation matrix (NGM) [22]. This calcu-
lation can be found in §D in the electronic supplementary
material. For R = 1.25, we have £=0.0238.

2.3.1. Initialization of the model
To run our model, we further need to decide where the infections are
located at the start of the time horizon. We call this the model initiali-
zation. We initialize the model by choosing the number of people that
reside in each compartment for each municipality. We distinguish
two kinds of initializations: synthetic initializations and historical initi-
alizations, the latter based on data from the Dutch National Institute
for Public Health and the Environment (RTVM).! The synthetic initi-
alizations provide insight in the spread of the infection based on our
SELR, model, and the performance of the various regional sub-div-
isions, while the historical initializations show to what extent these
insights generalize to practical settings.

For the synthetic initializations, we start by choosing the
number of exposed inhabitants for each municipality and set the
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Figure 2. Difference in concentration of infectious people after initialization. The model is initialized with either evenly distributed, historical, or concentrated
distributions of active infections. For the synthetic initializations, 1000 people are exposed and 10 days are simulated. The active infection density equals the
number of infections within the municipality divided by the national total number of infections. The population density equals the municipality population divided

by the total population.

remainder of the populations to susceptible. In a deterministic
approach, these numbers do not need to be integers. In a stochas-
tic setting, non-integer values are rounded (see §B in the electronic
supplementary material). For the spread of the initial exposures,
we consider two extreme cases. In the first case, a fixed fraction
of each municipality’s population is set to exposed. In the
second case, we place all exposed individuals in one municipality.
After the exposures are set, we simulate the model for 10 days so
that sufficiently many exposures have led to infections and new
exposures, because in practice this is the point when the outbreak
is detected and the measures are introduced. This leads to two
synthetic initializations that we will refer to as evenly distributed
and concentrated, respectively. The evenly distributed initialization
mimics a widespread outbreak while the concentrated initializa-
tion represents a superspreader event. See §C in the electronic
supplementary material for details.

For the historical initialization, we assume that daily updates
are available on the cumulative number of confirmed infections
in each municipality. Based on these daily cumulative numbers,
the number of active tested infections can be estimated by the
difference between the cumulative numbers at time t and one
infectious period before that. The number of untested infections
can be found using the assumption that a fraction a of the popu-
lation is tested. The number of exposed individuals can be found
by looking ahead one latent period. A more detailed description
of these initializations can be found in the supplementary
material (see §C). Figure 2 shows how the infections are distrib-
uted throughout the country in each of these initializations.

To quantify the concentration of the infections, we compare
the distribution of the infections over the municipalities to the
distribution of the population over the municipalities. For this,
we introduce an entropy-type measure. Let pi™ denote the frac-
tion of infectious individuals that live in municipality i and let
pF°P denote the fraction of the population that lives in municipal-
ity i. If the infections would be distributed evenly, then these two
distributions would be equal. We measure the concentration of
the infections by 1 — e Pk, where Dy denotes the Kullback-
Leibler divergence from the infection distribution (p™);c4 to
the population distribution (p/")ic4. Note that this measure
does not depend on the total number of infections. When each
municipality has the same percentage of infected individuals,

the concentration will equal 0. On the other hand, when all infec-
tions are located in the same municipality, then it will be close to
1. This allows us to quantify the concentration of the infections
for our initializations on a scale from 0 to 1. Synthetic initializa-
tions are close to 0 and 1, respectively, while historical
initializations have intermediate values. The concentration
values of initializations based on the historical data obtained
from RIVM are shown in figure 3. In the beginning of the epi-
demic, there were a few local outbreaks, resulting in a high
concentration. As the outbreak became more widespread, the
concentration went down, reaching a minimum at the beginning
of April. The period after April is characterized by small local
outbreaks, leading again to higher concentration values.

