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Abstract: African swine fever (ASF) is a devastating disease in pigs, with no vaccines for control.
The genetic manipulation of African swine fever virus (ASFV) is often tedious and time consuming.
Here, we describe a method to manipulate the virus genome to produce gene deletion viruses in
a much-reduced time. This method combines the conventional homologous recombination with
fluorescent-activated cells sorting (FACS), to isolate and purify viruses expressing fluorescent reporter
genes. With three rounds of single cell isolation via FACS and two rounds of limiting dilution,
we deleted two additional genes, EP153R and EP402R, from Benin 97/1 ASFV lacking the DP148R
gene. By combining different fluorescent markers, this method has the potential to greatly facilitate
studies on understanding ASFV gene functions and develop candidate live-attenuated vaccines.
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1. Introduction

African swine fever virus (ASFV), the sole member of the family Asfaviridae, causes African swine
fever (ASF) disease in European wild boar and domestic pigs. With lethality rates reaching 100%
after infection with virulent ASFV strains, the acute form of disease is characterized by fever, loss of
appetite, lethargy and haemorrhage. The less virulent strains can lead to mild clinical signs, subacute
forms of disease, or even chronic infections. Warthogs and bush pigs develop mild or no clinical signs,
even when infected with highly virulent isolates and, thus, they can act as reservoirs for infection [1].

ASF is endemic in many sub-Saharan African countries. Since 2007, countries in Eastern Europe,
and more recently, at least 11 countries in Asia have reported numerous ASF outbreaks. ASF has a
huge socio-economic impact, as pigs are important sources of protein. China is among the world’s
largest producers and consumers of pork and pork-related products. ASFV infection in these countries
has thus led to destabilization of the pork industry throughout the world [2].

ASFV is either transmitted directly between animals or indirectly via feeding of infected meat or
by products, or through fomites. Therefore, controlling ASF relies heavily on zoning or restricting
movement of animals, the immediate culling of pigs in infected areas and rigorous surveillance.
No vaccines nor antivirals exist for ASF, mainly due to the gap in knowledge regarding ASFV, including
(i) the unknown functions of at least half of the encoded 150–167 proteins; (ii) the absence of correlates
of protection and a general poor understanding of protective immunity; and (iii) the need for primary
cells to propagate and manipulate the virus [3,4].

Rational deletions of ASFV virulence genes or immune response inhibitory genes, is often seen
as the fastest route to vaccine development [3]. Serial gene deletions allow optimization of safety
and efficacy of recombinant live attenuated vaccines (LAVs). However, producing these viruses
with multiple gene deletions remains a major bottleneck since deleting a single gene can take up to
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3–4 months. Conventionally, genetic manipulation of ASFV for producing LAV candidates or for gene
function studies have relied on using homologous recombination, whereby ASFV genes are replaced
with a reporter gene including β-galactosidase (β-Gal) or β-glucuronidase (GUS) [5–9] or more recently,
fluorescent reporter genes [10–14]. Using the Cre/ loxP recombination system, sequential deletion of
multiple ASFV genes has been performed to allow the same reporter genes to be used several times.
However, this requires additional steps and therefore extended production time [15]. Homologous
recombination events are rare, and to improve this initial efficiency, Borca and colleagues applied
the CRISPR/Cas9 system to facilitate gene deletion [16]. Nevertheless, the subsequent steps involve
multiple rounds of limiting dilution or plaque purification to obtain recombinant viruses, without
contamination from the parental virus. This makes the overall production of gene deleted ASFV a
long process.

Here, we describe a method to speed up the production of recombinant ASFV by taking advantage
of fluorescent reporter markers and single cell isolation fluorescence-activated cell sorting (FACS).
The time to make deletions has been shortened from 3–4 months to 1–1.5 months using this method.
This, combined with the ability to use at least three different fluorescent reporter genes simultaneously,
can positively contribute to the production of recombinant ASFV that can be used as vaccine candidates
and to study viral gene functions.

