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Fall risk assessment is very important for the graying societies of developed countries.
A major contributor to the fall risk of the elderly is mobility impairment. Timely detection
of the fall risk can facilitate early intervention to avoid preventable falls. However,
continuous fall risk monitoring requires extensive healthcare and clinical resources. Our
objective is to develop a method suitable for remote and long-term health monitoring
of the elderly for mobility impairment and fall risk without the need for an expert. We
employed time–frequency analysis (TFA) and a stacked autoencoder (SAE), which is a
deep neural network (DNN)-based learning algorithm, to assess the mobility and fall
risk of the elderly according to the criteria of the timed up and go test (TUG). The time
series signal of the triaxial accelerometer can be transformed by TFA to obtain richer
image information. On the basis of the TUG criteria, the semi-supervised SAE model
was able to achieve high predictive accuracies of 89.1, 93.4, and 94.1% for the vertical,
mediolateral and anteroposterior axes, respectively. We believe that deep learning can
be used to analyze triaxial acceleration data, and our work demonstrates its applicability
to assessing the mobility and fall risk of the elderly.

Keywords: SAE, TFA, DNNs, wavelet transform, LDA

INTRODUCTION

Remote health monitoring has been gaining increased interest as a way to improve the quality and
reduce the costs of healthcare, especially for the elderly (Seyfioğlu et al., 2017). According to the
World Health Organization, a person aged 65 years and over has a fall risk of 28–35%, which
increases to 32–42% for those aged over 70 years [World Health Organization [WHO], 2007].
According Letts et al. (2010), 33% of community-dwelling elderly have experienced a fall event,
and 50% fall repeatedly. About one-third of elderly people fall every year, and the chance of falling
increases with age [World Health Organization [WHO], 2007; Bergland, 2012]. Falling can have
serious long-term consequences for the elderly, including hospitalization, decreased mobility, fear
of falling and even death. Older people with gait, mobility or balance problems are at higher risk of
falling in the future (Ganz et al., 2007; Cuevas-Trisan, 2017). To develop an effective fall prevention
program, elderly people with a fall risk must first be identified.

Various factors drive the fall risk. Mitchell et al. (2012) showed sarcopenia, the typical age-related
decline in skeletal muscle mass cause strength reduction as well as balance issue. Poor balance and
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mobility have been validated as a key cause of falls among the
elderly. Continuous monitoring could be a practical approach
to reduce and prevent falls by providing early warnings to
facilitate appropriate interventions (Shany et al., 2012). However,
continuous monitoring of gait and postural stability requires
extensive healthcare and clinical resources. Limited professional
resources (e.g., physical therapists, nurses, and doctors) are
insufficient for detecting balance deterioration in a timely
fashion, especially as the aged population increases worldwide.
This can result in many falls that could have been avoided
through continuous monitoring and early intervention. To fill the
gap between available resources and care needs, an approach is
needed for assessing the balance and mobility of the elderly in a
timely manner without involving healthcare professionals.

Wearable systems based on inertial sensors are light, portable,
and cheap, and they can be used to quantify body motions.
Previous research (Howcroft et al., 2013) on fall risk assessment
focused on feature-based methods, in which many related
features are derived with domain knowledge. This requires
multiple feature engineering steps before the classification or
discrimination results can be obtained. The timed up and go
test (TUG) is commonly used to evaluate mobility and the fall
risk of the elderly in hospital and community environments
(Podsiadlo and Richardson, 1991; Barry et al., 2014). Tri-axial
acceleration sensors can be used to obtain time-domain signals
during TUG (Wu et al., 2019; Lee et al., 2020), which can be
transformed through time–frequency analysis (TFA) to extract
time-domain, frequency-domain, and spectral energy-related
information. Since the past literature (Cardozo et al., 2011) and
(Garcia-Retortillo et al., 2020) has shown investigating spectral
power distribution of muscle (using accelerometer data or
related physiological parameters, such as EMG) and its response
to fatigue and aging in elderly subjects, we can use spectral
energy-related information to assess fall risk of elderly subjects
via TUG test.

