
Melanopsin contributions to non-visual and visual
function
Manuel Spitschan1,2,3

Available online at www.sciencedirect.com

ScienceDirect
Melanopsin is a short-wavelength-sensitive photopigment that

was discovered only around 20 years ago. It is expressed in the

cell bodies and processes of a subset of retinal ganglion cells in

the retina (the intrinsically photosensitive retinal ganglion cells;

ipRGCs), thereby allowing them to signal light even in the

absence of cone and rod input. Many of the fundamental

properties of melanopsin signalling in humans for both visual (e.g.

detection, discrimination, brightness estimation) and non-visual

function (e.g. melatonin suppression, circadian phase shifting)

remain to be elucidated. Here, we give an overview of what

we know about melanopsin contributions in visual function and

non-visual function.
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Introduction
Around 20 years ago, the photopigment melanopsin was

discovered, first in the skin cells of frogs [1], and

subsequently in the retinæ of a wide range of mammals,

including humans [2]. In the human retina, melanopsin is

expressed in a subset of retinal ganglion cells, rendering

them intrinsically photosensitive (intrinsically photosen-

sitive retinal ganglion cells; ipRGCs). Only less than 1% of

RGCs (<10 000) in the human retina express melanopsin

[3]. Signals from these melanopsin-containing cells carry

information about light, in addition to the signals arising

from cones and rods.

Since its discovery, the field of study has grown in

popularity (Figure 1). At the time of writing this article
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(mid 2019), research on melanopsin and its contributions

is still very much in progress, in particular in humans,

where many molecular and genetic techniques used in

animal models are not available. The goal of this review is

to provide an introduction to what we know about

melanopsin function in driving visual (colour and spatial

vision) and non-visual function (pupil size regulation,

melatonin suppression, circadian photoentrainment).

Spectral tuning of melanopsin to short-wavelength light

Photopigments such as melanopsin are characterised by

their spectral sensitivity, that is, the dependence of their

response amplitude to lights of different wavelengths.

Generally, the spectral sensitivities of photoreceptors are

broad with a distinct unimodal peak at a wavelength to

which they are most responsive (lmax). Photopigments

signal light according to the principle of univariance [4],

which states the output of a photoreceptor (the photocur-

rent) depends on the total quanta absorbed. This is given

by the spectrum of light reaching the receptor weighted

by the pigment’s spectral sensitivity. As a consequene,

the photoreceptor cannot distinguish between changes in

wavelength and changes and intensity.

Melanopsin absorbs light in the short-wavelength range of

the visible spectrum, with lmax at or near 480 nm (Figure 2,

left panel) [5]. Before light reaches melanopsin expressed

in the ipRGCs, however, it passes through the cornea, lens

and ocular media. This pre-receptoral filtering alters the

spectrum relative to the light arriving at the cornea. The

lens specifically attenuates short-wavelength light and

increases in density as a function of age (Figure 2, middle

panel) [6,7]. Importantly, for melanopsin, the effective in
vivo spectral sensitivity of melanopsin is shifted from

480 nm to �487 nm (for a 20-year-old observer),

or �496 nm (for an 80-year-old observer).

Crucially, the spectral sensitivity of melanopsin is distinct

from, but heavily overlapping with the spectral sensitivities

of the cones and rods (Figure 3a). The principle of univar-

iance and the broad spectral tuning of melanopsin have the

consequencethatall lightscan leadtoamelanopsin-encoded

signal, if they are bright enough.

An experimental tool to stimulate melanopsin without, in

theory, changing visual appearance are metamers, which

are pairs of spectra which have the property that they are

matched in the amount they stimulate cones (and therefore

have the same nominal chromaticity and luminance).

These two lights may differ in the amount they stimulate
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Melanopsin research since 1998.