2. Materials and Methods

2.1. Cells and Viruses

Spontaneously immortalized wild boar cell line, WSL-R was kindly provided by Dr. Walter Fuchs
(Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany) and grown in ZB28 medium (50%
GibcoTM Ham’s F12 Nutrient Mix medium (Thermo Fisher Scientific, Waltham, MA, USA) + 50%
GibcoTM IMDM) supplemented with 10% fetal bovine serum (FBS) (Life Science Production, Bedford,
UK), 1% GibcoTM Penicillin-Streptomycin, and 1% GibcoTM Glutamine. Primary porcine bone
marrow cells (PBMs) were derived from the long leg bones of 4-week-old outbred pigs, and were
maintained in GibcoTM EBSS supplemented with 10% porcine serum (Biosera, Nuaille, France), 1%
Penicillin-Streptomycin and 1% GibcoTM HEPES. Additionally, PBMs were centrifuged at 1000 g for
30 min on a density gradient at 1.083 g/mL in Histopaque (Sigma-Aldrich, Dorset, UK). The buffy coat
was collected, red blood cells lysed with 1X RBC Lysis Buffer (BioLegend, San Diego, CA, USA) and
washed with PBS, to obtain purified PBMs that could be frozen down in freezing medium constituted
of 90% FBS and 10% DMSO (Sigma-Aldrich, Dorset, UK). Thawed purified PBMs were maintained in
RPMI 1640 medium, supplemented with GibcoTM Glutamax, 10% FBS, 1% Penicillin-Streptomycin and
100 ng/mL of recombinant porcine macrophage colony-stimulating factor (CSF1) (Roslin Technologies,
Midlothian, UK).

ASFV isolates used in this study include Benin 97/1 (genotype I) [17], Benin∆DP148R [18] and
Benin∆EP402R (unpublished data). Propagation and titrations of virus were carried out using PBMs or
purified PBMs. Virus titrations were carried out by endpoint dilution assays either via haemadsorption
(HAD50/mL) [19] or by detection of infected fluorescent cells (TCID50/mL). Virus titres were calculated
using the Spearman and Kärber algorithm [20].

2.2. Production of Recombinant ASFV Benin∆EP153R∆EP402R∆DP148R

We aimed to produce a recombinant ASFV from previously published attenuated
Benin∆DP148R by further deleting the genes EP153R and EP402R. We combined the conventional
homologous recombination with single cell isolation via FACS to produce a final recombinant
Benin∆EP153R∆EP402R∆DP148R.
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2.2.1. Transfer Plasmid

A donor/ transfer plasmid containing: (i) the mNeonGreen fluorescent reporter gene [21], under the
control of the ASFV VP30 (CP204L) promoter [22]; (ii) approximately 0.8 kbp left flanking arm of
ASFV EP153R; and (iii) 0.8 kbp right flanking region of ASFV EP402R, was synthesized from the
Benin 97/1 isolate (GenScript, Leiden, the Netherlands) (Figure 1A). The whole fragment (2478 bp)
was cloned in pUC57, using the proprietary CloneEZ® Seamless cloning technology with restriction
sites EcoRI/ HindIII and verified via restriction digestion, vector and target sequencing. Plasmid DNA
was transformed in DH5α E. coli and was extracted using QIAGEN Plasmid Midi Kit (Qiagen, Hilden,
Germany), according to the manufacturer’s instructions.

Viruses 2020, 12, x FOR PEER REVIEW 2 of 13 

 

in pUC57, using the proprietary CloneEZ®  Seamless cloning technology with restriction sites EcoRI/ 

HindIII and verified via restriction digestion, vector and target sequencing. Plasmid DNA was 

transformed in DH5α E. coli and was extracted using QIAGEN Plasmid Midi Kit (Qiagen, Hilden, 

Germany), according to the manufacturer’s instructions.  

 

Figure 1. Schematic diagram depicting the generation of recombinant African swine fever (ASFV) isolate 

lacking genes EP153R and EP402R using homologous recombination and single cell sorting. 

Homologous recombination between transfer plasmid p∆EP153R∆EP402R↔VP30mNeonGreen (A) and 

parental Benin∆DP148R (B) removed genes EP153R and EP402R (genome position: 67,051 to 68,775) 

from parental virus and replaced with a VP30mNeonGreen reporter gene cassette from the transfer 

plasmid to generate Benin∆EP153R∆EP402R∆DP148R (C). Gene maps were copied from SnapGene®  

Viewer software (GSL Biotech, San Diego, CA, USA; available at snapgene.com) and modified on 

Adobe®  Illustrator®  CS6 (Adobe Systems Inc. San Jose, CA, USA). 

