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Abstract

Objective, sensitive, and meaningful disease assessments are critical to support clinical trials and 

clinical care. Speech changes are one of the earliest and most evident manifestations of cerebellar 

ataxias. This work aims to develop models that can accurately identify and quantify clinical signs 

of ataxic speech. We use convolutional neural networks to capture the motor speech phenotype 

of cerebellar ataxia based on time and frequency partial derivatives of log-mel spectrogram 

representations of speech. We train classification models to distinguish patients with ataxia from 

healthy controls as well as regression models to estimate disease severity. Classification models 

were able to accurately distinguish healthy controls from individuals with ataxia, including ataxia 

participants who clinicians rated as having no detectable clinical deficits in speech. Regression 

models produced accurate estimates of disease severity, were able to measure subclinical signs 

of ataxia, and captured disease progression over time. Convolutional networks trained on time 

and frequency partial derivatives of the speech signal can detect sub-clinical speech changes in 

ataxias and sensitively measure disease change over time. Learned speech analysis models have 

the potential to aid early detection of disease signs in ataxias and provide sensitive, low-burden 

assessment tools in support of clinical trials and neurological care.
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I. INTRODUCTION

Cerebellar ataxias (CA) are disorders associated with impaired function of the cerebellum. 

People with CA often experience clumsiness, unsteady gait, and slurred speech. The 

etiology of CA is heterogeneous, though many associated diseases are neurodegenetive. 

Progression can vary by both etiology and individual. CA can be hereditary—such with 

ataxia-telangiectasia (AT), spinocerebellar ataxias (SCAs), and Friedreich’s ataxia (FRDA)

—or acquired—such as with idiopathic late-onset cerebellar ataxia (ILOCA) and multiple 

system atrophy (MSA). Dominant hereditary CAs have an average prevalance of 2.7/105, 

with SCA type 3 (SCA-3) being the most common dominant ataxia. Autosomal recessive 

CAs have an average prevelance of 3.3/105, with FRDA being the most frequent followed by 

AT [1].

Initial diagnosis and monitoring of disease progression currently rely on neurologist-

performed assessments of motor and cognitive behavior. Clinical rating scales—such as the 

Scale for the Assessment and Rating of Ataxia (SARA) [2], the International Cooperative 

Ataxia Rating Scale (ICARS) [3], and the Brief Ataxia Rating Scale (BARS) [4]—are 

structured, semi-quantitative scales used to track disease progression in natural history 

studies and clinical trials to determine the efficacy of new therapies. Unfortunately, these 

assessments have several limitations: they are subjective, depend on the rater’s clinical 

experience, and are limited by human perception. These scales are necessarily discrete and 

coarse to achieve adequate intra- and inter-rater reliability. Furthermore, as they depend on 

a trained clinician and are typically performed in-person, these assessments have limited 

accessibility and cannot be performed frequently to account for short-term fluctuations in 

symptoms [5], [6]. These factors contribute to the challenge of measuring disease change, 

and thereby to long and large clinical trials, which increases costs and places high burden on 

patients. Finally, these tools are inadequate for assessing early stages of disease, which may 

be the most impactful time to intervene in order to prevent neurodegeneration, but is also 

when signs are least detectable.

Quantitative phenotyping attempts to address this gap through the use of technology to 

quantify important aspects of motor and cognitive behavior [7]. There has been increasing 

interest in the use of inertial measurement units (IMUs) that record accelerometer and 

gyroscope data to quantify gait or limb movement [8], [9], [10], [11], [12], [13] features, 

computer mouse tasks that assess arm motor control [14], and eye tracking devices to 

quantify eye movement abnormalities [15], [16]. Such data can be used to generate granular 

descriptions of disease phenotypes and severity, which can be extended to the home setting 

for accessible and frequent assessments.