2.4, Optimization

The quantification of Q,,; (D) in equation (2.1) is computationally
intensive. Firstly, because it involves computing the number of
infections at the end of the time horizon and secondly, because
the number of possible divisions D is enormous. It is therefore
not feasible to find the global optimum. Therefore, we will
resort to heuristic optimization methods. To do this, we will iter-
ate the Louvain algorithm [23], which can find partitions that are
local optima with respect to the following manipulations [24]:
moving a single element from one set to the other and merging
together two sets. This algorithm is able to optimize a wide
range of functions over partitions [25]. However, each re-
evaluation of the score involves running a simulation in our
setting, and this method is computationally expensive if the
initial division of atomic regions A consists of many small
elements. For example, at the finest sub-division possible in
our setting, municipality-level, the optimization takes more
than 24 h, based on the 380 municipalities in the Netherlands.
To improve on this, we define coarser sub-divisions as starting
points for the optimization procedure. Instead of letting Louvain
operate at the level of single municipalities, we will start from an
initial division of the municipalities into sub-regions that will not
be further divided by the algorithm. This way, Louvain is
guaranteed to result in a division that cannot be improved
upon by merging two regions or by moving one sub-region to
another region [24]. There are multiple ways to choose such
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Figure 3. The concentration values corresponding to distributions of infections according to the RIVM data over time. The dotted lines show the concentration levels

of the synthetic initializations. Data obtained from https:/data.rivm.nl/covid-19/.

initial divisions. One can use existing administrative divisions
such as the twelve provinces of the Netherlands or its 25 security
regions. Such administrative divisions may already be known by
the public, making it easier to enforce restrictions based on them.
A disadvantage can be that such regions have not been defined
with an outbreak of an infectious disease in mind and therefore
do not pose natural boundaries to transmission. Neither have
they been defined on the basis of economic activity. We can
also use other criteria to find other initial divisions, for example
based on behaviour of individuals that relates to transmission or
to economic activity. Human mobility may be a good indicator
for both of these. We give two criteria for obtaining such
initial divisions.

2.4.1. Mobility regions
In network science, the objective of community detection is to
partition the nodes of a network into groups that are more
highly connected internally than externally [26]. Community
detection has been applied to mobility networks [27,28], resulting
in divisions into regions that are coherent with respect to mobility.
Currently, the most popular community detection method is
to optimize a quantity called modularity, which computes the
weight inside the communities minus the expected weight for a
random network with the same weights. For mobility data of
the kind that we rely on, the modularity of a division
D={Dy, ..., DID\} is given by

M(D, AM(A, D)

. B 1
modularity, (D) = M A) Z {M(D » D) —n M(A, A ’

DED
where  M(A, B) =3 ics > jepMj is the mobility between
the atomic areas in A C A and in B C A, and 7 is the resolution
parameter, which controls the granularity of the found

communities [29]. Larger values of 7 result in divisions consisting
of more regions.

We iterate the Louvain algorithm [23] to optimize modularity.
We will refer to regions obtained by this optimization as mobility
regions. We note that the number of mobility regions that result
from applying this method for a given resolution parameter is
in general not known beforehand. Therefore, we apply this
method for a variety of resolution parameter values to obtain div-
isions consisting of different numbers of mobility regions. For
example, by trial and error it was found that the choice =2
resulted in a division into 12 mobility regions, so that this division
has comparable granularity as the division into the 12 provinces.
A comparison of these two divisions based on mobility is
shown in figure 4. We see that these mobility regions are indeed
more coherent in terms of mobility. In particular, Almere is in
the same mobility region as Amsterdam, but in a different pro-
vince. Mobility regions may reflect the economic and non-local
transmission activity of the citizens in a better way. However,
they cannot be tailored to the status of the epidemic.

2.4.2. Adaptive mobility regions

The running time of our optimization algorithm depends heavily
on the number of sub-regions in our starting division. Note that
for the mobility regions, the resolution parameter controls the
resolution of the division globally. However, high resolution is
mostly needed around locations where a lot of infections occur.
We next introduce a modification to the modularity function of
the previous section to obtain initial divisions that have a
higher resolution near such critical locations. Infections are due
to meetings between infectious and susceptible individuals.
Therefore, a good heuristic would aim for a division that separ-
ates infectious individuals from susceptible ones as much as
possible. For a region D C A, let I(D), S(D) denote the number
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Figure 4. Each municipality is coloured based on the percentage of mobility to destinations outside its region. (a) Provinces. (b) Mobility regions found by mod-
ularity optimization with 7 =2, chosen such that both divisions consist of 12 regions.

of infectious and susceptible individuals living in D, respectively.
We maximize the function

adaptive modularity Z(D) = Z {M(D, D) — g% ,

DeD

where { is a resolution parameter that, similarly to the n par-
ameter of modularity, determines the granularity of the
obtained division. In particular, by varying ¢, the method results
in divisions with different numbers of regions. Despite the fact
that ¢ has a similar role to the 7 of the mobility regions, it does
have different dimension and differs by an order of magnitude.
Again, the Louvain algorithm is iterated for optimization. We
call the resulting regions adaptive mobility regions because the res-
olution is locally adapted to the state of the epidemic. Figure 5
compares a division into mobility regions to a division into adap-
tive mobility regions for the concentrated initialization. We see
that the adaptive mobility regions indeed have a higher resol-
ution around the critical area of the superspreader event in Uden.