2.2.2. Homologous Recombination—Infection/Transfection 

WSL-R cells were infected with Benin∆DP148R [18] at the multiplicity of infection (MOI) of 2, and 

plates were centrifuged at 600 g for 1 h. After 3 h of incubation at 37 °C, transfection mixture containing 

GibcoTM OptiMEM, 500 ng of transfer plasmid (2.2.1) and TransIT-LT1 (Mirus Bio, Madison, WI, USA) 

was added to the infected cells, and centrifuged again at 600 g for an hour. Infected/ transfected cells 

were incubated at 37 °C, 5% CO2 for 48 h. 

2.2.3. Single Cell Isolation via FACS 

The infected/ transfected cells were harvested and pooled after 48h. The cells were washed and re-

suspended at 3 × 105 cells/mL in chilled sterile FACS buffer (CaCl2 and MgCl2 free—Dulbecco’s PBS 

supplemented with 5 mM EDTA, 25 mM HEPES and 1% FBS) and passed through a 70 μm cell strainer 

(BD Biosciences, San Jose, CA, USA) prior to cell sorting.  

For single cell sorting, we used DIVA8 acquisition software with a FACSAria Fusion cell sorter 

(BD Biosciences) equipped with a 405 nm (violet), 488 nm (blue), 561 nm (yellow green) and 640 nm 

(red) laser. Specifically, for producing Benin∆EP153R∆EP402R∆DP148R, the mNeonGreen infected-

transfected cells were detected with a blue 530/30 BP filter and the violet 450/40 BP signal was collected 

and used to gate out autofluorescent cells. In sorts where viruses with a red fluorescent protein was 

used as a reporter, a yellow/green 582/15 BP filter was used to detect the fluorescence. Sorting was done 

with the 85 μm nozzle at 45 psi and in single cell precision mode. To sterilize the flow cytometer 

between sorts, 2.3% sodium hypochlorite was run at a flow rate of 5, for 5 min, as recommended by 

OIE [23].  

The FACS gating strategy to identify virus infected-transfected cells is shown in Figure 2. In brief, 

samples were gated based on cell size/granularity (SSC-A vs. FSC-A) and singlets (SSC-H vs. SSC-A), 

autofluorescent cells were identified as being dual positive for violet and mNeonGreen and were 

Figure 1. Schematic diagram depicting the generation of recombinant African swine fever (ASFV)
isolate lacking genes EP153R and EP402R using homologous recombination and single cell sorting.
Homologous recombination between transfer plasmid p∆EP153R∆EP402R↔VP30mNeonGreen (A) and
parental Benin∆DP148R (B) removed genes EP153R and EP402R (genome position: 67,051 to 68,775) from
parental virus and replaced with a VP30mNeonGreen reporter gene cassette from the transfer plasmid
to generate Benin∆EP153R∆EP402R∆DP148R (C). Gene maps were copied from SnapGene®Viewer
software (GSL Biotech, San Diego, CA, USA; available at snapgene.com) and modified on Adobe®

Illustrator® CS6 (Adobe Systems Inc., San Jose, CA, USA).

2.2.2. Homologous Recombination—Infection/Transfection

WSL-R cells were infected with Benin∆DP148R [18] at the multiplicity of infection (MOI) of 2,
and plates were centrifuged at 600 g for 1 h. After 3 h of incubation at 37 ◦C, transfection mixture
containing GibcoTM OptiMEM, 500 ng of transfer plasmid (2.2.1) and TransIT-LT1 (Mirus Bio, Madison,
WI, USA) was added to the infected cells, and centrifuged again at 600 g for an hour. Infected/

transfected cells were incubated at 37 ◦C, 5% CO2 for 48 h.

2.2.3. Single Cell Isolation via FACS

The infected/ transfected cells were harvested and pooled after 48h. The cells were washed and
re-suspended at 3 × 105 cells/mL in chilled sterile FACS buffer (CaCl2 and MgCl2 free—Dulbecco’s PBS
supplemented with 5 mM EDTA, 25 mM HEPES and 1% FBS) and passed through a 70 µm cell strainer
(BD Biosciences, San Jose, CA, USA) prior to cell sorting.

