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Abstract
Producing high economic benefits and high grain yields with limited environmental 
impacts is crucial for feeding the world's growing population. Yet it remains chal-
lenging to improve the performance of one objective without creating unintended 
consequences for other objectives. This is especially difficult for smallholders navi-
gating a diverse array of environmental and personal demands. This study demon-
strates how combining participatory research through the Science and Technology 
Backyards (STB) approach with Pareto-based ranking modeling can increase small-
holder production while also reducing environmental impact. Through an intensive 
farmer survey in a 1 × 1 km grid in Quzhou County, we demonstrate that farmers 
engaged in STBs performed better according to multiple objectives (i.e., optimizing 
overall grain yield, benefit-cost ratio, and GHG emissions, without compromising 
any one of these objectives) than farmer's not engaged in STBs. Moreover, we used a 
Pareto optimization approach (OPT) to determine the optimal smallholder scenario. 
We found that under OPT, grain yield could reach 9.5 t/ha, with a benefit-cost ratio 
of 2.1, a 100% N recovery efficiency, and 7,395 kg CO2eq ha−1 GHG emissions. 
With OPT as a final goal, our research team worked with STB farmers to improve 
economic and environmental outcomes without compromising yield. Our findings 
demonstrate that no significant difference was obtained between farmers engaged in 
STBs and these under OPT. Compared with non-STB farmers, STB farmers’ grain 
yield improved by 18%, benefit-cost ratio improved by 26% due to improved N re-
covery efficiency, and GHG emissions were reduced by 31%. These improvements 
demonstrate the power of scientist–farmer engagement for optimizing wheat pro-
duction. Such engagement allows farmers to modify their agronomic practices to 
more closely match Pareto optimal conditions, thus improving environmental and 
economic benefits without compromising yield. Our results provide solid evidence 
of the potential for sustainable wheat production by combining modeling with par-
ticipatory research.
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1  |   INTRODUCTION

In the past several decades, China has produced enough food 
to feed 22% of the global population with less than 9% of the 
global arable land (Fan et al., 2012). However, this so-called 
miracle has also been accompanied by an enormous amount 
of resource and environmental costs (Jiao et  al.,  2016). As 
much as 35% of the chemical nitrogen (N) produced world-
wide has been consumed for grain production in recent years 
(IFA, 2019). In the future, more than double the current grain 
production will be needed for the growing population (Godfray 
et al., 2010; Tilman et al., 2011). Feeding a large population 
in a sustainable manner rather than using a resource-intensive 
approach is a great challenge faced by China's agriculture 
(Zhang et al., 2014, 2015). The challenges are more daunt-
ing in smallholder farmer-dominated systems. On the North 
China Plain, for example, smallholders have produced 25% of 
the food with 26% of the arable land, a much less favorable 
ratio than for the country as a whole (NBSC, 2019). Having 
overcome the problem of hunger, China is now considering 
efficiency and the environment. Specifically, what is the best 
way to achieve multiple objectives (high economic returns, 
high yields, high N use efficiency, and low environmental 
impacts) rather than just maintaining high yield? Improving 
N use efficiency and other smallholder agronomic practices 
are the best ways to optimize production both economically 
and environmentally.

Many attempts have been made to achieve more with 
less resources in crop production (Chen et al., 2014; Zhang 
et al., 2016). Yet, this almost inevitably entails trade-offs or 
is not feasible under real-world conditions. For instance, Cui 
et al. (2008) found that employing an in-season root-zone N 
management strategy based on the soil Nmin test can improve 
N use efficiency and farmer incomes and reduce GHG emis-
sions. Similarly, Chen et al. (2014) found that an integrated 
crop-soil management strategy can improve grain yield by 
30% without increasing N use (Chen et  al.,  2014). While 
this has provided valuable research for sustainable crop 
production, real-time in situ field monitoring is required in 
both cases, which has hindered widespread application of 
these techniques by smallholder farmers. In addition, these 
outcomes are not independent of each other. They interact 
in both positive and negative ways, creating the potential for 
synergies and trade-offs (Groot et al., 2012).

