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Sex pheromone production in most moths is initiated following pheromone biosynthe-
sis activating neuropeptide receptor (PBANR) activation. PBANR was initially cloned from
pheromone glands (PGs) of Helicoverpa zea and Bombyx mori.The B. mori PBANR is char-
acterized by a relatively long C-terminus that is essential for ligand-induced internalization,
whereas the H. zea PBANR has a shorter C-terminus that lacks features present in the B.
mori PBANR critical for internalization. Multiple PBANRs have been reported to be concur-
rently expressed in the larval CNS of Heliothis virescens. In the current study, we sought
to examine the prevalence of multiple PBANRs in the PGs of three moths and to ascer-
tain their potential functional relevance. Multiple PBANR variants (As, A, B, and C) were
cloned from the PGs of all species examined with PBANR-C the most highly expressed.
Alternative splicing of the C-terminal coding sequence of the PBAN gene gives rise to the
variants, which are distinguishable only by the length and composition of their respective C-
terminal tails.Transient expression of fluorescent PBANR chimeras in insect cells revealed
that PBANR-B and PBANR-C localized exclusively to the cell surface while PBANR-As and
PBANR-A exhibited varying degrees of cytosolic localization. Similarly, only the PBANR-B
and PBANR-C variants underwent ligand-induced internalization.Taken together, our results
suggest that PBANR-C is the principal receptor molecule involved in PBAN signaling regard-
less of moth species. The high GC content of the C-terminal coding sequence in the B
and C variants, which makes amplification using conventional polymerases difficult, likely
accounts for previous “preferential” amplification of PBANR-A like receptors from other
species.

Keywords: PBAN, receptor, alternative splicing, pheromone gland, receptor internalization, confocal microscopy,

GC-rich sequence

INTRODUCTION
In most moth species, a 33–34 aa neuropeptide termed
pheromone biosynthesis activating neuropeptide (PBAN) regu-
lates sex pheromone production and release. First isolated from
Helicoverpa zea (Raina et al., 1989) and Bombyx mori (Kita-
mura et al., 1989), PBAN has subsequently been identified in a
variety of species. PBAN is a member of the pyrokinin/PBAN
family of peptides that are characterized by a FXPRLamide C-
terminal pentapeptide motif. This motif is essential for bio-
logical activity, which, in addition to regulation of moth sex
pheromone biosynthesis, includes melanization in lepidopteran
larvae, induction of embryonic diapause in B. mori, and ecdysone
biosynthesis in prothoracic glands of B. mori (Rafaeli, 2009).
The role of PBAN in sex pheromone biosynthesis is governed
by species-specifically defined photoperiods in which PBAN is
released from the subesophageal ganglion into the hemolymph.
Circulating PBAN acts directly on the modified epidermal cells

of the eighth and ninth abdominal segment that comprise the
pheromone gland (PG) via its cognate G protein-coupled recep-
tor (GPCR). The pheromone biosynthesis activating neuropeptide
receptor (PBANR) consequently plays a pivotal role in turning
the extracellular PBAN signal into the biological response of sex
pheromone production. Indeed, in vivo dsRNA-mediated knock-
down of PBANR reduced sex pheromone production in the silk-
moth (B. mori; Ohnishi et al., 2006) and negatively affected mating
frequency in the diamondback moth (Plutella xylostella; Lee et al.,
2011).

Pheromone biosynthesis activating neuropeptide receptor
was initially cloned from PGs of the corn earworm, H. zea
(Choi et al., 2003) and B. mori (Hull et al., 2004). While
the two PBANRs share significant sequence similarity (82%),
the B. mori PBANR (BommoPBANR) is structurally differenti-
ated by a 67-aa C-terminal extension that is absent in the H.
zea PBANR (HelzePBANR). BommoPBANR, like most GPCRs,
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undergoes ligand-induced internalization, a common endocy-
totic regulatory mechanism involved in GPCR desensitization
(Moore et al., 2007; Marchese et al., 2008). Truncation of
the BommoPBANR C-terminal extension prevented this inter-
nalization event (Hull et al., 2004). Further studies revealed
that a 10 residue segment (Arg358–Gln367) of the BommoP-
BANR C-terminal extension is essential for internalization and
that endocytosis was phosphorylation dependent, proceeded via
clathrin-coated pits, and involved a YXXΦ motif (Hull et al.,
2005).

Pheromone biosynthesis activating neuropeptide receptors that
have C-terminal sequences more similar to HelzePBANR than to
BommoPBANR have since been cloned from other moth species
(Rafaeli et al., 2007; Zheng et al., 2007; Cheng et al., 2010; Lee
et al., 2011). However, multiple PBANR subtypes have recently
been identified in the tobacco budworm Heliothis virescens and
the tobacco hornworm Manduca sexta (Kim et al., 2008). Similar
to HelzePBANR, H. virescens PBANR (HelviPBANR)-A has a rel-
atively short C-terminus, while HelviPBANR-C has an extended
C-terminus that is ∼78% identical to BommoPBANR and which
contains the YXXΦ motif. Surprisingly, even though H. virescens
and H. zea are closely related species, the HelviPBANR-C vari-
ant rather than HelviPBANR-A (the HelzePBANR ortholog) was
preferentially amplified from H. virescens PGs (Kim et al., 2008).
Sequence analyses suggest that the HelviPBANR subtypes arise
from alternative splicing, a common transcriptional regulation
event in GPCR genes (Minneman, 2001; Markovic and Challiss,
2009). Because alternative splicing can generate protein isoforms
that are structurally, functionally, and/or spatially distinct, the
presence of multiple PBANR variants raises questions regarding
the functional role and relevance of the individual variants in reg-
ulating sex pheromone biosynthesis. To address these questions,
we sought to examine and characterize PBANR variants from the
PGs of multiple moth species.