For single cell sorting, we used DIVA8 acquisition software with a FACSAria Fusion cell
sorter (BD Biosciences) equipped with a 405 nm (violet), 488 nm (blue), 561 nm (yellow green)
and 640 nm (red) laser. Specifically, for producing Benin∆EP153R∆EP402R∆DP148R, the mNeonGreen
infected-transfected cells were detected with a blue 530/30 BP filter and the violet 450/40 BP signal
was collected and used to gate out autofluorescent cells. In sorts where viruses with a red fluorescent
protein was used as a reporter, a yellow/green 582/15 BP filter was used to detect the fluorescence.
Sorting was done with the 85 µm nozzle at 45 psi and in single cell precision mode. To sterilize
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the flow cytometer between sorts, 2.3% sodium hypochlorite was run at a flow rate of 5, for 5 min,
as recommended by OIE [23].

The FACS gating strategy to identify virus infected-transfected cells is shown in Figure 2. In brief,
samples were gated based on cell size/granularity (SSC-A vs. FSC-A) and singlets (SSC-H vs. SSC-A),
autofluorescent cells were identified as being dual positive for violet and mNeonGreen and were
excluded. Virus infected-transfected cells were then identified as single positive for mNeonGreen.
Single color controls were used for compensation and non-infected or non-transfected controls were
used to set thresholds (Figures S1 and S2)

The cells were collected at single cell density into individual wells of Thermo Scientific™ Nunc™
MicroWell™ 96-Well microplates (Thermo Fisher Scientific), containing 5 × 105 purified PBMs in
100 µL media. The microplates were then incubated at 37 ◦C, 5% CO2 for 5 days. Cultures were then
monitored for expression of mNeonGreen under an inverted fluorescent microscope (Olympus CKX41;
Olympus, Tokyo, Japan).

To purify recombinant ASFV, now with additional EP153R and EP402R genes deleted and replaced
with reporter gene mNeonGreen, wells in which fluorescent cells were observed were harvested
individually, washed and re-suspended in FACS buffer. The cells were passed through a 70 µm cell
strainer, and then subjected to another round of single cell isolation via FACS, just as described above.
A final round of single cell sorting was performed 5 days later.

2.2.4. Viral Genomic DNA Extraction and PCRs

Wells containing fluorescent cells were selected for viral genomic DNA extraction using the
MagVet™ Universal Isolation Kit (Thermo Fisher Scientific, Waltham, MA, USA), according to the
manufacturer’s protocol, with minor modifications, including the use of a 40 µL instead of a 100 µL
initial test sample, and the final elution in 60 µL of Elution Buffer NM6 instead of the recommended
80 µL. The lysed samples were extracted on the high-throughput KingFisher™ Flex Extraction System
(Thermo Fisher Scientific, Waltham, MA, USA), using programmed script NM_LSI_RRC96. Extracted
viral DNA was then subjected to PCR amplification to confirm the intended deletions, to verify
the absence of carry-over parental virus and the presence of the fluorescent reporter gene (Table 1).
The viral genomic DNA extraction and PCR amplifications were repeated after the limiting dilutions
steps and the final virus propagation.

Table 1. Primers used in evaluating the absence or presence of target genes.

Gene Target Primer Sequence (5′-3′) Genome Position a Expected PCR
Product Size (bp b)

DP148R
Forward GTCCGCAACAAGGCTATTGAG 178,296–178,602 307Reverse GACGTTTACGCAGTGGGGC

EP153R
Forward GATTGGAACTAATATGATAACTC 67,137–67,433 297Reverse TCACCACGTAATATTACCGT

EP402R
Forward GTTCATGTTGTGGTCATAACATATC 67,763–68,365 603Reverse GAGATGGTTCATGTATGGAAGTG

GUS
Forward GGTCCGTCCTGTAGAAACCCCAA – 907Reverse GCCACGCAAGTCCGCATCTTCATG

mNeonGreen
Forward TACACATCTTTGGCTCCATC – 634Reverse CCCATCACATCGGTAAAGG

a genome position based on Benin 97/1 isolate. The – indicates that primers do not bind anywhere in Benin 97/1.
b bp—basepair.