Nweke et al. (2018) showed that deep neural network (DNN)
methods are being adopted for automatic feature learning in
diverse fields such as health, image classification, and recently, for
the feature extraction and classification of simple and complex
human activity recognition in mobile and wearable sensors.
They also provided further insights on deep learning based on
the decision fusion of human activity recognition for enhanced
performance accuracy. Hossain et al. (2018) showed that deep
learning architectures have been increasingly used in activity
recognition problems that empower several application domains
that require considerably less human supervision in the process.
Moreover, they showed that such architectures are gaining
increasing popularity for extracting meaningful information
from these large volumes of data. DNNs are suitable for TFA
owing to their excellent discrimination of images. The non-
stationary nature of the TUG signal indicates that TFA can
be used for motion identification in general and fall detection
in particular (Jokanovic et al., 2016a, July). Deep learning can
be used to capture the detailed and complex properties of the
TF signature and feed the learned underlying features to the
classifier (Jokanovic et al., 2016a, May). An autoencoder (AE) is a
feed-forward neural network that aims to reconstruct the input

at the output under certain constraints. Seyfioğlu et al. (2018)
proposed an unsupervised pre-training algorithm for initializing
the AE weights and bias that is highly effective when only a small
number of labeled training samples are available. The stacked
autoencoder (SAE) is a DNN that can classify highly similar
classes of aided and unaided walking, as might be encountered
in assisted-living environments for the elderly, and it has been
applied in recognizing 12 different gaits (Seyfioğlu et al., 2017) as
well as in fall detection.

In this paper, we propose the use of sensor and DNN-based
technology, apply TFA to convert tri-axial accelerometer data
and deep learning-based latent feature representation with a
SAE to develop a surrogate approach for assessing the mobility
function and fall risk detection of the elderly. And DNN-based
analysis techniques will be an available approach for continuous
monitoring in the future.

MATERIALS AND METHODS

We considered two evaluation methods for fall risk: feature-based
and DNN-based evaluation. Feature-based evaluation, based
on traditional statistical features and method for evaluation,
combines feature extraction, feature selection and classifier, and
it relies on heuristic handcrafted feature design. By contrast,
DNN-based evaluation in this paper is based on the SAE and
a softmax classifier layer, and it can automatically learn better
feature representations than the handcrafted ones (Ng., 2011).
Leave-one-out cross-validation was employed for both evaluation
methods to ensure a robust classification accuracy. The results of
the two evaluation methods were then compared.

Subjects
Our study took place at a hospital in central Taiwan between
April 2014 and May 2015. We recruited and selected 44 elderly
subjects dwelling in a community. A medical professional team
that included rehabilitation physicians, physiotherapists and
functional therapists performed TUG to evaluate the mobility
function of the subjects. Prior to the evaluation, written consent
was obtained from the subjects. The subjects were over 60 years
of age, had no history of musculoskeletal injuries or central
nervous system problems in the last 3 months and could walk
independently without any help. Valid data were obtained for 44
elderly subjects with a mean age of 78.18± 7.97 years. There were
14 male subjects with an average age of 80.43± 5.60 years and 30
female subjects with an average age of 77.13± 8.74 years.

Sensor
As shown in Figure 1, a tri-axial accelerometer
(RD3152MMA7260Q, Freescale Semiconductor-NXP,
United States) with a sampling rate of 45 Hz was placed at
vertebrae L3–L5 on a subject’s back for the TUG experiments.
L3–L5 correspond to the center of gravity of the human
body and are used in most fall risk assessments (Howcroft
et al., 2013). The X-, Y-, and Z-axes were aligned with the
vertical (V; up: +, down: −), mediolateral (ML; right: +,
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left: −), and anteroposterior (AP; forward: +, backward: −)
directions, respectively.

Timed Up and Go Test
Each subject was asked to perform a TUG. The observer marked
the start and end times. As shown in Figure 2, each TUG was
divided into five phases or subtasks: from sitting to standing
(sit-to-stand), walking forward (walk-F), reaching the 3-m mark
and turning around (turning), walking backward (walk-B) and
reaching the chair and returning to sitting (stand-to-sit). The
TUG time was recorded, and a threshold time was determined
to classify subjects as a fall risk or not a fall risk. Alexandre et al.
(2012) recommend that it is considered a high fall risk if the time
of community elderly for TUG is greater than 12.47 s.