Speech is a promising source for quantitative behavioral biomarkers in neurological 

conditions. Analysis of speech has been widely used to detect and quantify the severity 

of Parkinson’s Disease using machine learning techniques such as support vector machines 
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and random forests [17], [18], [19], k-nearest neighbors [20], parallel neural networks [21], 

and gradient boosting classifiers [22] applied to acoustic speech features. Deep learning 

approaches, such as bidirectional long-short term memory models [23], have also been 

proposed for analysis of parkinsonian speech. Related work in multiple system atrophy [24] 

and multiple sclerosis [25], [26] identified quantifiable characteristics of speech digression 

and their potential usage for severity estimation. Mixed-effects models have also been 

proposed to analyze speech in the context of amyotrophic lateral sclerosis (ALS) [27].

Speech changes have been extensively characterized in CA [28], [29], [30], [31] and are 

an early disease feature of SCAs [32]. Cerebellar dysfunction results in many changes in 

acoustic properties of speech, including long-term variability of the fundamental frequency, 

shimmer, peak amplitude variation, jitter, slowed speech rates, increased utterance duration, 

and slowed and irregular alternating syllable rates [33], [34]. Computational analysis 

of speech in ataxias has been relatively limited. Kashyap, et al. published a series of 

works with promising results based on conventional machine-learned modeling of acoustic 

features of the tongue-twister phrase “British Constitution” [35] and the “ta-ta-ta” syllable 

repetition task [36]. Furthermore, using the same tasks, a multivariate mixture extension 

of the generalized linear mixed model and cluster analysis was used to model the 

progression of speech deficits [37]. Song et al. were also able to distinguish between 

hypokinetic dysarthria, CA, and healthy controls using convolutional networks applied to 

audio waveforms of passage reading and counting tasks [38].

Given the acoustic and temporal signatures of ataxic speech, we hypothesized that 

convolutional models trained on the time and frequency gradients of log-mel spectrograms 

would learn useful representations for detecting ataxia and estimating its severity, including 

in individuals without clinically apparent deficits in their speech. This manuscript is 

structured as follows: Sec. II describes the study population, the collected data, data pre-

processing, and model training and validation. Sec. III presents the performance of models 

trained to distinguish healthy and ataxic speech and to estimate disease severity. We also 

attempt to provide insight into how the model works using integrated gradients. Finally, 

in Sec. IV, we discuss our results in relation to other works and propose future research 

directions.

II. METHODS

A. DATA COLLECTION AND PARTICIPANTS

Both in-person and at-home data were collected from 228 unique participants across 463 

sessions. A total of 203 of the sessions corresponded to at-home data collection, where 

data were sampled from the built-in microphone of a laptop provided to the participant or 

from the participant’s home computer or mobile device. The remaining 260 sessions were 

collected in-person, where data collection was supervised by study personnel and data were 

sampled from a lapel-attached microphone connected to an iPad. A total of 157 out of 228 

participants had a CA diagnosis; the remaining 71 participants were neurologically healthy 

controls. Ataxia diagnoses included spinocerebellar ataxia (5 SCA-1, 3 SCA-2, 21 SCA-3, 

7 SCA-6, 10 other SCAs), ataxia-telangiectasia (45), multiple system atrophy (9), autosomal 

recessive cerebellar ataxia (3), Friedreich’s Ataxia (4) and a heterogeneous distribution of 
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other types of ataxia (50). Table 1 summarizes the demographics of the study population. 

Participants performed a variety of speech tasks with audio recorded at 44.1 kHz. For this 

analysis, only audio from repetitive utterances of the syllables “la-la-la”, “go-go-go”, and 

“me-me-me” were used. These tasks have previously been used for clinical evaluation of 

ataxia [2], [3], [4] and were chosen to isolate key phenotypic features, including speech 

rate, articulatory variability, naturalness, and intelligibility [26]. All participants provided 

written assent and/or consent, and the study was approved by the Institutional Review Board 

at Massachusetts General Hospital with protocol numbers of 2016P001048 (7/11/2016), 

2019P002752 (1/2/2020) and 2019P003458 (4/2/2020).

B. PRE-PROCESSING OF SPEECH DATA

Audio recordings were first downsampled to a rate of 8 kHz. A noise reduction algorithm 

based on spectral gating [39], [40] was then used to estimate a noise threshold for each 

frequency band and then filter detected noise from the signal. Mel-frequency spectrograms, 

which represent the spectrum of signal frequencies as a function of time, were then 

computed using Librosa [41]. Spectrograms were constructed by segmenting the audio 

signal into 128 ms overlapping windows with a step of 20 ms and applying a short-time 

Fourier transform to each window. The resulting spectrograms were passed through a 

mel-space frequency transformation resulting in 128 frequency bins. Bin magnitudes were 

log-transformed. Fig. 1 illustrates an example spectrogram.