In recognition of these trade-offs, attempts have been 
made to develop models and decision support tools to help 
smallholder farmers select solutions for multi-objective op-
timization in crop production from a top-down perspective 

(Todman et  al.,  2019; Khoshnevisan et  al.,  2020). Pareto-
based multi-objective optimization approaches have attracted 
great interest for solving such complicated problems. This 
approach can identify optimal solutions where any one indi-
cator cannot be improved further without compromising the 
performance of the other indicators (Groot et al., 2012). Pareto 
optimization can provide a set of mathematically equivalent 
solutions from a large number of options. For instance, with 
a multicriteria evolutionary-based algorithm, Khoshnevisan 
et  al.  (2020) recently developed a regional-scale decision 
support system to optimize N use such that crop yield was 
maximized and negative environmental impacts were mini-
mized. Indeed, exactly what smallholder farmers are capable 
of achieving in their own fields and the potential adaptive 
agronomic practices needed for such achievements are not 
fully understood.

Crop production is inherently a very complex process that 
includes land preparation, chemical fertilizer use, and pes-
ticides (George et al., 2014). In the real world, an improve-
ment in one objective is typically associated with negative 
effects on other objectives. For instance, high-yield crop pro-
duction is often associated with high chemical fertilizer use, 
while high chemical fertilizer use is usually accompanied by 
low economic benefits and low environmental quality (Jiao 
et al., 2016; Ju et al., 2016). A simple and effective approach 
that considers multiple objectives from a bottom-up perspec-
tive is urgently needed. Stuart et  al.  (2018), for example, 
demonstrated that adoption of improved agronomic practices 
can increase profit and reduce excessive inputs, thus improv-
ing nutrient use efficiency and reducing environmental im-
pacts. Kanter et al. (2016) further showed that that although 
scientifically sound technology application approaches were 
effective in helping smallholder farmers achieve multiple ob-
jectives in crop production, due to the lack of participation of 
the appropriate stakeholders in the research design and the 
generic solutions provided, the uptake in practice was quite 
low. In order to address these shortcomings, the objectives of 
the present study are as follows: (a) to explore Pareto opti-
mal solutions for wheat production (optimizing wheat yield, 
N use efficiency, GHG emissions, and benefit-cost ratio, 
without compromising any one of these objectives) and (b) 
to identify how optimal solutions can be achieved in practice 
through participatory approaches.

One method of participatory engagement of particu-
lar concern for our study is the Science and Technology 
Backyard (STB) model. The STB model was established in 
2010 in Quhzou County of the North China Plain and has 
since gone on to cover different ecological zones across China 
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(Zhang et al., 2016). The goal of STBs is to link the scientific 
community with the farming community through participa-
tory research with the ultimate aim of empowering small-
holders to achieve higher crop yields with less environmental 
impacts (Jiao et al., 2019). Through this approach, scientists 
and farmers conduct field trails and demonstrations to illus-
trate best agronomic practices and new technologies. With 
scientist support, farmers then conduct field trials in order to 
determine how to practically implement these best practices 
and technologies in their own fields. Our study combines this 
participatory approach with Pareto optimality modeling in 
order guide scientist farmer engagement with Pareto optimal 
conditions as an end goal. Through a comprehensive survey 
and follow-up participatory research, we compare the pro-
duction data of smallholder farmers engaged in STBs with 
smallholder farmers that are not, as discussed further below. 
This will enable us to, as discussed in the results and conclu-
sion, determine the potential of the STB approach to optimize 
environmental and economic objectives by combining partic-
ipatory research with Pareto-based ranking.

2  |   MATERIALS AND METHODS

2.1  |  System boundary and data collection

An intensive farmer survey, covering 321 smallholders, was 
conducted in Quzhou County, Hebei Province (Figure  1). 
Quhzou County is a typical agricultural county in the North 
China Plain, demonstrating typical climate conditions and 
grain production patterns. The climate of this region is warm-
temperate, subhumid continental, and monsoonal with cold 
winters and hot summers. On average, the rainfall in the re-
gion is 500 mm per year, ranging from 400 to 700 mm. The 
average annual temperature is 13.1°C, ranging from −10 to 
30°C. Wheat–maize rotation is the major cropping system 
in this zone. The growing period of wheat is normally from 
early October to June. During this time, a third of the an-
nual rainfall occurs. As the bread-basket of China, as much 
as 56% of the wheat grain in China is produced in this area. 
Smallholder farmers are the major force for wheat production 
in this area.