Viruses 2020, 12, 615 5 of 12

Viruses 2020, 12, x FOR PEER REVIEW 6 of 13 

 

  

Figure 2. Purification of recombinant Benin∆EP153R∆EP402R∆DP148R via single cell isolation using FACS. The biparametric flow cytometry profiles depicted
include two phases. Phase 1—pre-sorting: Panel 1—SSC-A vs FSC-A for total cells; Panel 2—SSC-A vs. SSC-H to obtain singlets; Panel 3—blue BP 530/30 nm-A vs.
violet BP 450/40 nm-A to exclude autofluorescence cells, prominently in porcine bone marrow cells (PBMs); Panel 4—blue BP 530/30 nm-A vs. yellow-green (YG) BP
582/15nm-A to capture the mNeonGreen (mNG) positive cell subpopulation. Phase 2—post-sorting: Panel 5—total cells that were single cell sorted into 96-well
plate containing purified PBMs; Panel 6—each dot represents an individual mNG positive cell that was sorted. The flow cytometry profiles are shown for (A) after
the homologous recombination event in WSL-R cells; (B) second round of single cell sorting of recombinant ASFV-infected PBMs from a single mNG positive well,
monitored under a fluorescent microscope; (C) third round of single cell isolation of a single mNG positive well, similar to (B), except the gating for mNG positive
subpopulation was more stringent to capture the brighter selection of cells for single cell isolation. The percentages in each panel reflect the percentage of cells within
that gate relative to the parent gate.
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2.2.5. Limiting Dilutions, Propagations and Titrations

Wells containing fluorescent cells with the desired gene-deleted virus were subjected to 2 rounds
of limiting dilutions. The recombinant virus was then propagated in purified PBMs and titrated.
Finally, viral genomic DNA flanking the whole recombination site was amplified to confirm the correct
deletion. Briefly, viral DNA was extracted using the QIAamp Viral RNA Mini Kit (Qiagen, Hilden,
Germany). The isolated DNA was amplified using proofreading Q5® high-fidelity DNA polymerase
(NEB, Hertfordshire, UK) (Table 2), and electrophoresed on 0.8% agarose gel.

Table 2. Primers used for sequencing the recombinant Benin∆EP153R∆EP402R∆DP148R.

Primer Name Primer Sequence (5′-3′) Genome Position a

Del_EP153R_CD2v-SeqF1 CTTTGCCGTAGAAACAATACA 65,867
Del_EP153R_CD2v-SeqR3 TCAGGCTGTGTTCAATAA 69,978

mNG_SeqR CCATGTCAAAGTCCACACCG –
mNG_SeqF CCAATGGCGGCTAACTATCTG –

a Genome position is based on Benin 97/1 isolate. The – indicates that primers do not bind anywhere in Benin 97/1.

3. Results and Discussion

FACS enables the sorting of a heterogeneous cell population into a relatively homogenous
population, depending on their light scatters and fluorescent features. This technology has contributed
greatly to understanding virus infections from identifying virus susceptible cells, characterizing viral
protein expression, to defining host immune responses. Here, we combine homologous recombination
and sorting of single cells infected with ASFV, expressing a fluorescent protein, to rapidly purify a
genetically modified ASFV, Benin∆EP153R∆EP402R∆DP148R (Figure 1C).

The parental Benin 97/1 isolate with DP148R gene deleted and replaced with GUS reporter has
been previously described [18] (Figure 1B). The transfer plasmid p∆EP153R∆EP402R↔VP30mNG
contains: (i) a fluorescent reporter gene: mNeonGreen (mNG) under the control of ASFV P30 promoter
(5′-TTATTATTTTATAATTTTAAAATTGAATGGATTTTATTTTAAATATATCC); (ii) left flanking arm of
EP153R (Benin 97/1 genomic positions 66,245–67,050); and (iii) right flanking arm of EP402R (Benin
97/1 genomic positions 68,776–69,580), all cloned into pUC57 vector (Figure 1A). The ASFV VP30
promoter was selected because P30 (CP204L) is expressed at both early and late stages of infection,
and its promoter was shown to equally promote reporter gene expression in recombinant ASFV from
early to late phases of infection [22]. Using this construct, 21bp of EP153R at the 5′ end remain in
the recombinant virus, as it may contain the transcription termination signal for the adjacent EP152R
gene [24,25].

Primary macrophages have a very low transfection efficiency [26,27], therefore, to increase the
efficiency of recombination, the wild boar cell line, WSL-R, known to be ASFV susceptible [11,28,29],
was used in the first step of producing the recombinant virus. WSL-R cells were infected with
Benin∆DP148R, and then transfected with p∆EP153R∆EP402R↔VP30mNG. A centrifugation step at
600 g for 1h after both the infection and transfection steps was included to increase the recombination
efficiency, as this was shown to enhance retroviral transductions [30] and improve liposome mediated
transfections [31].