MATERIALS AND METHODS
INSECTS
Insects were maintained in a rearing chamber at 25˚C under a 16L
(light): 8D (dark) regime. Larvae of the inbred p50 strain of B. mori
were reared on an artificial diet as described previously (Fónagy
et al., 1992). Pupal age was determined based on morphological
characteristics as described (Matsumoto et al., 2002). Larvae of
Pseudaletia separata and Helicoverpa armigera were reared on an
artificial diet (Insecta-LFS; Nihon Nosan Kogyo Ltd., Yokohama,
Japan) under the same conditions as described (Fónagy et al.,
2011). Pupae were sexed such that the newly emerged females were
collected and kept separately in boxes and provided with a special
sucrose solution energy drink (Pocari sweat®; Otsuka Pharmaceu-
tical Co., Ltd, Tokyo, Japan). The newly emerged females were
designated as day 0. H. zea pupae were purchased from Benzon
Research (Carlisle, PA, USA) and maintained in a rearing cham-
ber at 25˚C under a 16L (light): 8D (dark) regime until adult
emergence.

DEGENERATE PCR AND RACE-BASED CLONING OF PBANR VARIANTS
Total RNA was isolated from PGs of B. mori (p50), P. separata,
H. armigera, and H. zea with first strand cDNAs synthesized

using a SMARTer™RACE cDNA Amplification kit (Clontech,
Palo Alto, CA, USA) according to the manufacturer’s instruc-
tions. Fragments of Pseudaletia separata PBANR (PsesePBANR)
and Helicoverpa armigera PBANR (HelarPBANR) transcripts were
amplified with Advantage 2 polymerase (Clontech, Palo Alto, CA,
USA) using multiple combinations of degenerate oligonucleotide
primers described previously (Hull et al., 2004). PCR products
of the expected sizes were sub-cloned using a TOPO TA cloning
kit (Invitrogen Co., Ltd., Tokyo, Japan) and sequenced. RACE was
performed using cDNAs generated above with Advantage 2 poly-
merase in conjunction with adaptor specific primers (UPM and
NUP) and gene-specific primers (Table 1; P1–P7). Thermacycler
conditions consisted of 94˚C for 2 min, followed by 35 cycles at
94˚C for 30 s, 65˚C for 30 s, and 68˚C for 3 min, and a final exten-
sion at 68˚C for 7 min. PCR products were sub-cloned as before
and sequenced.

Table 1 | Species-specific PCR primers used to amplify the PBANR

variants.

Primer Name Sequence (5′-3′)