Each spectrogram was then split into non-overlapping 1 s frames (i.e., each frame was a 51 

× 128 matrix), with the last frame zero-padded in the time dimension. The WebRTC Voice 

Activity Detector was then used to assign a score in the range of 0–1 to each frame, defined 

as the fraction of instances (i.e., time bins) in which voice was detected. Frames with a voice 

activity score of less than 0.6 were regarded as noise and discarded from further analysis. 

Finally, all frames were globally re-scaled to a range of 0–1 and partial derivatives were 

calculated along the time and frequency dimensions.

C. ATAXIA CLASSIFICATION

One objective of this work was to create a model to distinguish between participants with 

ataxia and controls. The repetitive speech tasks used in this study were expected to create 

distinct patterns in the frequency-time space, as seen in Fig. 1. These patterns can occur 

in multiple places within the sample and patterns that are signs of CA should be present 

across samples from different individuals. We chose to employ convolutional networks as 

translational invariance could take advantage of the repetitive signal.

We trained classification models using two different architectures: 1) ResNet 18 [42], and 

2) a simple, three-layer convolutional network. ResNet 18 is a Deep Residual Network 

utilizing two-dimensional (2D) convolutions. The simple convolutional network also used 

2D convolutions, but did not include residual connections. Both models treated spectrogram 

or single partial derivative inputs analogously to monochrome images. When models were 

configured to use both time and frequency partial derivatives as inputs, the derivatives were 

concatenated along the channel dimension. (I.e., such inputs were treated analagously to 

two-color images, with each color corresponding to a different partial derivative.) Therefore, 
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the 2D convolutions used in both models were applied to the frequency-time space and could 

learn features that combined information across both dimensions. Both models were trained 

using Adam [43] to optimize the Cross Entropy Loss. Model outputs were the probability 

that the input frame originated from a participant with ataxia, P(Ataxia). Model checkpoints 

were saved throughout the training process, and models with parameters that minimized the 

loss across one epoch on the validation dataset were chosen for performance estimations.

D. SEVERITY ESTIMATION

A second objective of this work was to create a model to estimate ataxia severity, as 

measured by the BARS total score (BARStotal), which ranges from 0–30, and the speech 

component of BARS (BARSspeech), which ranges from 0–4. A modified version of BARS 

incorporating half-points [44] was used and higher numbers represent more severe clinical 

signs. BARStotal depends on assessments of several motor domains, including eye movements 

(e.g., saccades and smooth pursuit), limb reaching movements, and gait. The total score 

was used as a training label because aggregate scores tend to be more robust to errors and 

provide greater resolution. In contrast, BARSspeech more closely reflects performance on the 

considered tasks. Individuals with natural speech and rapid consonant production are given a 

BARSspeech score of 0. Individuals with consonant production irregularities are scored as 0.5. 

Mildly slurred speech with all words being intelligible corresponds to a score of 1. BARSspeech

scores then increase as speech becomes more slurred and less intelligible, with a score of 4 

corresponding to absent or unintelligible speech.

Similarly to the models trained for classification, a ResNet 18 model with a single output 

was trained to estimate ataxia severity. The model was trained to optimize the Mean Squared 

Error loss using Adam [43]. The model with parameters that minimized the loss across one 

epoch on the validation dataset was chosen for performance estimations.

E. DATA AUGMENTATION

A combination of data augmentation techniques were applied to the training data for the 

classification task. These augmentations included 1) under sampling the majority class 

(ataxia participants) to balance the data set, 2) linear mix-up [45], and 3) cropping along 

the time dimension to give the illusion of slower speech. Only cropping was used when 

training the regression model. Finally, all inputs—including the validation samples that 

did not undergo the aforementioned augmentations—were resized to 100 × 100 matrices 

to accommodate the large size of ResNet 18. For training, each frame was considered as 

an independent sample. For all validation purposes, the outputs corresponding to frames 

originating from the same participant during the same session were aggregated such that 

their median value was considered as the single model output.