Feature-Based Evaluation
For feature-based evaluation, the features of the axial signals were
obtained by referring to past literature (Banos et al., 2014). The
most widely used features include the mean, standard deviation,
maximum, minimum, and mean crossing rate (MCR). The mean
and standard deviation are used to express the average and
variation of the force for each axial signal. The maximum and
minimum express the largest and smallest values of the signal for
the entire domain. The MCR is the rate at which data cross the
average value, and it has been widely used in signal recognition

FIGURE 1 | Sensor locations and corresponding axes/directions.

FIGURE 2 | Five phases of TUG.

and physical activity recognition (Gao et al., 2014; Arivu et al.,
2018; Bountourakis et al., 2019).

Features were selected for the feature-based evaluation
according to their significance (Wu et al., 2019; Lee et al., 2020).
The significance was obtained through Student’s t-test. A feature
was considered significant if p ≤ 0.05. In addition, linear
discriminant analysis (LDA) was performed to obtain a confusion
matrix for evaluating the performance.

Deep Neural Network-Based Evaluation
Figure 3 shows the flowchart of the DNN-based evaluation.
The input signal was the tri-axial data collected during the
TUG experiments. TFA was applied to the data, and the SAE
was applied in classifying the signal. Finally, the accuracy and
confusion matrix were obtained.

Time–Frequency Analysis
A time–frequency representation (TFR) is a view of a signal,
which is taken as a function of time, in both time and
frequency domains. TFA can be applied to a time series signal to
observe the time-domain, frequency-domain and spectral-energy
information simultaneously. TFA based on wavelet transform
(WT) is widely used in biomedical science for applications such
as fall detection (Jokanovic et al., 2016a, July; Jokanovic et al.,
2016b, May) and analysis of electroencephalography (Yordanova
et al., 2013) and electromyography (Zia ur Rehman et al., 2018).
In this study, the Morlet wavelet was used for TFA of the tri-
axial acceleration signal from the TUG experiments. This method
was described in previous literature (Tallon-Baudry et al., 1997).
The complex Morlet wavelet w(t,fc) can be generated in the
time-domain for different frequencies f as follows:

w
(
t, fc

)
= A exp

(
−t2/2σ2

t
)

exp
(
i2πfct

)
, (1)

where t is the time, σt is the wavelet duration, normalization
factor A = (σt

√
π)−1/2, a constant ratio of f c/σf = 7 was

used. fc is the central frequency, and σf is the width of the
Gaussian shape in the frequency-domain. For different f, the
time and frequency resolutions can be calculated as 2σt and 2σf ,
respectively, where σt = 1/2πσf. Finally, the time-varying energy
|E
(
t, fc

)
| of the signal [s(t)] is calculated by squaring the absolute

value of the convolution of the signal with the complex Morlet
wavelets:

E
(
t, fc

)
= |w

(
t, fc

)
× s(t)|2. (2)

In this study, the frequency range was swept from 0.05 to 5 Hz,
and a TF image was obtained for classification by the SAE.

Stacked Autoencoder Network Architecture
A neural network with multiple hidden layers can be used to
solve classification problems with complex data such as images.

FIGURE 3 | Flowchart for DNN-based evaluation.

Frontiers in Physiology | www.frontiersin.org 3 May 2021 | Volume 12 | Article 668350

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-668350 May 21, 2021 Time: 17:53 # 4

Chen et al. SAE to Assess Fall Risk

Each layer can learn features at a different level of abstraction.
However, training a neural network with multiple hidden layers
can be difficult. In this paper, we use the SAE structure, which
is a DNN based on the AE concept. An AE is a neural network
comprising an encoder, followed by a decoder, and it attempts
to replicate its input at its output. We used an AE so that the
hidden layers can be trained individually in an unsupervised
fashion. No labeled data are required for training or learning.
The encoder maps the input x to a new representation z, which
is decoded back at the output to reconstruct the input x̂: (Hinton
and Salakhutdinov, 2006; Zia ur Rehman et al., 2018; MATLAB
autoencoder, 2021).

z = h1(W1x+ b1), (3)

x̂ = h2(W2z + b2), (4)

where h1 and h2 are activation functions, W1 and W2 are weight
matrices and b1 and b2 are bias vectors for the encoder and
decoder, respectively. Each layer can learn features with a
different level of abstraction. If the number of hidden neurons
is less than the number of input neurons, then the AE attempts to
learn a sparse representation of the input data (Jokanovic et al.,
2016a, July). Sparsity can be encouraged for an AE by adding a
regulariser to the cost to prevent overfitting (Zia ur Rehman et al.,
2018). In this study, the input was a color image with a resolution
of 28× 28 pixels and three channels (28× 28× 3 = 2,352 pixels).
The AE had two hidden layers. The logistic sigmoid was used for
both layers in the encoder and decoder.