P1 BommoPBANR3′F1 CAGGAACGCTTTCAAGGTAAGATTAAA

CTAG

P2 PsesePBANR3′F1 CACACCATGTCGAAGCTGTCAAGAG

P3 PsesePBANR3′F2 GCATCTCCAACTCCAGTCTTCGCGAG

P4 PsesePBANR5′R CAACTTAATGCCTATCAACGCGTACAAC

P5 HelarPBANR3′F1 GCGATGCAGTTCGGTATAGTGTCGTAT

P6 HelarPBANR3′F2 GCATCTCCAACTCCAGTCTTCGCGAG

P7 HelarPBANR5′R GCATCTGACCAGGTCTTTCATTGCT

P8 BommoPBANR ATGATGGCAGATGAAACCGTCAAC

P9 BommoPBANR-As-A CCTTTAAGAGTTTCGTACTAGTTTAATCT

TACC

P10 BommoPBANR-B-C TCCTAATGAAACCCACAACAGCTGAATC

P11 PsesePBANR ATGACCTTACCAGCGCCTCCGAGCATC

P12 PsesePBANR-As-A CAGTCAGCCGGCTGCCGGCCTGAAT

P13 HelarPBANR ATGACATTGTCAGCGCCCCCGAGCATCG

P14 HelarPBANR-As-A TTAATCATAGACTCTTACCTTAAAGGC

GTTC

P15 PsesePBANR-B-C TCAGGTGAGTCCGCCGATGTTACAGTTC

P16 Bommo-AF CGTATTTTGCATCCCGTTAAGAAGCTG

P17 Bommo-AR CCTTTAAGAGTTTCGTACTAGTTTAATC

TTACC

P18 Bommo-BCF TCGTTTTTCATCTGTTGGGCTCCATTT

P19 Bommo-BR ATCGCGATTTTGGTAGCACTGCG

P20 Bommo-CR CGCGATTTTGGTAGCACTCACCT

P21 Psese-AF TGATAGGCATTAAGTTGCGGACCTCTC

P22 Psese-AR GTTCCGCGAGGTAACAATACAAGTAG

P23 Psese-BCF TGCAGTATAGGAACGGAGCATCACA

P24 Psese-BR CGCGCCCGTTGTAGCACTGCG

P25 Psese-CR GCCCGTTGTAGCACTCACCTG

P26 Helar-AF CAGTGTTGTACGCGTTGATAGGCATT

P27 Helar-AR GTCGTGAGATGTAAGACAACAAGGAG

P28 Helar-BCF AGTCATCAGAATGCTCGTTGCAGTG

P29 Helar-BR CGCGCCCGTTGTAGCACTGCG

P30 Helar-CR GCCCGTTGTAGCACTCACCTG
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SPECIFIC AMPLIFICATION OF BOMMO, PSESE, HELAR, AND HELZE
PBANR VARIANTS
To amplify the BommoPBANR variants, total RNA was isolated
from 10 B. mori (p50) PGs immediately after adult eclosion
with first strand cDNAs synthesized as before. BommoPBANR-As
and BommoPBANR-A were amplified using Advantage 2 poly-
merase with a general BommoPBANR sense primer (Table 1;
P8) and a short variant antisense primer (Table 1; P9), while
BommoPBANR-B and BommoPBANR-C were amplified using
the same sense primer and a long variant antisense primer
(Table 1; P10). Thermacycler conditions consisted of 94˚C for
2 min, followed by 35 cycles at 94˚C for 30 s, 62˚C for 30 s,
and 68˚C for 3 min with a final extension at 68˚C for 7 min.
PCR products were sub-cloned as before and sequenced. To
amplify the PsesePBANR, HelarPBANR, and HelzePBANR vari-
ants, total RNA was isolated from 120 P. separate, 850 H. armigera,
and 30 H. zea PGs dissected 1–3 days after adult eclosion. First
strand cDNA was synthesized as before. PsesePBANR-As and
PsesePBANR-A transcripts were amplified using Advantage 2
polymerase with a general PsesePBANR sense primer (Table 1;
P11) and a short variant antisense primer (Table 1; P12). Ther-
macycler conditions consisted of 94˚C for 2 min, followed by
35 cycles at 94˚C for 30 s, 65˚C for 30 s, and 68˚C for 2 min
with a final extension at 68˚C for 7 min. HelarPBANR-As and
HelarPBANR-A were amplified using a general HelarPBANR sense
primer (Table 1; P13) and a short variant antisense primer
(Table 1; P14). The resulting PCR products were sub-cloned
and sequenced. Full-length PsesePBANR-B and PsesePBANR-C
transcripts were amplified using a GC-optimized polymerase,
KOD-FX (Toyobo, Osaka, Japan), with the previous PseseP-
BANR sense primer and a long variant-specific antisense primer
(Table 1; P15) with thermacycler conditions consisting of 94˚C
for 2 min, followed by 32 cycles at 98˚C for 10 s, 65˚C for 30 s,
and 68˚C for 2 min with a final extension at 68˚C for 7 min.
HelarPBANR-B and HelarPBANR-C transcripts were similarly
amplified using the HelarPBANR sense primer and the long
variant-specific PsesePBANR antisense primer (Table 1; P15).
Transcripts for the HelzePBANR variants were amplified using
PCR conditions identical to those of the HelarPBANR variants.
All resulting PCR products were sub-cloned and sequenced. The
sequences reported in this paper have been deposited in the
GenBank database (B. mori accession nos. JN228346–228349; H.
armigera accession nos. JN228350–228353; P. separata accession
nos. JN228354–JN228357; H. zea accession nos. JN206677 and
JQ255024).

PRIMER CHECK PCR USING GENE-SPECIFIC PRIMERS
Primer check PCR was performed using 1 ng plasmid DNA con-
taining the full-length sequence of each PBANR variant (PBANR-
As, -A, -B, or -C) as template with primer sets designed for
specific amplification of each PBANR sequence (Table 1; P16–
P30). Primer check PCR using a general polymerase, Ex Taq DNA
polymerase (Takara Bio Inc., Otsu, Japan), was performed using
thermacycler conditions consisting of 94˚C for 2 min, followed by
30 cycles at 94˚C for 30 s and 68˚C for 1 min. Primer check PCR
using KOD-FX was performed using thermacycler conditions con-
sisting of 94˚C for 2 min, followed by 30 cycles at 98˚C for 10 s and

68˚C for 1 min. PCR products were analyzed on a 2% agarose gel
and visualized with ethidium bromide.

RT-PCR TISSUE EXPRESSION ANALYSIS
Total RNAs isolated using TRIzol reagent (Invitrogen) were pre-
pared from various newly emerged adult B. mori female tissues
or adult female P. separata and H. armigera tissues 3 days after
adult eclosion. cDNAs were generated using a Onestep RT-PCR kit
(Qiagen, Tokyo, Japan) with RT-PCR performed using HotStarTaq
DNA polymerase (Qiagen) and primer sets designed for specific
amplification of each PBANR sequence (Table 1; P16–P30). Ther-
macycler conditions consisted of reverse transcription for 30 min
at 50˚C, then 95˚C for 15 min followed by 20–30 cycles at 94˚C for
30 s, 62˚C for 30 s, and 72˚C for 1 min. PCR products were ana-
lyzed on a 2% agarose gel and visualized with ethidium bromide.
A separate cDNA synthesis was carried out in parallel using 500 ng
total RNA with an RNA PCR kit (Takara Bio Inc.,) according to
the manufacturer’s instructions. RT-PCR with Ex Taq DNA poly-
merase was performed using thermacycler conditions consisting
of 94˚C for 2 min, followed by 26–32 cycles at 94˚C for 30 s and
68˚C for 1 min. RT-PCR using KOD-FX DNA polymerase was per-
formed with thermacycler conditions consisting of 94˚C for 2 min,
followed by 26–32 cycles at 98˚C for 10 s and 68˚C for 1 min. PCR
products were analyzed on a 2% agarose gel and visualized with
ethidium bromide.

SEQUENCE ANALYSIS
The guanine–cytosine (GC) content of the full-length cDNA
sequences for the PBANR-As, -A, -B, and -C variants of B. mori,
P. separata, and H. armigera was determined following alignment
of the putative translation initiation sites. The average GC con-
tent was calculated using 100 base windows over a range of 700
bases. GC content distribution diagrams were generated using
GENETYX-MAC Version 12.0.0 (Genetyx, Tokyo, Japan).

CONSTRUCTION OF EXPRESSION PLASMIDS
Expression plasmids encoding the respective BommoPBANRs,
PsesePBANRs, and HelarPBANRs fused at their respective C ter-
mini to enhanced green fluorescent protein (EGFP) were gener-
ated using a pIB/V5-His-TOPO TA Expression kit (Invitrogen).
Chimeric genes were constructed via overlap extension PCR using
plasmid DNAs with KOD-plus (Toyobo) and KOD-FX. Gene-
specific primers described above were used with species-specific
chimeric primers (Table 2) and an EGFP antisense primer. The
resulting products were sub-cloned into the pIB/V5-His expres-
sion vector and sequenced to confirm presence and orientation of
the insert.

PREPARATION OF A FLUORESCENT PBAN ANALOG
A fluorescent PBAN analog was prepared from a synthetic pep-
tide corresponding to the terminal 10 residues of B. mori PBAN
(i.e., SRTRYFSPRLamide) with Lys substitution of Arg2. The
Lys residue was labeled with Rhodamine Red succinimidyl ester
(Molecular Probes, Eugene, OR, USA) following overnight incu-
bation in 0.1 M sodium bicarbonate (pH 8.2). The conjugated
peptide, designated RR-C10PBANR2K, was purified by reversed-
phase high-performance liquid chromatography on a Senshu

www.frontiersin.org January 2012 | Volume 3 | Article 6 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Experimental_Endocrinology/archive


Lee et al. PBANR variants in moths

Table 2 | Primer sets used for generating fluorescent PBANR chimeras.