F. CROSS VALIDATION

Classification model performance was validated using a 5-fold participant-based (as opposed 

to frame-based) cross validation procedure. In each fold of cross validation, the data were 

randomly split into a training data set containing 80% of the ataxia participants and 80% of 

the controls, while the rest were reserved as a testing set. By repeating this procedure five 
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times, all participants appeared in the testing set during one of the five folds. Splitting the 

data based on the participant instead of the frame ensured that frames originating from the 

same individual could not be included in both the training and testing set for any given fold. 

In other words, this form of cross validation simulated the application of trained models 

to previously unobserved subjects, thereby ensuring that the reported performance should 

generalize to similar populations. The downside of this approach was that the training data 

set size was not exactly the same across all folds since each participant’s task duration 

varied. Reported performance metrics were averaged over each fold and plots display the 

pooled data from all folds. The performance of regression models were similarly evaluated 

using 10-fold participant-based cross validation to ensure a representative distribution of 

BARS scores within the training data.

G. PERFORMANCE EVALUATION

Classification model performance was assessed using the area under the ROC curve (AUC) 

and the class-weighted F1 score. Regression model performance was assessed using the 

mean absolute error (MAE) and coefficient of determination (R2). Additional analyses 

(described below) were performed for the best-performing ResNet18 model for each task.

Additional analyses for the best-performing classification model included a Mann-Whitney 

U-test on P(Ataxia) to assess the ability of the classification model to distinguish 

between controls and ataxia participants without clinically observed speech deficits (i.e., 

BARSspeecℎ
clin = 0). Mann-Whitney U-tests were also performed separately for controls and 

ataxia participants to compare model performance between sexes. Spearman’s correlation 

(ρ) was used to evaluate the relationship between P(Ataxia) and participant age for 

participants with ataxia. To determine the classification’s dependence on ataxia severity, 

Mann-Whitney U-tests were used to compare P(Ataxia) between ataxia participants with 

BARStotal < 15 and those with BARStotal > = 15. A similar comparison was done for 

BARSspeecℎ < 1.5 versus BARSspeecℎ > = 1.5.

As with the classification model, additional regression analyses included a Mann-Whitney 

U-test on BARSspeecℎ
pred  to assess the speech score regression model’s ability to distinguish 

between controls and ataxia participants without clinically observed speech deficits. Another 

Mann-Whitney U-test on BARSspeecℎ
pred  was used to determine the model’s sensitivity to mild 

speech severity by comparing ataxia participants with BARSspeecℎ
clin = 0 and BARSspeecℎ

clin = 0.5. 

Mann-Whitney U-tests were also performed separately for controls and ataxia participants 

on the absolute errors of BARSspeecℎ
pred  and BARStotal

pred to compare model performance between 

sexes. Spearman’s correlation (ρ) was used to evaluate the relationship between the absolute 

error of model outputs and participant age. Finally, one-sample t-tests between subsequent 

visits were used to evaluate the regression models’ sensitivity to disease progression for 

ataxia participants who participated in the study multiple times. Progression was further 

assessed using Spearman’s correlation (ρ) between the changes in model estimates versus 

elapsed time.

Effects sizes for Mann-Whitney U-tests are reported in terms of the common language effect 

size (f), which is equivalent to AUC. Rank-biserial correlation (r) can be derived from the 
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common language effect size using the formula r = 2f – 1. Effect sizes for one-sample t-tests 

are reported using Cohen’s d.

H. MODEL INTERPRETABILITY

Integrated Gradients (IG) [46] were used to better understand the speech information used 

by the models to make predictions. IG were calculated for correctly classified tests for 

the classification model. One set of IG were obtained for each input component (i.e., time 

derivatives and frequency derivatives) and were studied separately. The absolute values of 

the IGs were aggregated once along the frequency dimension and once along the time 

dimension to obtain a salience score for each bin in time and frequency, respectively. To 

visualize the IGs with respect to a speech sample, Principal Component Analysis (PCA) 

was performed on each mel spectrogram. The first principal component, which captured 

the oscillatory behavior of the repeated syllable speech task, was used to set boundaries for 

single syllables (see Fig. 7).