F I G U R E  1   The distribution of farmers surveyed in the study. The blue zone on the left is the North China Plain. A total of 321 smallholder 
farmers were surveyed, including 73 STB farmers in Wangzhuang Village
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The survey was conducted over a 1  ×  1  km grid of 
Quzhou County in March 2018. Of the 321 smallholder 
farmers participating in the survey, 73 farmers were part 
of an STB in Wangzhuang Village, a typical wheat–maize 
rotation village in Quzhou County (referred to as “STB 
farmers”) and 248 were not part of STBs (referred to as “FP 
farmers,” with FP standing for typical “farmer practices” 
in the region) (Figure 1). Farmer behaviors and agronomic 
practices, characteristics, and grain yield were asked and re-
corded through the survey, including the amount and timing 
of chemical fertilizer use (N, P2O5, and K2O), the number 
of wheat varieties used, farm size, sowing rate and date, and 
costs. The GHG emissions, benefit-cost ratio, and N recov-
ery efficiency were calculated according to the equations 
provided below. More information on the different farmer 
types (STB and FP farmers) and their agronomic practices 
are described in Table S1. Generally speaking, FP farmers 
employed typical farmer practices for the region. In contrast, 
STB farmers have been intensively monitored and trained 
since 2010, when the STB was established in Wangzhuang 
Village. According to the working approach of STB, scien-
tists worked with farmers through jointly conducted field 
demonstrations and field trials to determine how to improve 
yield while reducing economic and environmental costs.

After conducting the farmer survey (including both FP 
and STB farmers), a Pareto-based ranking approach was ap-
plied to the results (see Section 2.6 for a discussion of this 
approach). Through this methodology, farmers with Pareto 
optimal conditions (OPT) were identified. After identifying 
the Pareto optimal conditions, our research team continued to 
work with STB farmers in order to improve their agronomic 
practices to get closer to Pareto optimality. Through the typ-
ical STB approach but now also with Pareto optimality as 
an end goal, scientists worked with farmers to implement 
integrated agronomic practices that would allow farmers 
to come closer to Pareto optimal conditions. Working to-
gether, a desirable future of wheat production was envisaged 
and the barriers and constraints to achieve optimal wheat 
production were analyzed. With the end vision in sight, in-
tegrated agronomy practices were jointly developed. A set 
of field trials testing appropriate agronomic practices were 
conducted to develop these adaptive technologies in situ 
and field demonstrations were made to provide evidence of 
their effectiveness to other smallholders in the village. At 
the same time, intensive and long-term training was per-
formed, especially in key crop growth stages. Through this 
type of scientist–farmer engagement, recommended agro-
nomic practices were implemented in a bottom-up manner. 
By October 2018, after a year of participatory engagement 
with STB farmers following the initial survey, harvest data 
was collected for these STB farmers and used in our analysis 
(along with the survey data collected for FP farmers).

2.1.1  |  N flow in wheat production

The N flow in wheat production was calculated using N in-
puts and outputs. The N input includes chemical N fertilizer 
(Nfert) and N from deposition (Ndep), irrigation (Nirr), seeds 
(Nseed), and biological fixation (Nbio).

where Nfert was calculated as the amount of chemical fertil-
izer use multiplied by the concentration of N in the fertilizer. 
Nseed was calculated as the amount of seed used multiplied 
by the concentration of seed. Ndep, Nirr, and Nbio were the 
amount of N from deposition, irrigation water, and biological 
N fixation. The amount of chemical fertilizer and seed use 
was obtained from survey data. The concentration of chem-
ical N fertilizer was collected from fertilizer bags labeled 
by the producers. The seed contribution was obtained from 
Yue et al. (2015), while Ndep, Nirr, and Nbio (calculated to be 
21  kg  N/ha, 13  kg  N/ha, and 15  kg/ha, respectively) were 
obtained from Liu et al. (2014).

The N output includes N harvested in grain (Nup), NH3 
volatilization (NNH3), N leaching (Nleach), N2O emissions 
(NN2O), and N accumulation in arable land (Nacc). In Quzhou, 
all the straw was returned back to the soil.

where Nup was calculated as the wheat yield multiplied by the 
grain N concentration. The wheat yield was obtained from sur-
vey data, and grain N concentration was obtained from Chen 
et al. (2014).

NNH3, Nleach, and NN2O were calculated as follows:

where Nsurp was calculated as the difference between N input 
(Ninput) and the N harvested as wheat grain (Nup). The uncer-
tainties of N flow in each type of farmers were listed in the 
Table S2.