In an SAE, the output of one AE is fed to the input of another
AE, and sparsity is encouraged by adding regularization to the
cost for neuron i. The average output activation for neuron i can
be formulated as (MATLAB autoencoder, 2021):

p̂i =
1
n

n∑
j=1

zi
(
xj
)
, (5)

where i is the ith neuron, n is the total number of training
examples and j is the jth training example. A regulariser is
introduced to the cost function using the Kullback–Leibler
divergence: (Kullback, 1997; Zia ur Rehman et al., 2018).

�sparsity =

d∑
i=1

p log
(

p
p̂i

)
+
(
1− p

)
log
(

1− p
1− p̂i

)
, (6)

where d is the total number of neurons in a layer and p is
the desired activation value (i.e., sparsity proportion). The L2
regularization term �weights is also added to the cost function to
control the weights:

�weights =
1
2

L∑
l

N∑
j

K∑
i

(
wl

ji

)2
, (7)

where L is the number of hidden layers, N is the total
number of observations and K is the number of features
within an observation.

By inserting the regularization terms from Eqs 6, 7 into the
mean squared error of the reconstruction, the cost function can
be formulated as follows:

E =

1
N

N∑
n=1

K∑
k=1

(
xkn − x̂kn

)2

mean square error
+ λ ·

�weights

L2 Regularization

+ β ·
�sparsity

Sparsity Regularization
, (8)

where λ is the coefficient for L2 regularization to prevent
overfitting and β is the coefficient for sparsity regularization that
controls the sparsity penalty term (MATLAB autoencoder, 2021).

Ju et al. (2015) and Coates et al. (2011) showed that the
number of neurons in the hidden layer of a DNN may be
more important than the feature-learning algorithm and model
depth. In addition, the combinatorial space required to explore all
possible combinations of hyperparameters is huge (Tsinalis et al.,

TABLE 1 | Demographic data of subjects at-risk of falling and not at-risk.

Fall risk (n = 22) Non-fall risk (n = 22)

Age 78.18 ± 7.97 76.59 ± 9.16

Gender

Male 8 6

Female 14 16

TABLE 2 | Statistical features of TUG data for subjects.

Statistic features Fall risk (n = 22) Non-fall risk (n = 22) p-value

V-axis Mean_V 0.949 ± 0.272 1.333 ± 0.308 0.000**

Std_V 1.217 ± 0.360 1.709 ± 0.341 0.000**

Max_V 4.063 ± 1.603 4.899 ± 1.061 0.049*

Min_V −3.504 ± 1.314 −4.122 ± 1.280 0.122

MCR_V 0.098 ± 0.015 0.087 ± 0.010 0.008*

ML-axis Mean_ML 0.994 ± 0.251 0.979 ± 0.205 0.826

Std_ML 1.131 ± 0.297 1.247 ± 0.251 0.167

Max_ML 2.846 ± 0.981 3.622 ± 1.241 0.027*

Min_ML −2.919 ± 0.833 −3.422 ± 0.959 0.07

MCR_ML 0.060 ± 0.014 0.084 ± 0.018 0.000**

AP-axis Mean_AP 2.075 ± 0.765 1.666 ± 0.597 0.055

Std_AP 1.823 ± 0.382 1.892 ± 0.336 0.528

Max_AP 1.352 ± 0.862 2.055 ± 0.834 0.009*

Min_AP −7.544 ± 1.352 −7.057 ± 1.494 0.263

MCR_AP 0.050 ± 0.014 0.063 ± 0.014 0.005*

*Indicate p < 0.05 between two groups. **Indicate p < 0.005 between two groups.

TABLE 3 | Classification results for LDA classifiers.