2.5. Evaluation of divisions

Given values for the trade-off parameter y and the time horizon
H, we can compute the value Q, (D) to assess the quality of
some newly obtained division D. However, by itself this abstract
value has no clear interpretation. We can obtain insight by com-
paring the quality of D to the quality of existing alternative
divisions. These existing divisions are referred to as benchmark
divisions. There exist administrative choices to divide the
country into regions, such as provinces and security regions.
We consider the following benchmark divisions for the situation
of a widespread outbreak:

— no restrictions (minimum restrictions);

— disallow movement between provinces;

— disallow movement between security regions; and

— disallow movement between municipalities (maximum
restrictions).

Note that minimum restrictions maximize mobility and infec-
tions while these are both minimized by maximum restrictions.
For a superspreading initialization in a single municipality, we
also consider the following alternative benchmark divisions:

— isolation of the municipality;
— isolation of the security region of this municipality; and
— isolation of the province of this municipality.

Given a value for the trade-off parameter, we can assess
whether the division that is obtained by optimizing the objective
for this trade-off value indeed outperforms the benchmark
divisions.

Finally, given a set of divisions D, ..., Dy and a horizon H, we
can plot M(D; H) and G(D; H) for each division, resulting in plots
such as in figures 6a,b and 7a,b. In these plots, when a division is
plotted to the right of a benchmark division, it is more favourable
in terms of mobility, while a lower vertical position indicates
fewer infections. When a division is such that both are the case,
we can say that a division dominates the benchmark division: for
any value of the trade-off parameter, it will be favoured over the
benchmark division. Note that it is not possible to dominate the
minimum and maximum restrictions benchmarks, since they
achieve maximum mobility and minimum infections, respectively.

Given a set of divisions D, ..., Dy and a choice for the trade-
off parameter and the horizon, the division with the highest
objective value can be chosen. Obviously, the resulting division
is not guaranteed to be the global optimizer of the objective as
this would require comparing an enormous amount of divisions.
Therefore, the quality of such choice depends on the quality of
the candidates Dy, ..., Dy.

3. Results

For various initializations, we perform the optimization
described in §2.4 and simulate each of the strategies. Then
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Figure 5. The mobility regions (for 77 =2) on the left versus the adaptive mobility regions (for £'=3000) on the right. The colours denote the number of active

infections per capita for the concentrated initialization. For the colorized figure, we refer to the online version of this article.
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Figure 6. Evaluation of different divisions for the evenly distributed (a) versus concentrated (b) initialization. The balance of infections and mobility within a horizon
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we evaluate the results based on the objective defined in §2.2.
Throughout this section, we consider a time horizon of H =30
days. For each initialization, we apply the optimization
method to various initial divisions. The initial divisions will
be the administrative divisions (provinces and security
regions) and mobility-based initial divisions (mobility
regions and adaptive mobility regions for various values of
n and ¢). Recall that we refrain from advising a specific

value for the trade-off parameter since it is a political choice.
However, in this section, we will consider some values for y,
but these are intended only to demonstrate the methodology.
We will consider two values for y: the value y* for which maxi-
mum and minimum restrictions have equal objective value
(.e. Qy (Dmin) = Qy (Dimax) Where Diay=Dmin are the div-
isions corresponding to maximum, respectively, minimum
restrictions) and twice this y*. Note that this value y* is
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uniquely defined since Q, (D) is a linear function in y. We
choose these values for the trade-off parameter rather than
fixed constants because constant trade-off parameters may
lead to minimum restrictions for one initialization and maxi-
mum restrictions for another. This choice of y* is dependent
on the initialization and ensures that there is a non-trivial div-
ision that outperforms both maximum and minimum
restrictions. We start with the synthetic initializations and
draw a few observations. Then, we see to what extent these
observations generalize to the historical initializations.