2.2  |  Calculation of N recovery efficiency

The N recovery efficiency was calculated as the ratio be-
tween N input and N harvested as wheat grain (Nup).

(1)Ninput =Nfert+Ndep+Nirr+Nseed+Nbio,

(2)Noutput =Nup+NNH3+Nleach+NN2O+Nacc,

(3)NNH3 =0.17Nfert−4.95,

(4)Nleach =13.59×e(0.009×Nsurp),

(5)NN2O =0.54×e(0.0063×Nsurp),

(6)Neffi =Nup∕Ninput×100%,
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2.3  |  Calculation of global warming 
potential (GWP) with life cycle analysis (LCA)

An LCA approach was employed to calculate the GHG emis-
sions from wheat production. The functional unit is defined 
as the total GWP for wheat production per unit of arable land, 
expressed as kilograms of carbon dioxide equivalent per ha 
(CO2eq ha−1). The system boundaries were set from cradle to 
grave, including the burden of all material inputs and agricul-
tural/industrial processes from wheat production.

The volatilization of compounds such as NH3 and NOx 
with their subsequent redeposition and leaching and runoff in 
wheat cultivation was estimated (Chen et al., 2014). Indirect 
N2O emissions can be estimated by following the IPCC meth-
odology, where 1% and 0.75% of the volatilized N-NH3 and 
leached N-NO3 are lost as N2O−N, respectively. The GHG 
emissions from the total N2O emissions were calculated in 
units of CO2 equivalents (CO2 eq) over a 100-year time pe-
riod and were 298 times the intensity of CO2 on a mass basis. 
Using the above total N2O emissions per unit area, we calcu-
lated the GHG emissions, expressed as kg CO2 eq.

where GHGm and GHGt are GHG emissions from chemical N 
manufacturing and transportation per unit of chemical N fertil-
izer, expressed as kg CO2eq kg−1 N. GHGothers are GHG emis-
sions from chemical P and K fertilizers, pesticides, herbicides, 
diesel consumption for irrigation, land preparation, and harvest 
in wheat production, including the inputs from the production, 
transportation, and application of these factors.

2.4  |  Benefit-cost ratio analysis

The benefit-cost ratio (BCR) was calculated as the ratio be-
tween costs (Tcost) and profit (Tbenefit). The cost of wheat pro-
duction was calculated by multiplying the unit price of the 
inputs by the amount of inputs. The input prices were calcu-
lated as an average of three years of prices in Quzhou County.

The costs of the system were calculated with the following 
equations:

where Ii is the input for wheat production, and Pi is the unit 
price of the input.

where Ograin is the wheat yield and Pgrain is the unit price of 
wheat.

2.5  |  Optimization of objective functions

A generic multi-objective linear programming model, called 
Pareto-based ranking approach, was employed to explore 
the potential of wheat production while minimizing GHG 
emissions and maximizing wheat yield, benefit-cost ratio, 
and N recovery efficiency in the 321 smallholder farms. 
This generic model, broadly covering the characteristics 
of the average farm, can be expressed in compact form as 
follows:

Subject to i constraints:

where U1(x), U2(x), U3(x), U4(x) are the wheat yield, N recov-
ery efficiency (Equation (6)), benefit-cost ratio (Equation (10)), 
and GHG emission (Equation (7)), irrespectively. These objec-
tive functions that are simultaneously maximized or minimized, 
and (X1 … Xn) are the decision variables that represent adjust-
able parameters to describe the adopted agronomic practices. 
The decision variables are the amount and timing of chemical 
N fertilizer use, the sowing rate, and so on. The constraints in 
Equation (12) can arise from the problem formulation, from 
limitations on the farm model results related to a specific con-
figuration of the decision variables. It can be expressed as 
follows:

In maximizing the wheat yield and benefit-cost ratio, the 
farm size cannot exceed the total farm area of 48,000 ha. 
Therefore, the cultivated area of wheat production should 
be less than or equal to the total arable land in whole  
county.

where TPA is the total planting area in ha. A is the planting area 
per smallholder.

The chemical N fertilizer use per unit of area cannot ex-
ceed the threefold of the amount of N harvested by wheat 
grain (Chen et al., 2014).