Axis Acc. Sen. Spec.

V-axis 79.50% 72.70% 86.40%

ML-axis 81.80% 81.80% 81.80%

AP-axis 75.00% 72.70% 77.30%
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2016). Therefore, we focused on locally optimizing the number of
neurons for two layers and obtained the minimum mean squared
error according to Eq. 8. The other parameters were taken from
MATLAB: λ was set to 0.004 and 0.002 for the first and second
hidden layers, respectively, β = 4 for both hidden layers and
p was 0.015 and 0.01, respectively. After unsupervised training,
the decoder was removed from the network, and the remaining
encoder components were trained in a supervised manner by
adding a softmax classifier with two neurons after the encoder.
The softmax classifier is an advanced version of probability-based

logistic regression and is often used in the final layer of a neural
network. Finally, the SAE was obtained.

RESULTS AND DISCUSSION

Subjects were considered a fall risk if their TUG time was greater
than 12.47 s and not a fall risk if the TUG time was less than
12.47 s. Table 1 lists the demographic data of the at-risk subjects
(n = 22) and no-risk subjects (n = 22).

FIGURE 4 | Examples of the (A) X-, (B) Y-, and (C) Z-axis acceleration signals for a subject with no fall risk; (D–F) corresponding TF images of triaxial acceleration
signals, respectively. Examples of the (G) X-, (H) Y-, and (I) Z-axis acceleration signals for a subject with a fall risk; (J–L) corresponding TF images of triaxial
acceleration signals, respectively. The X-, Y, and Z-axes correspond to the V, ML, and AP directions, respectively. Zones I, II, III, IV, and V represents the sit-to-stand,
walk-F, turning, walk-B and stand-to-sit phases, respectively, of TUG. The color bar represents the magnitude of the TF energy.
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Feature-Based Analysis of the Timed Up
and Go Test Results
Table 2 details the t-test results for the significance of the
15 statistical features of the tri-axial acceleration data. Eight
significant features were identified (Mean_V, Std_V, Max_V,
MCR_V, Max_ML, MCR_ML, Max_AP, and MCR_AP), which
are aligned with normality by using Kolmogorov-Smirnov test,
and LDA was applied to each axis. Table 3 presents the
classification results. The classification accuracies along the
X-axis (V), Y-axis (ML), and Z-axis (AP) were 79.5, 81.8,
and 75.0%, respectively. The sensitivities were 72.7, 81.8, and
72.7%, respectively. The specificities were 86.4, 81.8, and 77.3%,
respectively. These results were then used for comparison to the
DNN-based evaluation.

Deep Neural Network-Based Analysis of
Timed Up and Go Test Results
Analysis of TF Images
Figure 4 shows examples of tri-axial acceleration signals in the
time-domain for subjects with and without a fall risk and their
corresponding TF images.

(1) For the X-axis, this axis is the vertical acceleration signal
in time domain for the no-risk and at-risk subjects showed as
Figures 4A,G, respectively. Figures 4A,G can be transformed
through TFA to obtain TF images showed Figures 4D,J.
Figure 4D clearly shows that the no-risk subject had two regions
of interest in zones II and IV of the TF image corresponding to
the walk-F and walk-B phases. The TF energy was 10–12, and
the frequency was 1.5–2.5 Hz. Similarly, Figure 4J shows that
the at-risk subject had regions of interest in zones II and IV

TABLE 4 | Mean squared errors for different combinations of neuron numbers in
the first and second layers of the two-layer AE for the X-axis (V), Y-axis (ML), and
Z-axis (AP).

Axis The
neuron

number of
1st layer

The neuron number of 2nd layer

10 15 20 25 30

X-axis (V) 100 18.39 21.96 22.39 21.88 21.24

200 23.07 23.52 19.93 19.77 22.06

300 18.32 19.07 18.23 16.49 15.34*

400 21.69 22.91 20.88 22.35 20.10

500 21.62 20.58 18.65 20.65 18.52

Y-axis (ML) 100 16.13 14.02 15.01 13.47 15.11

200 15.35 14.64 13.63 13.49 13.67

300 14.11 13.59 13.43 12.46 12.03*

400 14.15 13.01 12.69 12.43 13.09

500 13.89 13.15 13.09 12.25 12.54

Z-axis (AP) 100 12.88 11.89 11.14 13.38 11.97

200 15.37 14.05 10.63 14.14 10.47

300 12.16 11.43 11.10 12.25 9.73*

400 13.35 12.92 13.97 11.54 14.35

500 14.23 12.66 12.21 11.21 10.30

*The minimum of mean square error.