Name Orientation Sequence (5′-3′)

BommoPBANR-As–EGFP Sense CTGATACATTTTATCTGGTAATGGTGAGCAAGGGC

BommoPBANR-As–EGFP Antisense GCCCTTGCTCACCATTACCAGATAAAATGTATCAG

BommoPBANR-A–EGFP Sense TTTCAAGGTAAGATTAAACATGGTGAGCAAGGGC

BommoPBANR-A–EGFP Antisense GCCCTTGCTCACCATGTTTAATCTTACCTTGAAA

BommoPBANR-B–EGFP Sense TAATATAGAAGGACTTACCATGGTGAGCAAGGGC

BommoPBANR-B–EGFP Antisense GCCCTTGCTCACCATGGTAAGTCCTTCTATATTA

BommoPBANR-C–EGFP Sense ATCGCGATCTCTCCAATGGTGAGCAAGGGC

BommoPBANR-C–EGFP Antisense GCCCTTGCTCACCATTGGAGAGATCGCGAT

PsesePBANR-As–EGFP Sense CTTTTACCTGGTAAACTTGATGGTGAGCAAGGGC

PsesePBANR-As–EGFP Antisense GCCCTTGCTCACCATCAAGTTTACCAGGTAAAAG

PsesePBANR-A–EGFP Sense CGGCTTTGTTATTAATACTTATGGTGAGCAAGGGC

PsesePBANR-A–EGFP Antisense GCCCTTGCTCACCATAAGTATTAATAACAAAGCCG

PsesePBANR-B–EGFP Sense ATCGGCGGACTCACCATGGTGAGCAAGGGC

PsesePBANR-B–EGFP Antisense GCCCTTGCTCACCATGGTGAGTCCGCCGAT

PsesePBANR-C–EGFP Sense CCTACATGTACCACGATGGTGAGCAAGGGC

PsesePBANR-C–EGFP Antisense GCCCTTGCTCACCATCGTGGTACATGTAGG

HelarPBANR-As–EGFP Sense GGAATCTATAGATACATGGTGAGCAAGGGC

HelarPBANR-As–EGFP Antisense GCCCTTGCTCACCATGTATCTATAGATTCC

HelarPBANR-A–EGFP Sense GTAAGAGTCTATGATATGGTGAGCAAGGGC

HelarPBANR-A–EGFP Antisense GCCCTTGCTCACCATATCATAGACTCTTAC

HelarPBANR-B–EGFP Sense ATCGGCGGACTCACCATGGTGAGCAAGGGC

HelarPBANR-B–EGFP Antisense GCCCTTGCTCACCATGGTGAGTCCGCCGAT

HelarPBANR-C–EGFP Sense CCTACATGTACCACGATGGTGAGCAAGGGC

HelarPBANR-C–EGFP Antisense GCCCTTGCTCACCATCGTGGTACATGTAGG

EGFP Antisense TTACTTGTACAGCTCGTCCAT

The EGFP portion of the chimeric oligonucleotides is underlined.

Pak PEGASIL ODS column (10 mm × 150 mm; Senshu Scientific
Co., Ltd., Tokyo, Japan) with absorbance monitored at 225 nm.
RR-C10PBANR2K was stored at 4˚C until needed.

FLUORESCENT CONFOCAL MICROSCOPY IMAGING
A monolayer of adherent Sf9 insect cells (Smith et al., 1985)
was transfected with 1 μg plasmid DNA encoding the respective
fluorescent PBANR chimeras and 8 μl Cellfectin II (Invitrogen)
according to the manufacturer’s instructions. Ligand-induced
internalization of the fluorescent PBANR chimeras was performed
as described previously using a Leica TCS NT confocal system
(Hull et al., 2004) but with 50 nM RR-C10PBANR2K. Fluorescence
images were obtained. Images were processed using Photoshop 6.0
(Adobe Systems Inc., San Jose, CA, USA).

NORTHERN BLOT ANALYSIS
Northern blots were performed using denatured total RNAs (1 μg
of each) prepared from various B. mori, P. separata, and H.
armigera tissues electrophoresed on a 1.0% gel in 2 M formalde-
hyde/1X MOPS buffer and then transferred to a nylon mem-
brane (Hybond N+, Amersham Biosciences, Piscataway, NJ, USA)
by capillary blotting. cDNA probes (BommoPBANR-A nt 1–
1265, BommoPBANR-C nt 1591–2616, PsesePBANR-A nt 254–
1378, PsesePBANR-C nt 1586–2608, HelarPBANR-A nt 242–
1282 and HelarPBANR-C nt 1574–2597) were labeled with DIG
(digoxigenin-11-UTP) using a DIG northern starter kit (Roche

Applied Science, Indianapolis, IN, USA). Probe hybridization was
performed at 68˚C for 18 h at which point the blot was washed
twice in an initial solution of 0.1% SDS/2 × SSC for 5 min at 22˚C
and then transferred to 0.1% SDS/0.1 × SSC for two 15 min washes
at 68˚C. Signals were detected using a LAS-3000 image analyzer
(Fujifilm, Tokyo, Japan).

RESULTS
IDENTIFICATION OF MULTIPLE BOMMOPBANR VARIANTS
To determine if multiple PBANR variants are expressed in the
B. mori PG, we PCR-screened our B. mori PG cDNA library
(Yoshiga et al., 2000) using primers designed to BommoPBANR
(AB181298). Sequencing multiple cDNA clones resulted in the
identification of transcripts encoding the 413-aa BommoPBANR
reported previously (Hull et al., 2004) and a new 475-aa protein
(Figure 1). Despite large differences in the amino acid sequences
of the respective C-terminal tails, the nucleotide sequence of
the clones differed by five nucleotides. The larger cDNA was
only present in ∼10% of the clones sequenced, suggesting that
it was poorly represented in our cDNA library and thus that its
PG transcript levels are lower than the 413-aa variant. Because
the 475-aa variant exhibited significant homology (82%) to
HelviPBANR-B, we sought to present a uniform nomenclature
system for the PBANR variants. Consequently, we designated
the 475-aa variant as BommoPBANR-B and the 413-aa variant,
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FIGURE 1 | Multiple sequence alignment of B. mori PBANR variants.