Cell preparation for live cell sorting is important to maintain cell integrity. To reduce the
stress on cells, 48h post-infection and transfection, the following measures were implemented:
(i) keeping cells cold throughout the experiment; (ii) the removal of supernatant and two washes to
minimize extracellular virus and debris; (iii) minimal centrifugation speed (300 g) to sediment cells;
and (iv) usage of FACS buffer that contains Ca2+/Mg2+ free PBS to reduce cell aggregation, EDTA to
prevent cell adhesion and HEPES to improve buffer capacity during sorting. The cell morphology
of infected-transfected cells was observed via the biparametric FSC vs. SSC profile (Figures 2 and S1,
Panel 1). The overall morphological differences between unmodified cells (Figure S1A, Panel 1), transfer
plasmid transfected cells (Figure S1B, Panel 1), Benin∆DP148R (parental virus) and an additional
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fluorescent ASFV –infected cells (Figure S1C,D, Panel 1) were minimal. The FSC threshold was set to
5 K, so that debris would be detected and excluded during live cell sort. FACS of single mNeonGreen
expressing cells was done with an 85 µm nozzle at 45 psi, to reduce additional stress on cells. The sorted
single cell was eventually expected to release the recombinant virus into the fresh PBMs and, therefore,
the initial gating included all possible cell fractions including potentially dead cells (Figure 2A, Panel 1).

Flow cytometric analysis at 48h post-infection/transfection showed that approximately 0.31% of the
cells were positive for mNeonGreen, representing cells that are potentially infected with recombinant
viruses (Figure 2A). Using the same method to prepare other recombinant viruses, we obtained
approximately 0.1% to 3.0% of infected and transfected WSL-R cells. The mNeonGreen expressing
population was then single cell sorted via FACS into individual wells of a 96-well plate containing
purified PBMs. Despite sorting only single mNeonGreen positive cells, 5 days later, only 8.1% of wells
when observed under a fluorescent microscope were positive for mNeonGreen. This phenomenon
could either be associated with absence of homologous recombination in most of the cells or an
abortive replication cycle in WSL-R cells. Hence, at least two or three steps of single cell isolation
of mNeonGreen positive PBMs were necessary to obtain a pure recombinant virus culture with no
parental virus contamination.

In the second round of FACS, cells were harvested from individual wells, in order to trace the virus
population to the original single infected/transfected cell. The percentage of mNeonGreen expressing
cells ranged from 0.71% to 4.45% of the total cell population (Figure 2B; Table S1). The relatively
low percentage of mNeonGreen expressing cells could be due to the competing presence of the
parental Benin∆DP148R. Single cells from the mNeonGreen positive population were sorted for a
second time into plates containing purified PBMs. At five days post-infection, the percentage of
wells that contained cells infected with the recombinant fluorescent virus increased to a range of
40.6–53.1% (Table S2). Cells from twelve mNeonGreen positive wells were then evaluated by flow
cytometry, and the proportion of total cells infected with recombinant fluorescent virus ranged from
22.2–59.5% (Figure 2C, Table S1). This increase of approximately 10–80% in the proportion of PBMs
expressing mNeonGreen, as compared to the previous round of FACS analysis, indicates increased
purity with a lower contamination from parental virus. In order to further purify the recombinant
Benin∆EP153R∆EP402R∆DP148R population, the final gating stringency was increased, so that only
cells expressing mNeonGreen at a mean fluorescent intensity (MFI) above 5 × 103 were single cell sorted
into purified PBMs (Figure 2C, Panel 6). As expected, the number of sorted wells that were positive
with mNeonGreen expressing PBMs, when monitored under a fluorescent microscope, dramatically
increased to a range of 71.8–90.6% (Table S2).