An analysis was then performed to determine if certain syllable components (in time and 

frequency) were preferentially informative in generating model predictions. Starting with 

the frequency-aggregated IGs, the temporal location of the three instances with the three 

highest salience scores were identified and their temporal position was 0–1 normalized with 

respect to the syllable endpoints. A similar procedure was applied to the time-aggregated 

IGs, although the locations of the three highest peaks were identified in frequency space, 

with range of 1–100.

III. RESULTS

Table 2 summarizes model performance across a variety of tasks (classification of control vs. 

ataxia participants, BARStotal regression, and BARSspeech regression), model architectures, and 

model inputs.

A. ATAXIA CLASSIFICATION

Of the experiments in Table 2, a model with both frequency and time partial derivatives 

of the mel spectrogram as model inputs performed the best at classification of controls vs. 

ataxia participants. Results reported in this subsection are based on this model. The AUC 

was 0.89±0.03 across all cross validation folds (Fig. 2). Fig. 3 illustrates the relationship of 

BARStotal and BARSspeech with P(Ataxia). Each marker represents whether the participant was a 

control (blue) or had ataxia (red), was male (dot) or female (cross), and the participant’s age 

(marker size). The dotted line demonstrates that an operating threshold of P(Ataxia) > 0.6 

well-separated both groups. Table 3 shows the normalized confusion matrix corresponding 

to this threshold. The associated sensitivity, specificity, and class-weighted F1 scores were 

0.88 ± 0.08, 0.87 ± 0.02, and 0.86 ± 0.02 across all validation folds, respectively.

A Mann-Whitney U-test between controls and ataxia participants with BARSspeecℎ = 0 was 

significant (f = 0.80, p = 2 × 10—7), providing strong evidence that the model captured 

ataxic speech features that were not detected by the neurologists’ clinical assessments. 

Furthermore, the median P(Ataxia) was 0.12 for controls and 0.94 for ataxia participants, 
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as shown in Fig. 3. The F1 score for this subset of the cohort (i.e., controls and ataxia 

participants with BARSspeecℎ = 0) was 0.74.

The Mann-Whitney U-tests comparing model performance between sexes were not 

significant for participants with ataxia (f = 0.56, p = 0.07), but for controls indicated that 

the model predicted higher P(Ataxia) for males (f = 0.62, p = 0.02). This bias may partly be 

due to the fact that the ataxia cohort contained more males, which could lead to some male 

characteristics being considered as ataxic by the model. The Spearman correlation between 

participant age and P(Ataxia) among participants with ataxia was not significant (ρ = 0.08, 

p = 0.15), which is further supported by the age-stratified metrics presented in Table 4. 

The Mann-Whitney U-tests between groups of ataxia participants with different severities 

revealed that the more severe group had significantly higher P(Ataxia) when comparing 

both BARStotal < 15 vs. BARStotal > = 15 (f = 0.59, p = 7 × 10−3) and BARSspeecℎ < 1.5 vs. 

BARSspeecℎ > = 1.5. (f = 0.64, p = 7 × 10−5).

B. SEVERITY ESTIMATION

Of the experiments listed in Table 2, a ResNet 18 model with time partial derivatives 

(excluding frequency partials) of the mel spectrogram as model inputs performed the 

best at severity estimation. Two separate models with the same inputs and archiecture 

were trained to estimate BARStotal and BARSspeech. Results reported in this subsection are 

based on these models. Fig. 4 illustrates the relationship between BARSclin and BARSpred. 

(Pooled validation data from all ten cross-validation folds are plotted together.) Strong 

agreement was observed for both speech score estimations (MAE = 0.33 and R2 = 0.73) 

and total BARS estimations (MAE = 3.5 and R2 = 0.61). This performance is comparable to 

approaches using wearable inertial measurement unit data [8]. However, the models tended 

to underestimate scores for individuals with higher severity, especially for BARSspeech
pred , which 

may due to the relative lack of training data in the high BARSspeech range.