The seven predicted TM domains are over-lined. Location of the YXXΦ

endosomal sorting motif is outlined. Alignment was performed using

MAFFT v6.814b (Katoh et al., 2002) with certain gaps removed. Species
abbreviations are per National Center for Biotechnology Information/Swiss
Prot: Bommo, B. mori.

which shares 81% sequence homology with HelviPBANR-C, as
BommoPBANR-C.

PCR primers designed from B. mori genomic data based on
sequence similarity with HelviPBANR-A lead to the identification
of cDNA clones encoding 345-aa and 306-aa proteins. Because
the 345-aa variant is similar in size to HelviPBANR-A, we des-
ignated it BommoPBANR-A. The 306-aa variant, which has an
incomplete seventh transmembrane domain (TM7), was des-
ignated BommoPBANR-As. The four BommoPBANR variants
identified in these experiments are differentiated only by the
size and sequence of their respective C-terminal tails (Figure 1).
The sequence data for all four variants have been deposited with
GenBank (JN228346–228349).

GENOMIC STRUCTURE AND ALTERNATIVE SPLICING OF THE
BOMMOPBANR GENE
Using the Silkworm Genome Research Program (http://sgp.dna.aff
rc.go.jp/KAIKObase/), we localized the BommoPBANR gene to
scaffold Bm_scaf84 of chromosome 12 and determined that it
is composed of six exons and five introns covering >50 kb of
sequence (Figure 2). The majority of the BommoPBANR cod-
ing sequence (N-terminus through TM7) is carried on exons 2–4
while exons 5–6 encode the C-terminal tail and exon 1 the 5′
untranslated region. BommoPBANR-As and A arise from alter-
native splice events that retain introns 3 and 4 respectively. The
inclusion of intron 3 introduces a premature stop codon (TGA)
in BommoPBANR-As that truncates TM7 at residue 306, whereas
the inclusion of intron 4 in BommoPBANR-A results in a prema-
ture stop codon (TAG) that truncates the protein at residue 345.
BommoPBANR-C arises from an insertion of 5 nt at the 3′ end

of exon 5 that shifts the reading frame of the last 10-aa (residues
404–413) and introduces a stop codon (TAG) that generates a
C-terminal tail truncated 62-aa compared to BommoPBANR-B
(Figure 1).

EXPRESSION ANALYSIS OF BOMMOPBANR VARIANTS
RT-PCR analyses showed that all four PBANR variants are pref-
erentially expressed within the PG (Figure 3A). Amplification of
BommoPBANR-As and -A was barely detectable at cycle 30 while
BommoPBANR-B generated a robust, but non-saturating, signal
(Figure 3A). In contrast, BommoPBANR-C was saturating by PCR
cycle 28, indicating that it is the most abundant PBANR transcript
expressed in the PG. Amplimers corresponding to the PBANR-
B and C variants were also amplified in other tissues, albeit at
significantly lower levels (Figure 3A). The amplification of lower
abundance PBANR transcripts in non-PG tissues is not without
precedence (Rafaeli et al., 2007; Watanabe et al., 2007) and may
either reflect a novel regulatory role for the receptor in those tis-
sues or may be an indication of leaky transcription and thus are of
questionable physiological relevance. Regardless, our results, and
those of others, clearly demonstrate that PBANR expression in
adult moths is predominantly PG-directed, which is congruous
with its role in mediating sex pheromone production.

Consistent with our previous report, which described the
developmental profile of the BommoPBANR-C transcript (Hull
et al., 2004), all four BommoPBANR variants are up-regulated
on the day preceding adult emergence (Figure 3B). Similar up-
regulation has been observed for other genes crucial to B. mori
pheromonogenesis, i.e., pgFAR, Bmpgdesat1, pgACBP, BmFATP,
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FIGURE 2 | Schematic diagram of the B. mori PBANR genomic structure and alternative splice sites. The four BommoPBANR variants (As, A, B, and C)
are depicted. The filled boxes represent exons. Initiation (ATG) and stop sites (TGA or TAG) are indicated by their respective codons.

FIGURE 3 | Expression profile of BommoPBANR transcripts in adult

female tissues. (A) Expression in adult tissues. Tissues were dissected
from newly emerged (day 0) p50 female moths. PG, pheromone gland;
Br, brain; FM, flight muscle; Eg, unfertilized egg; MT, Malpighian tubule;
FB, fat body; MG, midgut. (B) Expression in the PG at different

developmental stages. PGs were dissected from p50 female pupae at
3 days (−3) and 1 day (−1) before eclosion and from p50 adults at 0 day
(0), 1 day (+1), and 3 days (+3) after eclosion. cDNAs were normalized to
actin expression levels. The PCR cycle number is indicated to the right of
the gels.

and BmLsd1 (Matsumoto et al., 2001; Moto et al., 2003, 2004;
Ohnishi et al., 2009, 2011).

IDENTIFICATION OF PBANR VARIANTS IN NOCTUID SPECIES
We next investigated the pervasiveness of PBANR splice variants
in three other moths. In the Oriental armyworm, P. separata, we
identified clones encoding 374-aa and 309-aa proteins with 98 and
82% identity to HelviPBANR-A and BommoPBANR-As respec-
tively, which we designated PsesePBANR-A and PsesePBANR-
As (Figure 4). Initial attempts to identify PsesePBANR-B and
PsesePBANR-C variants via 3′-RACE using conventional poly-
merases were unsuccessful. Because conventional polymerases
often fail to amplify GC-rich targets, we switched to a commer-
cially available GC-optimized polymerase to identify the 469-aa
PsesePBANR-C and the 476-aa PsesePBANR-B (Figure 4). As
before, sequencing of multiple clones suggested that PsesePBANR-
C was the predominantly expressed variant. Applying the same
cloning strategy to females of the cotton bollworm, H. armigera,
we isolated four PBANR variants from a PG-specific cDNA
library: a 330-aa protein designated HelarPBANR-As, a 346-aa
protein designated HelarPBANR-A, a 476-aa protein designated
HelarPBANR-B, and a 469-aa protein designated HelarPBANR-
C (Figure 5). HelarPBANR-A is 99% identical to the deposited
HelarPBANR (AY792036) with nucleotide sequence variations
largely restricted to the third codon position; the lone exception
was Leu substitution of Trp118 (Figure 5). The sequence data
for the H. armigera and P. separata PBANR variants have been

deposited with GenBank (H. armigera – JN228350–228353 and P.
separata – JN228354–JN228357).