corresponding to the walk-F and walk-B phases. The TF energy
was 0.5–3, and the frequency was 1.5–2.5 Hz. Additionally, the
turning phase showed obvious difference in Zone III between
Figures 4D,J. The TF energy was 6–8, and the frequency was
1.5–2.0 Hz for no-risk subject. On the contrary, the TF energy
was relatively low for no-risk subject. This is consistent with
previous study (Drover et al., 2017; Wu et al., 2019), which noted
that turn-based features are important predictors because they
contain useful biomechanical information.

(2) For the Y-axis, this axis is the mediolateral acceleration
signal in time domain for the no-risk and at-risk subjects showed
as Figures 4B,H, respectively. Figures 4B,H can be transformed
through TFA to obtain TF images showed Figures 4E,K.
Figure 4E shows that the no-risk subject had two regions of
interest in zones II and IV of the TF image corresponding to the
walk-F and walk-B phases. The regions had high TF energies of
5–8 and 4–6, respectively, corresponding to frequencies of 2.5–
3.5 and 1–1.3 Hz, respectively. Similarly, Figure 4K shows that
the at-risk subject had regions of interest in zones II and IV
corresponding to the walk-F and walk-B phases. Only one region
had a high TF energy of 4–6 with a frequency of 1–1.3 Hz. In
the Walk_F and Walk_B phases, the TF image showed the energy
of mobility, which is supposedly related to the body and the arm
swing when walking. Because of the walking duration, the arm
swing is associated with postural stability (Meyns et al., 2013) can
enhance gait stability (Bruijn et al., 2010).

(3) For the Z-axis, this axis is the anteroposterior acceleration
signal in time domain for the no-risk and at-risk subjects showed
as Figures 4C,I. Figures 4C,I can be transformed through TFA
to obtain TF images showed Figures 4F,L. Figure 4F shows
that the no-risk subject had two regions of interest in zones
II and IV of the TF image corresponding to the walk-F and
walk-B phases. The TF energy was 6–9, and the frequency was
1.5–2.5 Hz. Similarly, Figure 4L shows that the at-risk subject
had regions of interest in zones II and IV corresponding to
the walk-F and walk-B phases. The TF energy was 2.5–4, and
the frequency was 1.5–2.5 Hz. The body will move forward to
maintain balance while walking, and the AP-axis is seemly an
important axis.

In summary, the no-risk subjects had higher TF energy
than the at-risk subjects in zones II and IV corresponding to
the walk-F and walk-B phases for all three axes. This is a
reasonable assumption that no-risk subjects must have greater
muscle strength or energy when walking than those with at-
risk subjects. In addition, the no-risk subjects had obviously
higher TF energy than the at-risk subjects did during the sit-to-
stand (Zone I) and stand-to-sit (Zone V) phases in the Z-axis,
referring to the transition subtask involving standing up and
sitting down and these two abilities are largely related to strength
and power of the lower extremities (Weiss et al., 2013). Moreover,
the body must bend in forward–backward displacement. It is also
reasonable to infer that the no-risk subjects had more energy to
stand up or sit down than the at-risk subjects did. Regarding
the differences located between 1 and 3 Hz approximately, the
past literature (Schneider et al., 2010; Kline et al., 2016) have
showed the frequency for movements along the longitudinal axis
during running peaks at approximately 3 Hz, both in the activity
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FIGURE 5 | Examples of original and reconstructed images for subjects without and with a fall risk. A two-layer AE was used, where the encoder layers had 300–30
neurons and the decoder layer had 30–300 neurons.

FIGURE 6 | Diagram of the SAE.

and viewed movement conditions. They reported that a strong
relationship exists between intrinsic and extrinsic oscillation
patterns during exercise. A frequency of approximately 3 Hz
seems to be dominant in different physiological systems (e.g.,
heart rate and brain cortical activity). Additionally, Robert C. et,
al. mentioned that when the step frequency fell in the range of
0.5–3 Hz, the activity was identified as walking (Wagenaar et al.,
2011). Compare with these results, we assume TF images may
be used as an auxiliary tool to support medical professionals for
clinically assessing fall risk.