The number of publications incorporating the term ‘melanopsin’ has

been steadily increasing since 1998. Frequencies extracted from a

PubMed search (27 March 2019).
melanopsin by a factor which is typically not larger than 3�
[8�,9�,10�,11,12], though this depends on the spectral prop-

erties of the primary lights used. Metameric pairs can

generated by the method of silent substitution [13].

Non-visual effects of light mediated by melanopsin

Melanopsin-mediated signals carrying information about

light in the environment have a profound influence on our

physiology and behaviour. This includes the regulation of

pupil size, the acute suppression of melatonin by light,

shifting of the phase of our internal clock by light, and the

acute modulation of alertness and cardiovascular and

thermoregulatory parameters by light (not discussed in

this review, see Cajochen [14]).

Pupil size regulation

The diameter of the pupil is strongly controlled by

melanopsin, in terms of steady-state pupil size [15–17],
Figure 2
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the return of pupil size to baseline after light offset

[16,18,19], and dynamic pupil responses to, e.g., flicker

[11,12,20–24]. But all photoreceptors contribute to pupil

size; to what extent they do depends on the spatial and

temporal parameters of the stimulus [25].

Melatonin suppression

The production of melatonin, a hormone naturally

produced by the body during the evening and night, is

suppressed by light [26] via the retinohypothalamic

pathway connecting ipRGCs to the suprachiasmatic

nucleus (SCN). Two early studies examining the spectral

sensitivity of melatonin suppression found tuning incon-

sistent with cone and rod function [27,28]. Both studies

found a peak spectral sensitivity at wavelengths shorter

than 480 nm, as one would have predicted from a

melanopsin-mediated function. Overall, however, the

spectral sensitivity for melatonin suppression is most

consistent with melanopsin relative to the other photo-

receptors (Figure 3b, middle panel) [29,30]. Importantly,

in some functionally blind people with no measurable

cone and rod function, light suppresses the production of

melatonin [31,32].

Circadian phase shifting

Our physiology and behaviour follow a circadian rhythm

which is synchronised to the external light–dark cycle via

the retinohypothalamic pathway. In turn, exposure to

light at night can shift the circadian rhythm by minutes

to a few hours. This shift can be either a phase delay or a

phase advance, depending on the timing of light exposure

(as given by the phase response curve, PRC). Circadian

phase shifting is biased towards short wavelength light

[33], with evidence for a spectral sensitivity broadly

proportional to melanopsin activation (Figure 3b, right

panel) [34,35]. Importantly, melatonin suppression and

circadian phase are separable and functionally decoupled

systems, with neither being a proxy for the other [36��,37].
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ue to lens aging (middle panel). The in vivo spectral sensitivity of

ities between 487 nm (20-year old observer) and 496 nm (80-year old
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Figure 3
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(a) Spectral sensitivities are expressed either in linear or logarithmic coordinates. Both are equivalent representations of the spectral sensitivity,

but the linear representation ‘squashes’ sensitivity differences at the low end. (b) Contributions of melanopsin to pupil size (left panel), melatonin

suppression (middle panel), and delaying the circadian clock (right panel). Data were extracted using WebPlotDigitizer. Background color reflects

whether shown sensitivities are linear or logarithmic.
Other photoreceptor involvement in non-visual functions?

Aside from pupil size, where cone and rod influences have

been established, we currently do not have a comprehen-

sive understanding of how cones and rods contribute to

the non-visual functions outlined here. In the macaque

retina, at least some ipRGC subtypes receive excitatory

inputs from L and M cones and rods, and inhibitory input

from S cones [38], so cone and rod signals could in

principle contribute. In humans, there is some evidence

that cones contribute to phase shifting, but that this

contribution depends on the timing of the light exposure

[39]. Recently, it was also shown that rods may contribute

to melatonin suppression [40].