Because the only PBANR identified in H. zea to date corre-
sponds to the PBANR-A variant, we sought to determine if the
longer PBANR-B and PBANR-C variants are also expressed in the
PG of this species. Using RT-PCR methods as above, we identi-
fied H. zea homologs of both variants (Figure 6). HelzePBANR-B
(JQ255024) is a 476-aa protein with 99% sequence identity to
HelviPBANR-B while HelzePBANR-C (JN206677) is a 469-aa pro-
tein with 98% sequence identity to HelviPBANR-C. Based on our
results and those of Kim et al. (2008), the concurrent expression
of multiple PBANR variants that arise from alternative splicing
of the 3′ coding region appears to be extremely prevalent, if not
absolute, across moth species.

RT-PCR EXPRESSION ANALYSES OF PBANR VARIANTS
Sequence analyses revealed that, regardless of moth species, the
∼300-nt coding sequence unique to the PBANR-B and -C vari-
ants (Figure 7, red bars) is GC-rich. In P. separata and H.
armigera, the GC content of this region ranges from 65–80%
while that of the B. mori gene is 55–60%. The C-terminal cod-
ing sequence of the PBANR-As and -A variants, in contrast, is
more AT-rich (Figure 7). In preliminary experiments, we con-
firmed that species-specific primer sets capable of amplifying both
PBANR-A and -As (Figure 8, primer set A) generated distinct
amplimers of the expected sizes for each transcript from each
species assayed. We also found that while the PBANR-B and -C
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FIGURE 4 | Multiple sequence alignment of the P. separata PBANR

variants. The seven predicted TM domains are over-lined. Location of the
YXXΦ endosomal sorting motif is outlined. Alignment was performed using

MAFFT v6.814b (Katoh et al., 2002) with certain gaps removed. Species
abbreviations are per National Center for Biotechnology Information/Swiss
Prot: Psese, Pseudaleti separata.

FIGURE 5 | Multiple sequence alignment of the H. armigera PBANR

variants. The seven predicted TM domains are over-lined. Location of the
YXXΦ endosomal sorting motif is outlined. Alignment was performed using

MAFFT v6.814b (Katoh et al., 2002) with certain gaps removed. Species
abbreviations are per National Center for Biotechnology Information/Swiss
Prot: Helar, Helicoverpa armigera.

variants were poorly amplified from P. separata with a conven-
tional polymerase, both were robustly amplified with a commer-
cially available GC-optimized polymerase (Figure 8). Based on
these results, we performed RT-PCR using PG cDNAs with both
the GC-optimized polymerase as well as the conventional DNA
polymerase (Figure 9). In all moth species, we observed higher
expression levels for PBANR-C than either of the shorter vari-
ants. To further confirm the expression levels of PBANR isoforms
in the three moth species, we performed Northern blots using
total RNA prepared from PGs during pheromonogenesis. Using
probes that recognize the “short” (PBANR-As and A) and “long”
(PBANR-B and C) variants, we detected a single band correspond-
ing to the “long” variant transcript of 3.4–4.1 kb in the PG of each
species (Figure 10A). No bands corresponding to the “short” vari-
ant transcript were detected. Furthermore, Northern blots using

total RNAs prepared from various female tissues during this same
time period confirmed PG-specific expression of the long variants
as single bands were only detected in PGs (Figure 10B).

CELL SURFACE LOCALIZATION AND FUNCTIONAL ACTIVATION OF THE
PBANR VARIANTS
To confirm the functionality of the PBANR variants, cultured Sf9
insect cells were transfected with plasmid DNAs encoding fluores-
cent chimeras of the B. mori, P. separata, and H. armigera PBANR
variants in which EGFP was fused in frame to the receptor C-
terminus. Cell surface localization of each variant was confirmed
using laser confocal microscopy (Figure 11). Regardless of moth
species, the PBANR-B and -C variants localized exclusively to
the plasma membrane (Figure 11A). The BommoPBANR-A and
HelarPBANR-A variants exhibited varying degrees of intracellular
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FIGURE 6 | Multiple sequence alignment of the H. zea PBANR variants.

The seven predicted TM domains are over-lined. Location of the YXXΦ

endosomal sorting motif is outlined. Alignment was performed using MAFFT

v6.814b (Katoh et al., 2002) with certain gaps removed. Species abbreviations
are per National Center for Biotechnology Information/Swiss Prot: Helze,
Helicoverpa zea.

FIGURE 7 | Guanine–cytosine content distribution diagrams of

PBANR variants. The distribution of GC content in full-length cDNA
sequences for the PBANR variants of B. mori, P. separata, and H.

armigera was calculated using 100 base windows over a range of 700
bases. Red bars indicate the ∼300-nt coding sequence unique to the
PBANR-B and -C variants.

localization with some cell surface localization (Figure 11A).
The PsesePBANR-A variant, in contrast, was completely intra-
cellular (Figure 11A), as were all of the PBANR-As variants
(Figure 11A), suggesting that an intact TM7 is necessary for cell
surface trafficking and localization.