(7)
GHG=

(

GHGm+GHGt

)

×Nfert+NN2O×44∕28×298+GHGothers,

(8)

Tcost = Iland×Pland+ Ielectricity×Pelectricity

+Ipesticides×Ppesticides+ Iseeds×Pseeds

+IN×PN+ IP×PP+ Ik×PK+ Idiesel×Pdiesel,

(9)Tbenefit =Ograin×Pgrain,

BCR=Tbenefit∕Tcost,

(10)Max U (x)=
[

U1 (x) , U2 (x) , U3 (x) ,−U4 (x)
]T

,

X=
(

x1, x2…xn

)T
,

(11)gi (x)≤hi,

(12)TPA=

n
∑

k= 0

Ai≤48, 000,

(13)Nfert ≤3Nup,
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The topdressing N rate cannot exceed the total amount of 
chemical N fertilizer use in one growing season.

where Ntop is the amount of N topdressing.
The first criterion for the performance of a case study is its 

Pareto rank, as proposed by Goldberg (1989). Individuals in the 
population are Pareto optimal when it is not possible to improve 
any one aspect of their performance, without compromising at 
least one of the other aspects. In such cases, there is no objec-
tive basis for discarding the individual. These individuals are 
referred to as nondominated and receive a rank of 1. In the pres-
ent study, all farmers identified within the Pareto rank-1 case 
(including both STB and FP farmers) are referred to as OPT 
farmers. The next step in Pareto-ranking the entire population 
of solutions is to remove the individuals of rank 1 from the pop-
ulation and identify a new set of nondominated individuals that 
are assigned rank 2. This process is continued until all individ-
uals in the population are assigned a Pareto rank. When infor-
mation on the prior performance of the farming system is used, 
the ranking mechanism of Goldberg (1989) may be slightly ad-
justed to improve the selection of the part of the solution space 
where solutions are found that perform better than the original 
practices. In this case, a (superior) rank of 0 is assigned to solu-
tions that perform better than the original configuration for all 
the objectives.

2.6  |  Data analysis

Data about wheat production and its corresponding agronomy 
practices was analyzed with one-way ANOVA using SAS sta-
tistical software (SAS Inst.). Significant differences among 
means were determined by LSD at p ≤ .05. The data were pre-
sented by Sigma-plot (version 12.0, Systat Software Inc.). N 
flow of wheat production under different farmer types was pre-
sented with e!Sankey (version 4.1, Hamburg, Germany).

3  |   RESULTS

3.1  |  N flow

For FP farmers, the total N input, including that from 
chemical fertilizer, irrigation, deposition, and biological 
fixation, was 312.2  kg  N/ha, 83.4% of which was from 
chemical fertilizer. A total of 60.6% of N was used by the 
wheat grain. As much as 74.7 kg N/ha was lost to the en-
vironment (NH3 volatilization, N leaching, and denitrifi-
cation), and 48.2  kg  N/ha was accumulated in the arable 
land. Compared with that of FP, the total N input of the 
Pareto-based farmers (OPT) was reduced to 273.1 kg/ha; 

the N uptake by wheat was increased by 15%; the N lost 
to the environment was reduced to 47.8  kg/ha; and only 
7.6 kg N/ha was left in the arable land. For STB farmers, 
the N input was 296 kg/ha, and 55.3 kg/ha and 25.6 kg/ha 
were lost to the environment and accumulated in croplands, 
respectively (Figure 2).

3.2  |  Performance indicators for different 
types of farmers

An analysis of the relationship between the objectives of 
the smallholder farmers was performed (Figure 3). Synergy 
was observed between N recovery efficiency and grain yield 
as well as the benefit-cost ratio (Figure  3b,d). The grain 
yield and benefit-cost ratio also exhibited synergetic trends 
(Figure  3f). There was a large trade-off between N recov-
ery efficiency and GHG emissions (Figure 3a). A trade-off 
between GHG emissions and the benefit-cost ratio was also 
observed (Figure  3e). With the Pareto approach, 13 small-
holder farmers that simultaneously achieved multiple objec-
tives were selected among the 321 cases.