3.1. Results for synthetic initializations

We consider an evenly distributed initialization where 1000
people are initially exposed. The resulting mobility and infec-
tions from each of the divisions is shown in figure 6a. We
observe a monotonically increasing relation between infec-
tions and mobility. This may be explained by the fact that
infections grow with the reproduction number, which is
linear in the contact rate, which is in our model in turn
linear in mobility. This trend is based on data points between
5000 and 30 000 infections, which is a rather small difference.
The exponential-like trend is unlikely to hold for long time
horizons. This will depend on the speed with which local sat-
uration in contacts starts to influence transmission potential.

For the points shown in figure 64, the division that was
obtained by applying our optimization method to our mobi-
lity regions (1 = 16) resulted in the highest objective value for
the trade-off parameter y*. However, this division only per-
forms marginally better than other divisions on this part of
the curve. Furthermore, with respect to a trade-off parameter
of 2y*, maximum restrictions perform best among the
divisions shown.

Compared to provinces and security regions, our mobility
regions heuristics can be used to tune the granularity of the
divisions. This allows one to find the optimal balance on this
exponential-like curve with respect to the objective function
for given values of the trade-off parameter and time horizon.
We observe no divisions which have significantly lower infec-
tion numbers in combination with as much mobility as in

benchmark divisions. From this, we conclude that the
amount of mobility that the division allows plays a larger
role than the specific way in which this mobility is chosen.

When infections are not evenly distributed, the perform-
ances of the different divisions shift drastically. Figure 6b
shows the performances of divisions for the concentrated
initialization. In this initialization, 1000 people are initially
exposed within the Dutch municipality of Uden (figure 5).
The mobility regions optimization does not depend on the
initialization of the model so these divisions remain
unchanged. The adaptive mobility regions do depend on
this initialization. We see that the adaptive mobility regions
significantly outperform the mobility regions and the bench-
mark divisions: they result in fewer infections while allowing
for more mobility. When we apply our optimization method
starting from a sufficiently fine-grained division, we obtain a
division that performs even better: for both choices of the
trade-off parameter y* and 2y*, the division obtained from
applying the optimization to the adaptive mobility regions
(¢=8x10° outperforms all the other divisions shown with
respect to the objective. This suggests that the proposed
approach can provide suitable strategies for containing super-
spreading events, where the initial infections are highly
concentrated. This holds even when we change model par-
ameters; see §D in the electronic supplementary material
where we perform a sensitivity analysis.

3.2. Historical initializations

Next, we evaluate divisions for an initialization based on his-
torical data. We consider data from 10 March 2020 and 21
April 2020. Figure 3 shows that their concentration values
for how infections are distributed lie in between the synthetic
cases. Therefore, we expect their results to also be in between
the synthetic results.

On 10 March 2020, the Dutch government advised
all citizens of one of the twelve provinces to stay home.
At this point, the number of reported infections was low
and their distribution was far from even. 21 April was
during the Dutch lock-down period, and further along in
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the first wave of the outbreak, where the infections were
more evenly distributed.

Figure 7ab show the evaluation results of different
divisions. In figure 74, we add a local lock-down of the pro-
vince containing Uden as a benchmark division. It performs
almost as good as one of the divisions from the adaptive mobi-
lity regions approach. However, at that time, the goal of the
Dutch government was to suppress the virus to prevent new
infections. From this perspective, only isolating this province
is insufficient as it does not lead to significantly fewer
infections than doing nothing (Min restrictions).

Based on these two figures, we see that the findings from
the synthetic initializations generalize to more realistic scen-
arios: when the infections have a high concentration our
approach finds divisions that lead to relatively few infections
while allowing for a relatively large amount of mobility. Con-
sider the marker corresponding to the security regions division
in figure 7a: it can be seen that our mobility method has found
divisions with (i) significantly more mobility, but a comparable
amount of infections; (ii) a comparable amount of mobility, but
significantly fewer infections; and (iii) more mobility and fewer
infections. A similar conclusion can be made for the case of
figure 7b, though the improvements are smaller because the
initialization has a lower level of concentration.