Ligand-induced receptor internalization is a key element
in regulating the strength and duration of receptor-mediated
cell signaling. We have previously shown that PBAN induces
BommoPBANR-C (formerly referred to as BomPBANR) inter-
nalization (Hull et al., 2004, 2005, 2011). We consequently sought
to determine if the other PBANR variants are regulated in a sim-
ilar fashion. Cells transiently expressing the fluorescent PBANR
variant chimeras were incubated with a Rhodamine Red-labeled
PBAN derivative (RR-C10PBANR2K). RR-C10PBANR2K induced

internalization of the PBANR-C and -B variants from each species
as evidenced by the intracellular accumulation of red fluores-
cent vesicles that co-localized with the EGFP chimera-derived
green fluorescent signals (Figure 11B). In contrast, despite clear
cell surface binding, RR-C10PBANR2K failed to induce internal-
ization of BommoPBANR-A and HelarPBANR-A (Figure 11B).
In addition, consistent with a lack of cell surface localization,
no RR-C10PBANR2K binding was observed in cells expressing
PsesePBANR-A (Figure 11B).

DISCUSSION
Following ligand binding, receptor trafficking is crucial for the
temporal and spatial control of GPCR signaling. The magni-
tude and duration of GPCR signaling is tightly regulated by
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mechanisms that terminate initial signaling and prime the cells
to respond to new ligand exposure. Consequently, endocytosis of
GPCRs from the cell surface allows for the fine-tuning of signal
magnitude and duration by playing a crucial role in signal desensi-
tization, re-sensitization, and down-regulation (Moore et al., 2007;
Marchese et al., 2008). Initially, our understanding of the molecu-
lar mechanisms underlying PBANR signaling was restricted to the
PBANRs identified in H. zea and B. mori (Choi et al., 2003; Hull
et al., 2004). These receptors, however, are structurally differen-
tiated by a 67-aa C-terminal extension in BommoPBANR that is
essential for receptor internalization (Hull et al., 2004). Given the
significance of GPCR endocytotic trafficking in signal termination,
it seems clear that the C-terminal extension present in BommoP-
BANR plays an essential role in regulating the duration of the
PBAN signal. This conclusion, however, raises questions regard-
ing PBANR signaling in general given that HelzePBANR lacks this
domain. The functional significance of the two receptor subtypes
was initially ascribed to differences in signal transduction cascades

FIGURE 8 | Amplification of PBANR variants using species- and

variant-specific primers. Amplification efficiencies of the primers were
determined using plasmids containing the full-length sequence of each
PBANR variant (PBANR-As -A, -B, or -C). Specific primer sets used are listed
inTable 1. Amplification was performed for 30 cycles using either a
conventional polymerase (Ex Taq) or a GC-optimized polymerase (KOD-FX).
Species abbreviations are per National Center for Biotechnology
Information/Swiss Prot: Bommo, B. mori ; Psese, P. separata, and Helar,
H. armigera.

activated (H. zea: cAMP dependent vs. B. mori: cAMP indepen-
dent). However, it was recently reported that multiple PBANRs,
two of which have extended C-terminal tails and YXXΦ endo-
somal sorting motifs similar to BommoPBANR, are concurrently
expressed in the H. virescens larval CNS (Kim et al., 2008). The
presence of multiple PBANR transcripts that are concomitantly
expressed and that differ only in the length of their C-terminal
loop suggests that our understanding of PBAN signaling may be
more incomplete than previously thought and raises questions
regarding their physiological role.

In the current study, we sought to assess the prevalence of
PBANR variants in the PGs of various moth species, and found
that multiple variants were expressed in the PGs of every moth
examined (Figures 1, 4–6). Genomic structure analysis of the B.
mori gene showed that the PBANR variants arise from alterna-
tive splicing at the 3′-end of the receptor gene on chromosome
12 (Figure 2). Taken together, our findings and those of Kim
et al. (2008) provide clear evidence that the PBANR gene in moths
undergoes a number of alternative splice events involving the 3′-
portion of the gene and suggest that expression of multiple PBANR
variants in moth PGs is pervasive.

To determine the potential functionality of the PBANR vari-
ants, we expressed EGFP-tagged PBANR variants in Sf9 cells
and examined their localization and ability to undergo ligand-
induced internalization (Figure 11). The PBANR-As from all
the species studied failed to localize to the plasma membrane,
a functional deficiency likely attributable to the incomplete TM7
(Markovic and Challiss, 2009). Even though the PBANR-A vari-
ant of H. armigera and B. mori partially localized to the plasma
membrane and specifically bound RR-C10PBANR2K, there was
no indication of ligand-induced internalization (Figure 11B). In
contrast, all of the PBANR-B and -C variants localized to the
plasma membrane and exhibited ligand-induced internalization
(Figure 11B). Because internalization is dependent on an active
signaling cascade (Hull et al., 2005, 2011), we concluded that
the PBANR-A variant is either functionally deficient or has dis-
tinct intracellular signaling properties. The lack of an internaliza-
tion response in cells expressing the PBANR-A variants, however,
was not completely unexpected as C-terminal truncations lack-
ing the YXXΦ motif, which is present in the PBANR-B and -C

FIGURE 9 | RT-PCR analysis of PG-derived PBANR variants. RT-PCR was performed using B. mori, P. separata, H. armigera, and H. zea PG cDNAs with either
(A) a conventional DNA polymerase (Ex Taq) or (B) a GC-optimized DNA polymerase (KOD-FX). Amplifications were performed using 26–32 PCR cycles as
indicated.
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variants but not the PBANR-A variants, exhibited drastically dif-
ferent internalization kinetics (Hull et al., 2005). Interestingly,
while capable of mobilizing extracellular Ca2+ in response to
PBAN, the initial HelzePBANR variant identified by Choi et al.
(2003) also lacks this motif. This suggests that functional dif-
ferences between the H. zea receptor and the B. mori receptor
likely extend beyond the C-terminus. Notable sequence variations
between BommoPBANR-A and HelzePBANR-A include the last
four to five residues (BommoPBANR-A: VRLN vs. HelzePBANR:
FKTTA) of the respective C-terminal tails and a four residue
span in the third intracellular loop (BommoPBANR-A: AHTP vs.
HelzePBARN: QMQ). What role, if any, these residues may play in
PBANR signal transduction remains to be determined.