Parameter Optimization for AE and Reconstruction
The number of neurons was chosen according to the grid
search strategy to minimize the mean squared error (Hinton
and Salakhutdinov, 2006). The number of neurons in the first
layer ranged from 100 to 500 in intervals of 100, and the
number of neurons in the second layer ranged from 10 to 30

TABLE 5 | Classification results with the SAE.

Axis Accuracy Sensitivity Specificity

X-axis(V) 89.1 ± 1.0% 85.5 ± 4.2% 92.7 ± 3.2%

Y-axis(ML) 93.4 ± 1.7% 94.1 ± 2.2% 92.7 ± 3.8%

Z-axis(AP) 94.1 ± 1.6% 94.6 ± 2.9% 93.6 ± 2.4%

The accuracy, sensitivity, and specificity are average ± SD values for ten runs.

in intervals of 5. The mean squared error was obtained by
averaging ten runs. As presented in Table 4, the minimum
mean squared errors for the X-, Y- and Z-axes were 15.34,
12.03, and 9.73, respectively. These corresponded to 300 and
30 neurons in the first and second layers, respectively, for all
three axes. Image reconstruction was carried out with 300–30
neurons for the encoder and 30–300 neurons for the decoder.
As shown in Figure 5, the reconstructed image successfully
restored the original image. Unsurprisingly, the latent features
were useful for object recognition and other visual tasks
(Ng, 2011).

Analysis of the Stacked Autoencoder
As shown in Figure 6, the SAE had an input of 2,352
pixels with an encoder layer of 300–30 neurons and a
softmax classifier layer with two classes. Table 5 presents the
classification results of the SAE. The classification accuracies
were 89.1, 93.4, and 94.1% along the X-, Y-, and Z-axes,
respectively. The sensitivities were 85.5, 94.1, and 94.6%,
respectively. The specificities were 92.7, 92.7, and 93.6%,
respectively. The SAE performed better along the Y- and
Z-axes than along the X-axis. Thus, the latent features of the
Y- and Z-axes may offer more predictive ability for DNN-
based evaluation.

Tables 3, 5 indicate that the DNN-based evaluation performed
much better than the feature-based evaluation. Thus, it is a
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viable approach for fall detection. In addition, the Y- and Z-axes
are both important for classification. With regard to the Y-axis,
swinging arms are associated with postural stability and can
enhance gait stability (Wu et al., 2019) and mobility function.
With regard to the Z-axis, this is important to transitions
involving standing up or sitting down, where the body must bend
in forward–backward displacement. These results are similar to
those of previous study (Wu et al., 2019), who identified features
extracted along the Z-axis for TUG tasks as significant and Z-axis
is seemly an important axis.

CONCLUSION

In this paper, tri-axial accelerometer data were collected from a
cheap wearable sensor, and TFA was used to convert the data
into TFRs. These TF images offered abundant and discriminative
information such as time, frequency and spectral energy-related
power in five phases of TUG, which clarified specific TUG
aspects or subtasks were impaired in mobility. High energy-
related power of no- risk subjects in both walk phases (walk-F
and walk-B) and transition phases (sit-to-stand and stand-to-sit)
phases can be observed obviously from TF images for all three
axes and AP axis, respectively. We also applied SAE model, DNN-
based evaluation, to classify TFRs of elderly subjects for assessing
the mobility and fall risk. Experimental results show that
the DNN-based evaluation offers much considerably accuracy,
sensitivity and specificity rates. Moreover, the results indicated
the superior performance of DNN-based evaluation over feature-
based evaluation. Further, the discrimination analysis of Y and Z
axes seems to be more important than that of X axis.

In the future, we will continuously work on DNN-based
evaluation of fall risk for the elderly. This innovative method
based on the artificial intelligence technology, i.e., DNN-based
evaluation, can be widely used in wearable sensing technology,
smart home development and continuous monitoring
technologies for real-time measurement and recording of various
physiological signals. We trust it will improve the accessibility
and convenience of people’s medical care.
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