The Mann-Whitney U-test between ataxia participants with very mild speech severity and 

those without clinically noted deficits (i.e., BARSspeech
clin = 0.5 vs. BARSspeech

clin = 0) indicated a 

significant difference in the estimated speech scores (f = 0.81, p = 2 × 10−4). Thus, the 

models could distinguish between small variations in severity, even in very mild individuals. 

Though the comparison between ataxia participants with BARSspeech
clin = 0 and healthy controls 

did not reach significance (f = 0.58, p = 0.09), it is worth noting that the ResNet 18 model 

using both time and frequency derivative inputs did show significant differences (f = 0.65, 

p = 0.005) between median BARSspeech
pred = 0.017 for controls and median BARSspeech

pred = 0.067 for 

ataxia participants. Fig. 5 illustrates these results for both models.

The Mann-Whitney U-test comparing absolute errors between males and females indicated 

no dependence between participant sex and BARSspeech
pred  for controls (f = 0.56, p = 0.25) and 

participants with ataxia (f = 0.51, p = 0.84). There was, however, a significant difference 

between participant sex and the absolute error of BARStotal
pred for both controls (f = 0.64, p = 4 

× 10−3) and participants with ataxia (f = 0.58, p = 0.047). This difference may be explained 

by both 1) there being more male participants in the data set and 2) that male participants 

in the ataxia cohort had higher average BARStotal
clin  (9.7 points) than females (8.0 points). No 
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correlation was observed between absolute error and age for BARSspeecℎ (ρ = 0.10, p = 0.07), 

though there was a weak correlation for BARStotal (ρ = 0.22, p = 3 × 10−5). These results 

suggest that the severity estimation models performed similarly well across age groups.

One-sample t-tests comparing model estimates between subsequent participant visits 

indicated significant differences for both BARSspeech (d = 0.50, p = 8 × 10−3) and BARStotal

(d = 0.43, p = 0.02), which demonstrates that the regression models were able to detect 

disease progression. Moderate Spearman correlation between changes in estimated scores 

and the elapsed time between visits was also observed for BARStotal (ρ = 0.45, p = 9 × 10−3) 

and BARSspeech (ρ = 0.46, p = 8 × 10−3). This result indicates that the models captured larger 

speech differences over larger time intervals, as would be expected in neurodegenerative 

diseases. Fig. 6 illustrates changes in estimated scores for repeat participants.

C. MODEL INTERPRETABILITY

Fig. 7 illustrates the time derivative-based IGs and frequency derivative-based IGs for a 

single speech sample. The frequency-aggregated IGs for each type of IG are overlaid in red 

alongside the first principal component in white to visualize the part of the speech input in 

time contributed to correct model predictions. Fig. 8 shows the distribution of peak saliency 

locations across all samples, which reveals a structured pattern. The top left panel of Fig. 

8 shows that time partial derivatives are most important at the beginning of the syllable 

and, to a lesser extent, at the end. Syllable endpoints have rapid temporal change and may 

be especially informative in ataxia, where there is known to be a slow alternating motion 

rate and rhythmic irregularities. The bottom left panel of Fig. 8 shows that the temporal 

importance distribution of the frequency partial derivatives has a peak in the middle of 

the syllable. A potential explanation of this finding is that the model used frequency-based 

acoustic properties of syllable midpoints to make more accurate predictions. Finally, the 

right column of Fig. 8 shows that low frequencies are predominantly the most important part 

of the spectrum, although the distribution of time partial derivatives over frequencies has a 

heavier tail across higher frequencies and potentially a second peak (Fig. 8, top right panel).

IV. DISCUSSION

Speech can be a powerful signal for diagnosis, severity estimation, and progression 

measurement in CAs. Alternating syllables tasks in speech (and alternating motions in 

other motor domains) have been widely used by neurologists to aid their assessment of 

ataxia patients [2], [3], [4]. This work therefore leveraged the translational invariance 

of convolutional neural networks to capture disease-relevant information from repetitive 

speech tasks. The results show that convolutional networks trained using the time 

and frequency partial derivatives of the log-mel spectograms of speech recordings can 

accurately distinguish between healthy individuals and individuals with CAs, including 

those without clinically-observed speech impairment. Furthermore, we found that similarly 

trained regression models could accurately and sensitively estimate both speech and total 

clinical severity, capture disease progression over time, and were sensitive to subtle speech 

differences in very mild individuals. These results support that our approach for identifying 

and measuring speech changes has the potential to both support early detection of ataxias 
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(e.g., as a component of a screening tool) and to produce sensitive speech measures for 

clinical trials.