4. Conclusion

In a pandemic, restrictions on mobility of individuals are
one of the mitigation measures available to local and national
governments. Restrictions on mobility between regions will
have an effect in reducing non-local transmission opportu-
nities. The downside, however, is that restricted mobility also
has potentially strong social and economic repercussions.
Given this, decision makers have to reach a balance between
wanted and unwanted effects when restricting mobility.
Rather than impose restrictions on a national level, which
could maximize unwanted effects, options need to be explored
for regional measures. We have presented a method to deter-
mine a balance between infection reduction and allowed
mobility. We evaluate mobility strategies that use any division
of a country into regions, allowing movement within them,
while disallowing movement between them. In the case of
the Netherlands, we have shown that existing (administrative)
divisions such as provinces and ‘security regions’ do not reflect
the mobility patterns within the country well, and therefore
are not a good basis for mobility restrictions. We expect this
conclusion to apply also to other countries.

We have quantified the trade-off between economy (equa-
ted here with mobility) and public health (equated here by
infections) by introducing an objective function that penalizes
the amount of allowed mobility by the resulting number of
infections as given by equation (2.1). This trade-off introduces
a parameter that can be interpreted as the number of move-
ments that we are willing to restrict in order to prevent the
occurrence of a single further infection.

The objective function is nonlinear, computationally
heavy and hence infeasible to optimize exactly. Therefore,
we resorted to heuristic optimization methods that are
shown to produce divisions that perform well with respect
to the presented objective.

As a proof of concept for the proposed methods, we
have used synthetic and historical scenarios with varying

concentration of infections. For each of these settings, we
have compared how well the heuristics perform, and have
compared the divisions obtained in this way to the bench-
marks of existing divisions. Figure 6a shows that when the
infections are evenly distributed throughout the country,
the performances of all of the divisions lie close to an expo-
nential curve. Therefore, the granularity of the division is
the only relevant aspect in this case. On the other hand,
figure 6b shows that when the infections are highly concen-
trated around one municipality, applying the optimization
to adaptive mobility regions results in a division that signifi-
cantly outperforms the others and is able to prevent more
infections while allowing for more mobility.

In practice, the spread of the infections will lie between these
extremes. We have introduced a formula to quantify the concen-
tration of the infections and figure 7a,b show that indeed low
concentration values lead to results comparable to the case of
evenly distributed infections, while higher values indeed
behave similarly to the concentrated case. Traditional epidemio-
logical models do not incorporate geography and therefore
cannot adequately deal with situations where the infections
are not evenly distributed across the country. In this work, we
have demonstrated how incorporating geometry leads to mobi-
lity-restriction strategies that are better tailored to the situation at
hand. Our main conclusion is that such strategies are highly
effective when the geometric spread of infections is low (so
that the geometry is the main limiting factor), but less effective
when the distribution is rather even (so that geometry is fairly
irrelevant). Our main innovation is that we have proposed a
method to quantify these statements.

We next discuss some possible extensions. Firstly, we note
that our model does not take any other measures into account.
On the one hand, this makes the model unrealistic, while on
the other hand it keeps the model simple and isolates the
effects of mobility restrictions, which are our main focus.

Secondly, the way we model mobility is especially ade-
quate for small countries where people tend to return home
after a visit to another city, such as the Netherlands. It
would be interesting to use our model to analyse and compare
countries that share this property. For some other countries,
travelling people might stay at their destination for a period
of time, instead of returning home at the end of the day. The
model could be extended to allow for such behaviour.

Thirdly, in our model, each region has two compartments
for Tested and Untested, and each infection goes through one
of these compartments. In reality, there will always be a period
when the person is infected but not yet tested. Therefore, the
model may be made more realistic by letting individuals tran-
sition through these compartments sequentially (possibly
skipping the Tested compartment). However, estimating the
transition rates for this model can be challenging, because of
its dependence on the testing policy.

Finally, in this work, we have decided to mostly base par-
ameter choices that are relevant for the infection spread on
previous studies. Alternatively, these parameters could be
estimated by fitting the model to match historic data. By
doing so, outcomes of the model may have a better predictive
value. Currently, the numbers of infections are only used to
compare with benchmark divisions. In particular, we
cannot give estimates on how close these would be to the
true value. Especially with historic scenarios, the fraction of
reported cases and unreported cases is heavily dependent
on the testing policy and availability of tests. Comparing
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RIVM estimates of active infections and reported infections
hints that this fraction is indeed not at all constant [30]. In
our model, we assume this fraction to be constant in all scen-
arios, and it would be interesting to investigate the effect
of heterogeneity, just like we now focus on the effect of

heterogeneity of infections.
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