In the course of our efforts to clone transcripts encoding
PBANR variants, we found that conventional 3′-RACE PCR
failed to amplify cDNAs for the PBANR-B and -C variants.
In addition, RT-PCR using gene-specific primers with conven-
tional polymerases likewise failed to amplify the cDNAs encoding
PsesePBANR-B and -C. In contrast, these transcripts were suc-
cessfully amplified with a GC-optimized polymerase (Figure 9).
Regardless of moth species, the coding sequence unique to the
PBANR-B and -C variants is GC abundant, while the C-terminal
coding sequence of the PBANR-As and -A variants is AT-rich
(Figure 7). We speculate that this may be the reason why tran-
scripts encoding PBANR-A have been so frequently amplified
(Rafaeli et al., 2007; Zheng et al., 2007; Cheng et al., 2010; Lee
et al., 2011) despite the higher expression levels of PBANR-B
and -C (see Figure 9). As a consequence, we believe that conclu-
sions drawn regarding the in vivo functional role of the PBANR-A
variant should be reconsidered within the context of coincident
PBANR-B and -C expression.

While evidence for the four PBANR splice variants is cur-
rently limited to the transcript level, their conservation across
multiple species, in conjunction with similar observations of con-
served splicing patterns in mammalian receptors (Markovic and
Grammatopoulos, 2009), suggests that the variants are likely physi-
ological relevant. Concomitant expression of the multiple variants
within a single cell type could represent a fine-tuning mech-
anism for cellular responsiveness to the extracellular signal. In
one scenario, a non-responsive receptor (e.g., BommoPBANR-A)
expressed at the cell surface might function as a decoy receptor
that competes with the wildtype receptor (e.g., BommoPBANR-
C) for ligand binding. The net result would be less bioactive
peptide available to trigger the cellular response thus decreasing
overall sensitivity. Alternatively, heterodimerization of the short
receptors (e.g., BommoPBANR-A and/or -As) with the longer
wildtype receptors (e.g., BommoPBANR-C or-B) could trap the
active receptors within the secretory pathway, thereby decreasing
the pool of available receptor for ligand binding and effectively
decreasing overall cellular sensitivity. Truncated variants of the
calcitonin receptor, corticotropin releasing factor receptor type 1,
and, more recently, growth hormone secretagogue receptor type
1a have all been shown to exhibit dominant negative effects on sig-
naling when co-expressed with wildtype variants (Seck et al., 2005;
Zmijewski and Slominski, 2009; Chow et al., 2012). Receptor vari-
ants have also been shown to be functionally distinct with respect
to spatial and temporal expression, ligand binding, regulation, and

FIGURE 10 | Northern blot analyses of PBANR variants in adult female

tissues. (A) PG. (B) Adult tissues. Using two probes (BommoPBANR-A:
1–1265, BommoPBANR-C: 1591–2616, PsesePBANR-A: 254–1378,
PsesePBANR-C: 1586–2608, HelarPBANR-A: 242–1282 and
HelarPBANR-C: 1574–2597) that recognize either the “short” PBANR
variants or the “long” variants. A single 3.4–4.1 kb band corresponding to
the “long” (i. e., PBANR-B and -C) transcripts is detectable only in the PG
for each species. PG, pheromone gland; Br, brain; FM, flight muscle; Eg,
unfertilized egg; MT, malpighian tubule; FB, fat body; MG, midgut.

downstream effector pathways (Markovic and Challiss, 2009). A
naturally occurring variant of the neurokinin 1 receptor that essen-
tially lacks a C-terminus has been shown to mediate intracellular
signaling mechanisms distinct from those initiated by the full-
length receptor including: an inability to mobilize extracellular
Ca2+, decreased protein kinase δ phosphorylation, slowed activa-
tion of the extracellular signal-regulated kinase (ERK) pathway,
and decreased desensitization and internalization (DeFea et al.,
2000; Lai et al., 2008). A similar differentiation in signaling path-
ways activated downstream of ligand binding has been observed
for the PBANR variants. When expressed in mammalian CHO-
WTA11 cells, only the HelviPBANR-C variant generated a robust
Ca2+ signal in response to PBAN, little to no Ca2+ mobilization
was observed in cells expressing the HelviPBANR-A or -B vari-
ants (Kim et al., 2008). Furthermore, given the pleiotropic nature
of PBAN and PBAN-like peptides (Rafaeli, 2009), it is likely that
PBANR variants expressed in other tissues/developmental stages
may govern tissue-dependent physiological functions. Indeed, the
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FIGURE 11 | Confocal imaging of fluorescent chimeras of the PBANR

variants transiently expressed in Sf9 cells. (A) Localization of EGFP-tagged
PBANR variants. For control purposes, Sf9 cells were transfected with an

expression plasmid containing EGFP. (B) Ligand-induced internalization of
EGFP-tagged PBANR variants. Internalization was triggered with 50 nM
RR-C10PBANR2K. Co-localization is indicated by yellow in the merged images.

PBANR-A variant in Spodoptera littoralis was cloned from fifth
instar larvae as part of an effort to identify the receptor responsi-
ble for cuticular pigmentation, a physiological effect mediated by
the PBAN family of peptides (Zheng et al., 2007).

In conclusion, our results show that PBANR-C is the pre-
dominant variant expressed in the PG during pheromonogenesis
regardless of moth species, and, given the functional significance of
the C-terminus (Hull et al., 2004, 2005, 2011), strongly suggest that
this variant is the principal receptor molecule involved in PBAN
signaling. This conclusion is supported by Northern blot analy-
ses (Figure 10) as well as specific photoaffinity-based binding of
biotin-labeled PBAN to a membrane-bound protein of ∼50 kDa
in H. armigera PGs (Rafaeli et al., 2003), which is more consistent
with the molecular weight of HelarPBANR-C (51.1 kDa) than

HelarPBANR-A (38.7 kDa). Furthermore, preferential amplifica-
tion of the PBANR-C variant was also demonstrated in H. virescens
PGs (Kim et al., 2008). Lastly, in contrast to PBANR-C, the shorter
PBANR-A variant localizes poorly at the cell surface and fails to
undergo typical ligand-induced internalization (Figure 11), which
suggests that desensitization of this variant either does not occur,
or at the very least that its regulation is mediated by a distinct
intracellular pathway.
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