3.3  |  Characteristics of the 13 solutions 
near the extremes (minima or maxima) of the 
four objectives

Compared with that under FP, the performance of wheat pro-
duction in OPT improved greatly (Figure 4). The grain yield 
and cost-benefit ratio in OPT were 9.5 t/ha and 2.1, respec-
tively. The N recovery efficiency was improved by 32.1%, 
and GHG emissions were reduced by 31.1% compared with 
those under FP. A 9.2 t/ha wheat yield and 2.0 benefit-cost 
ratio were obtained by STB farmers. N recovery efficiency in 
STB farmers was 100%, and GHG emissions were reduced 
by 15% compared to those under FP.

The key agronomic practices of OPT and STB farmers 
were improved (Figure 5). Chemical N fertilizer application 
was reduced from 260 kg/ha to 221 kg/ha and 250 kg/ha in 
OPT and STB farmers, respectively. Sowing rate was reduced 
by 15.7% and 14%, respectively, compared with that under 
FP. Total cost, including land preparation, labor, chemical 
fertilizer use and so on, was reduced by 7.4% and 8%, respec-
tively, compared with that of FP.

The extreme of each objective and its corresponding ag-
ronomic practices were also evaluated (Table 1). The best 
results for individual objectives could only be reached at 
the expense of other objectives. For instance, when aiming 
to increase the maximum wheat yield from 8.0 t/ha under 
FP to 10.1 t/ha under OPT, chemical N use was project to 
be reduced from 260  kg/ha to 225  kg/ha, and the sowing 
rate should be reduced by 14.8%. At the same time, under 

(14)Ntop ≤Nfert,
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these practices, N recovery efficiency increased by 34.4%, 
GHG emissions decreased by only 29.6%, and the bene-
fit-cost ratio was similar to that under FP. When the bene-
fit-cost ratio was maximized, the grain yield only increased 
by 15.4%, and the N recovery efficiency increased by 26.0% 
compared to those under FP; the total cost of wheat pro-
duction was reduced by 17.5%, and chemical fertilizer input 
was reduced by 14.0%. When environmental concerns were 
given top priority, the GHG emissions were only 4,748 kg 
CO2eq ha−1, but large decreases in the grain yield and ben-
efit-cost ratio were observed. The grain yield was only 
improved by 1  t/ha compared with that under FP, and the 
benefit-cost ratio was increased by only 6.7%; the chemical 

N input was as low as 159  kg/ha to achieve 9  t/ha wheat 
production.

4  |   DISCUSSION

4.1  |  Determining the optimal conditions for 
smallholder wheat production

Producing high yields and economic benefits while limiting 
environmental risks is one of the major challenges faced 
in grain production (Foley et al., 2011; Zhang et al., 2013). 
This challenge is even more daunting on the North China 
Plain due to the domination of wheat production by small-
holders (Zhang et al., 2016). Smallholder farmers work at 
a scale at which it is difficult to realize and manage the 
trade-offs between the potential benefits and negative im-
pacts of their agronomic practices. Our study demonstrates 
the potential for optimizing smallholder wheat production 
while reducing environmental impacts. We do this by com-
bining a Pareto-based ranking approach with a substance 
flow analysis to determine the optimal solution to small-
holder wheat farming when considering both economic and 
environmental factors.

Many attempts have been made to develop innovative 
solutions for sustainable crop production (Liu et  al.,  2016; 
Zhang et al., 2018). For instance, optimal N use and best N 
management practices have been developed by generating re-
lationship curves between the N rate and specific indicators 
such as yield, economic income, and N uptake ( Wang, Ye, & 
Chen, 2014; Ying et al., 2017). Such an approach is helpful 
for developing an N management strategy. However, when 
trade-offs or syntheses among different indicators exist (such 
as yield should be maximized while N loss should be mini-
mized), it is difficult to make decisions using this approach. 
Therefore, meeting smallholder farmer demands from the 
perspective of both socioeconomic and environmental objec-
tives, rather than one or the other, is vital for achieving the 
sustainable intensification of crop production.

Previous studies have showed that high-yield crop pro-
duction is often associated with high chemical N fertilizer 
use, resulting in low N recovery efficiency and a higher 
benefit-cost ratio (Tilman et al., 2001; Zhang et al., 2015). 
However, in the present study, synergies were found between 
wheat yield and N recovery efficiency and the benefit-cost 
ratio (Figure 3). This indicates that high yields and high N 
use efficiency in wheat production can be achieved in small-
holder farmer plots, resulting in higher economic benefits. 
Similar results were obtained in previous studies on the North 
China Plain with improved wheat varieties and N manage-
ment strategies in wheat production (Lu et al., 2016; Zhang 
et al., 2020).