The proposed models performed similarly to both feature-based and deep learning-based 

models for analysis of dysarthric speech in recent literature. Kashyap, et al. proposed 

feature-based models based on tongue-twisters [35], a repetitive “ta-ta-ta” task [36], and 

repeated utterance of the phrase “British Constitution” [47] that had healthy vs. ataxia AUCs 

of 0.87, 0.91, and 0.97 respectively. (Though the “British Constitution” model reported 

very high AUC, the results were validated on a small test set of thirteen participants.) 

Furthermore, Kashyap, et al. showed that models trained on the “ta-ta-ta” and “British 

Constitution” tasks were able to capture disease progression over a two-year period 

[37]. Though some works reported high accuracy using CNN-based and gated recurrent 

unit-based deep learning models applied to mel spectrograms [48], [49], such results are 

likely optimistic as they were achieved using methodologies that did not ensure participant 

independence between training and testing sets [50]. A recent work by Song, et al., however, 

provides a comparable benchmark for the proposed models’ performance [38]. In that work, 

CNN-based models trained on the audio waveforms of participants reading a prepared 

passage achieved an AUC of 0.92. The same work further proposed a patch-wise wave 

splitting algorithm that improved performance to an AUC of 0.96, though such an algorithm 

may not be applicable to the relatively short repetitive tasks used herein. In contrast, key 

contributions of the current work include that the proposed classification model learned 

sub-clinical information from a modestly-sized data set and that a similarly-structured 

regression model accurately estimated dysarthria severity and disease progression (despite 

being trained in a cross-sectional manner).

In addition to speech, a variety of other techniques and technologies have been used to 

detect ataxia and assess disease severity, including inertial measurement units (IMUs) that 

quantify gait or limb movement [8], [9], computer mouse tasks that assess arm motor 

control [14], and eye tracking devices that quantify eye movement abnormalities [15]. Our 

approach complements these prior works by using convolutional neural networks based 

on mel spectrogram time and frequency gradient inputs to probe the effects of ataxia on 

vocal motor impairments in an unbiased fashion. In the future, we will seek to combine 

this assessment technique with quantitative assessment tools in other behavioral domains to 

improve the ability to identify early disease signs and quantify disease changes over time.

One limitation of deep learning models, especially in health care settings, is a lack of 

understanding of the information leveraged by the model. As a step toward addressing this 

limitation, we utilized integrated gradients to calculate saliency scores for the model inputs. 

For the classification model, we found that time partial derivatives were most important at 

the beginning and end of syllables, while frequency partial derivatives were most important 

in the middle. This result matches intuition that the most temporally dynamic parts of 

the syllable may carry information about speech frequency changes in time, and that less 

dynamic parts encapsulate frequency-based acoustic properties of the syllables, all of which 

are informative in detecting the presence of ataxia.
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Another key feature of the proposed models is their scalability. This study included data 

from multiple contexts, including data collected in-person or at home, with a computer or 

mobile device, and using a built-in or lavalier microphone. Thus, this assessment technique 

only requires performance of a repetitive speech task for less than a minute and may be 

performed at home using everyday technologies. The ability to obtain at-home assessments 

facilitates both participation independent of geographical location and more frequent and 

longitudinal data collection. The scalability of the proposed model also has the potential to 

be further improved. For example, transfer learning could be used to fine-tune the trained 

model to new devices or to specific populations.

There were some limitations to this study. Most importantly, our classification performance 

may be inflated compared to real-world performance as a dedicated validation set (i.e., 

separate from the test set) was not used to select the best-performing models during the 

training process. Additionally, the distribution of ataxia and control subjects in our dataset 

does not reflect the population distribution. (In our dataset, controls were the minority 

group, while in reality, the opposite is true.) Though we were able to account for this issue 

during model training, our test set still suffered from this imbalance. Additional strategies to 

address this imbalance, such as class-weighted loss functions, may yield improved results. 