The gradual increase in both the percentages of the total PBM population expressing
mNeonGreen (1st round: 0.31%; 2nd round: 0.71–4.45%; 3rd round: 22.2–59.5%) and number
of wells containing mNeonGreen positive cells (1st post-sort: 8.1%; 2nd post-sort: 40.6–53.1%;
3rd post-sort: 71.8–90.6%) over the rounds of single cell sorting reflects the enhanced purity of
the Benin∆EP153R∆EP402R∆DP148R recombinant virus. PCR analysis showed that fragments
corresponding to the EP153R and EP402R genes were not amplified, but the mNeonGreen reporter
gene fragment was amplified from sixty percent of the wells containing mNeonGreen expressing cells.
This indicates that a pure population of recombinant virus, without contaminating the parental virus,
may be obtained by the third round of single cell sorting. However, two rounds of limiting dilution
were performed to ensure the recombinant virus was completely free of parental virus. PCR analyses
of DNA extracted from all wells containing cells infected with mNeonGreen expressing recombinant
virus showed that, as expected, fragments corresponding to the deleted genes were not amplified,
as seen in Figure 3A–C (A: DP148R; B: EP153R; C: EP402R). Fragments from the GUS and mNeonGreen
reporter insertions were amplified (Figure 3D,E). It was noted that, following the first round of limiting
dilution, a pure population of the recombinant virus is usually obtained. Therefore, we recommend an
additional round of single cell isolation, or at least one round of limiting dilution, is included when this
method is used, to ensure the recombinant ASFV is pure. Lastly, PCR amplifications encompassing the
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whole recombination site were undertaken with primers that anneal outside the cloned left and right
flanking regions, in combination with primers that bind within the mNeonGreen gene (Table 2) or
to the EP153R and EP402R genes (Table 1). As expected, the amplified viral DNA of approximately
1377 bp and 1395 bp was detected in the recombinant virus and absent in the wildtype Benin 97/1
isolate when the mNeonGreen primers were used (Figure S3A,B). The internal primers for genes
EP153R and EP402R failed to detect amplicons in the recombinant virus, but amplified viral DNA from
the wild type virus (Figure S3C,D). This confirms that the gene deletion and insertion of the reporter
cassette had occurred correctly, as these primers also do not bind to the transfer plasmid.
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successful deletions of genes EP153R and EP402R. The extracted genomic viral DNA was subjected to
PCR amplification and analysed by electrophoresis on 1.5% agarose gels. Panel depicts results from
amplification of genes (A) DP148R (307 bp); (B) EP153R (297 bp); (C) EP402R (603 bp), (D) GUS (907 bp)
and (E) mNeonGreen (634 bp). Lanes numbered 1 show analysis of samples from individual wells
of purified Benin∆EP153R∆EP402R∆DP148R compared to (2) extraction negative control; (3) cell
lysate control; (4) PCR negative control; (5) Benin∆DP148R control; (6) Benin∆EP402R control
and (7) wildtype Benin 97/1 control.
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The final titre of the newly produced recombinant Benin∆EP153R∆EP402R∆DP148R (Figure 4)
(1.68 × 108 TCID50/mL) was not significantly different compared to the titres of Benin 97/1
isolate (1.78 × 107 HAD50/mL) and the Benin∆DP148R (5.62 × 107 HAD50/mL), as expected.
Both EP153R and EP402R have been previously deleted from various ASFV isolate singly [32–36].
Benin∆EP153R∆EP402R∆DP148R is also non-haemadsorbing, compared to the virulent Benin 97/1
and attenuated Benin∆DP148R, which is expected, as EP402R (also known as CD2v) is responsible
for haemadsorption [37] and ASFV isolates which have truncated or missing EP402R also cannot
haemadsorb [38].

Viruses 2020, 12, x FOR PEER REVIEW 9 of 13 

 

for haemadsorption [37] and ASFV isolates which have truncated or missing EP402R also cannot 

haemadsorb [38].  

 

Figure 4. Primary bone marrow cells were infected with the produced recombinant ASFV 

Benin∆EP153R∆EP402R∆DP148R at MOI of 1. (A) The images were taken 5 days post-infection, 

showing the bright field image of purified PBMs, the mNeonGreen expressed by 

Benin∆EP153R∆EP402R∆DP148R—infected cells (green) and a merged image overlaying total 

purified PBMs with the infected PBMs. Magnifications are indicated in the images (100×). Images 

were taken using the EXi Blue fluorescence microscopy camera and QCapture Pro Version 7 

(QImaging, Tucson, AZ, USA). (B) The same recombinant ASFV-infected PBMs were analysed by 

flow cytometry, and the biparametric profiles leading to gating of mNeonGreen positive cells are 

depicted. Gating strategy to identify infected cells; Panel 1: SSC-A vs FSC-A for total cells; Panel 2: 

SSC-A vs. SSC-H to obtain singlets; Panel 3: blue BP 530/30 nm-A vs. violet BP 450/40 nm-A to exclude 

autofluorescence cells, finally blue BP 530/30 nm-A vs. Yellow-Green (YG) BP 582/15 nm-A (Panel 4) 

to capture the mNeonGreen (mNG) positive cell subpopulation. 