Melanopsin contributions to vision and visual perception

The possibility that melanopsin signals could contrib-

ute to visual function in the classical sense (spatial and

colour vision) is tantalising. There is converging

evidence that melanopsin signals reach primary visual

cortex. ipRGCs in the rodent [41] and primate retina

[38] project to dLGN. In humans, pulses of light that

only stimulate melanopsin elicit activity in primary

visual cortex (V1) as measured with BOLD neuroimag-

ing [11], and this activity cannot be accounted for by

inadvertent stimulation of cones. There is mounting
www.sciencedirect.com 
psychophysical evidence that melanopsin signals

also contribute to detection and discrimination of lights

[42,24], brightness estimation [43�], and colour

perception [24,44].

Demonstrating melanopsin influences to vision is non-

trivial, however, and requires very careful methodological

scrutiny [45��,46,47]. Using the method of silent substi-

tution [13], melanopsin-stimulating lights can be

generated which nominally yield no difference in cone

excitation. This experimental approach, however, also

faces challenges. For example, cones in the shadow of

the retinal blood vessels may be stimulated by stimuli

targeted at melanopsin, thereby leading to the

inadvertent stimulation of cones [46]. Recently, it was

also shown that retinal processing itself, even when the

light responses in cones is matched, may introduce

inadvertent cone signals [48�].

In addition to a direct effect, melanopsin might also

influence vision by providing an independent signal for

light adaptation, as has been found in rodents [49],

thereby modulating cone and rod sensitivity. At present,

there is no direct demonstration of such an influence

in humans.
Current Opinion in Behavioral Sciences 2019, 30:67–72
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Melanopsin-mediated spatial vision?

The dendritic field diameter of ipRGCs ranges

from �250 mm (fovea) to �1000 mm (periphery),

corresponding to visual angles of �0.9� and 3.6�, respec-

tively (ignoring optical factors such blur and chromatic

aberration). The receptive fields of the cone inputs, that

is, the area of the retina, or of the visual space, over which

responses are integrated, are coextensive and relatively

large, with receptive field diameters of �750 mm [38],

corresponding to a visual angle of 2.7� [50]. These

receptive fields are rather large compared to the visual

resolution for seeing patterns (assuming 1’ = 0.0167� as a

conservative estimate for visual resolution), but they are
finite. With the visual field extending around 150� in the

horizontal plane in humans, ipRGCs tile the visual field

and are able to provide a spatially selective signal. More

concretely, from first principles then, ipRGCs should be

able to signal spatial detail. Indeed, the pupil response is

also spatially selective [51,52].

Work in rodents found spatial signals carried by

melanopsin cells [53], where melanopsin signals can serve

as a ‘raumgeber’ [54], akin to the zeitgebers (time givers) for

circadian synchronisation. Recently, using a novel five-

primary display delivering silent-substitution grating

stimuli, Allen et al. [55��] demonstrated that melanopsin

may contribute to spatial vision as well, with tuning to low

spatial frequencies. To what extent melanopsin helps

with visual acuity under natural viewing conditions,

however, is at present not known.

Outlook and conclusion
One of the impediments of arriving at an integrated

picture of how rods, cones and melanopsin contribute

to retina-mediated effects of light on our perception and

our physiology may be that at present, the scientific

communities investigating these topics are relatively

disparate. The psychophysical enterprise is fundamen-

tally different from the chronobiological enterprise, in

terms of the time scales and resources required for

experiments and methods used. For example, to assess

the amount of phase shift induced by a specific visual

stimulus (one condition) requires an in-laboratory

protocol of minimum of 34 hours duration under very

strictly controlled conditions (e.g. Ref [56]). But the pupil

response to the same stimulus class can be characterised

within several minutes.

The next decade or so will present great opportunities to

integrate vision science, and chronobiology and sleep

medicine and synthesize a complete picture from their

respective literatures. Tools from vision science, such as

the method of silent substitution and metameric lights

[13], have begun to find use in chronobiology [8�,9�,10�].
This emerging evidence basis will address the

current need of lighting designers, architects, and
Current Opinion in Behavioral Sciences 2019, 30:67–72 
building engineers to take into account the effect of light

on non-visual function in an evidence-based fashion.
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