Though our dataset is relatively large for studies in the field, our models would benefit 

from even larger training datasets. In particular, the ResNet18 classification model did not 

noticeably outperform the comparison simple CNN. If supported by sufficient data, even 

larger models (e.g., ResNet 101) could potentially demonstrate superior performance. The 

heterogeneity of CA and potential for different manifestations of speech deficiencies in each 

CA type could also affect our models and should be investigated. Finally, we were unable to 

account for cultural and geographical biases (e.g., language and accent), although we expect 

repetitive single syllable tasks to be less sensitive to these factors.

V. CONCLUSION

Speech changes are one of the earliest and most evident manifestations of cerebellar ataxia. 

We showed that convolutional neural networks, with time and frequency partial derivatives 

of the speech signal as input, are able to accurately separate healthy controls from patients 

with ataxia, including ataxia participants with no detectable clinical deficits in speech. 

Similar regression models also provided accurate and sensitive estimates of speech severity. 

We showed that integrated gradients could be used to understand how these networks 

use information about different parts of the syllable to generate predictions. These speech 

analysis tools have the potential to assist with early detection of ataxia, provide low-burden 

monitoring tools for neurological care, and provide speech outcome measures for use in 

natural history studies and interventional trials. Further work is needed to fine-tune and 

validate these models on larger and more balanced datasets that better reflect the true 

distribution of the population.
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FIGURE 1. 
Audio sample from the “me-me-me” syllable repetition task. The left panel shows the audio 

waveform as a function of time. The right panel shows the log spectrogram (brighter colors 

represent greater signal power).
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FIGURE 2. 
ROC curve for the classification model.
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FIGURE 3. 
Probability of a sample originating from an individual with ataxia plotted against BARStotal

(top) and BARSSpeech (middle) using the ResNet 18 model. The dashed line was the decision 

threshold chosen for reported metrics. Blue denotes controls and red denotes participants 

with ataxia. Dots denote males and crosses denote females. Marker size increases with age. 

The bottom panel shows the distribution of P(Ataxia) for controls versus participants with 

ataxia and BARSSpeech = 0.
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FIGURE 4. 
Estimations of BARStotal (top) and BARSSpeech (bottom). The dot-dashed line represents perfect 

agreement with clinical scores. The solid line denotes the best fit and the grey band shows 

the MAE interval. Blue denotes controls and red denotes participants with ataxia. Dots 

denote males and crosses denote females. Marker size increases with age.
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FIGURE 5. 
The distribution of the samples for controls on the left, ataxia participants with BARSspeech

clin = 0
in the center, and BARSspeech

clin = 0.5 on the right. Dashed lined boxes correspond to using only 

time partial derivatives as model inputs. Solid lined boxes correspond to using both time and 

frequency partial derivatives as model inputs.

VATTIS et al. Page 23

IEEE Access. Author manuscript; available in PMC 2024 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 6. 
Change in estimated BARSspeech and BARStotal for participants with multiple sessions at least a 

month apart. Changes were calculated using the first and last session on record.
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FIGURE 7. 
Time (top panel) and frequency (bottom panel) gradients of a sample mel-spectrogram. 

Positive values are green and negative values are blue. The first principal component of the 

spectrogram is overlaid as an ivory line. The frequency aggregated salience score is overlaid 

in red. Vertical black lines indicate the beginning and end of a syllable.
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FIGURE 8. 
Left column: The distribution of the location of instances with maximum frequency-

aggregated salience score with respect to their closest minimum of the first principal 

component on the left. Right column: The distribution of the location of instances with 

maximum time-aggregated salience score per frequency bin. The top row uses time gradients 

while the bottom row uses the frequency gradients.
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TABLE 3.

Normalized confusion matrix for the classification model with a decision threshold of P(Ataxia) > 0.6.

Predicted Control Predicted Ataxia

Control 0.67 0.33

Ataxia 0.04 0.96
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TABLE 4.

Classification performance of ResNet18 stratified by participant age.

Age No. F1 AUC

0–20 59 0.88 0.94

21–40 37 0.85 0.97

41–60 59 0.87 0.88

> 60 61 0.94 0.93
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