Using this single cell isolation method, it is feasible to use at least three different fluorescent 

markers in a single ASFV isolate, considering the filters available on the fluorescent microscope used 

to monitor microtiter plates. We have created several recombinant ASFV mutants with deleted genes 

replaced with TagRFP-T [39] or both TagRFP-T and mNeonGreen. With the presence of loxP flanking 

the reporters in the recombinant mutants, in the future, these fluorescent genes can be removed or 

swapped, allowing the researchers more flexibility. Most importantly, the time to obtain pure 

recombinant ASFV has been shortened to 1 to 1.5 months using this method, compared to the 3 to 4 

months required for making a single gene deletion using purification via limiting dilution. In 

addition, the positive selection by FACS can greatly facilitate isolation of recombinant viruses that 

have a growth defect, compared to the parental virus. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. Figure S1: Infection-

transfection controls. Figure S2: Controls for single cell purification via FACS. Figure S3: PCR analysis of 

recombinant Benin∆EP153R∆EP402R∆DP148R. Table S1: Percentage of mNeonGreen positive cells. Table S2: 

Percentage of mNeonGreen positive wells.  

Author Contributions: Conceptualization, A.R., K.M., A.L.R., L.K.D., methodology, A.R., K.M., A.L.R.; writing 

A.R., K.M., A.L.R., L.K.D. All authors have read and agreed to the published version of the manuscript 

Funding: This research was funded by Biotechnology and Biological Sciences Research Council, Grant Numbers: 

BBS/E/I/00007031, BBS/E/I/00007034 and BBS/E/I/00007039. Some parts of the quoted research were funded in 

part by the Bill & Melinda Gates Foundation and with United Kingdom (UK) Aid from the UK Government 

through Global Alliance for Livestock Veterinary Medicines (GALVmed) (Grant numbers: OPP1009497, and 

Figure 4. Primary bone marrow cells were infected with the produced recombinant
ASFV Benin∆EP153R∆EP402R∆DP148R at MOI of 1. (A) The images were taken 5 days
post-infection, showing the bright field image of purified PBMs, the mNeonGreen expressed by
Benin∆EP153R∆EP402R∆DP148R—infected cells (green) and a merged image overlaying total purified
PBMs with the infected PBMs. Magnifications are indicated in the images (100×). Images were taken
using the EXi Blue fluorescence microscopy camera and QCapture Pro Version 7 (QImaging, Tucson,
AZ, USA). (B) The same recombinant ASFV-infected PBMs were analysed by flow cytometry, and the
biparametric profiles leading to gating of mNeonGreen positive cells are depicted. Gating strategy
to identify infected cells; Panel 1: SSC-A vs FSC-A for total cells; Panel 2: SSC-A vs. SSC-H to
obtain singlets; Panel 3: blue BP 530/30 nm-A vs. violet BP 450/40 nm-A to exclude autofluorescence
cells, finally blue BP 530/30 nm-A vs. Yellow-Green (YG) BP 582/15 nm-A (Panel 4) to capture the
mNeonGreen (mNG) positive cell subpopulation.

Using this single cell isolation method, it is feasible to use at least three different fluorescent
markers in a single ASFV isolate, considering the filters available on the fluorescent microscope used
to monitor microtiter plates. We have created several recombinant ASFV mutants with deleted genes
replaced with TagRFP-T [39] or both TagRFP-T and mNeonGreen. With the presence of loxP flanking
the reporters in the recombinant mutants, in the future, these fluorescent genes can be removed
or swapped, allowing the researchers more flexibility. Most importantly, the time to obtain pure
recombinant ASFV has been shortened to 1 to 1.5 months using this method, compared to the 3 to
4 months required for making a single gene deletion using purification via limiting dilution. In addition,
the positive selection by FACS can greatly facilitate isolation of recombinant viruses that have a growth
defect, compared to the parental virus.
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