F I G U R E  2   N flows from wheat production based on typical 
farmer practices (FP) (a), Pareto rank 1 farmers (OPT) (b) and 
STB farmers (STB) (c) in Quzhou County in 2017. A total of 321 
smallholder farmers were surveyed in Quzhou County in 2017. 
Seventy-three were STB farmers, while the remaining 248 were FP 
farmers. Of both STB and FP farmers, 33 were OPT farmers (7 STB 
farmers and 26 FP farmers)
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In the present study, those farmers that demonstrated 
Pareto optimal socioeconomic and environmental factors 
(OPT) achieved an 18.4% improvement in grain yield and a 
32.1% improvement in N recovery efficiency, figures com-
parable with high-yield wheat production in the UK and 
showing even higher N recovery efficiency than US crop 
production (Zhang et al., 2015; Perryman et  al.,  2018). 
OPT farmers employed several key agronomic practices 
to increase their grain yield and N recovery efficiency. 
Compared with other farmers (FP), they reduced their sow-
ing rate by 11.1% to avoid excessive population numbers in 
the early growth stage and to also avoid competition for the 
limited soil N in the root zone (Lu et al., 2015). Moreover, 
OPT farmers employed an optimal N use rate to spatially 

and temporally align the soil N supply in the root zone with 
wheat N demand (Shen et al., 2013). They reduced chemi-
cal N fertilizer use by 15.0% compared to FP farmers, and 
the proportion of topdressing by OPT farmers increased by 
32.3%. Previous studies have shown that as much as 50% 
of the total chemical N fertilizer used could be reduced by 
optimized N use and split N application in crop produc-
tion, thus improving N recovery efficiency to as high as 
90% (Ju et al., 2009). OPT farmers averaged 213 kg N/ha, 
which is within the recommended range for chemical fertil-
izer use based on field trials on the North China Plain (Liu 
et al., 2016).

In the present study, high N recovery efficiency 
was associated with lower GHG emissions and higher 

F I G U R E  3   Relationships between wheat production performance indicators in Quzhou County in 2017. Each performance indicator is 
represented by Pareto frontiers after multi-objective optimization for a full exploration of the trade-off frontier. Each dot represents a performance 
configuration: green indicates Pareto rank 1 solutions (OPT), blue indicates the average value for STB farmers (STB), red indicates the average 
value for farmers employing typical farmer practices (FP), and white indicates all the cases (case). The formula presented in the graph indicates a 
significant relationship between objectives
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economic benefits. Chemical fertilizer, especially N, is 
one of the greatest contributors to GHG emissions (Huang 
et  al.,  2017) and a large source of farmer input costs 
(Withers, Sylvester-Bradley, Jones, Healey, & Talboys, 
2014). On the North China Plain, approximately 50% of 
chemical N used by smallholder farmers is lost to the envi-
ronment—10% as leaching, 30% as NH3, and 10% as run-
off (Ju et al., 2016). In the present study, as much as 60% 
of the GHG emissions were generated from chemical N 

fertilizer use, which is in the range estimated by previous 
studies (Wang et al., 2017). Thus, we find that agronomic 
practices such as optimizing chemical N use and modify-
ing chemical N types can improve N use efficiency and 
reduce GHG emissions. OPT farmers increased their bene-
fit-cost ratio by 25.6%, and GHG emissions by 31.1% due 
to the use of improved agronomic practices. Consequently, 
OPT farmers simultaneously achieved both high economic 
and environmental performance in wheat production.

F I G U R E  4   Wheat yield (a), cost-
benefit ratio (b), N recovery efficiency (c), 
and GHG emissions (d) in the three different 
study groups (farmer practices (FP), Pareto 
optimization (OPT), and STB farmers 
(STB)) in Quzhou County in 2017. Each 
value is the mean of cases (+SE). Different 
lower case letters denote significant 
difference (p ≤ .05) between categories
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4.2  |  Optimizing wheat production in 
practice through a participatory approach

It is one thing to identify the Pareto optimal solution for small-
holder farming, it is quite another to implement this solution in 
the smallholders’ fields. This study demonstrates the efficacy of 
the STB model in helping smallholder farmers achieve Pareto 
optimal solutions on the ground. Specifically, it highlights the 
importance of scientist–farmer engagement to produce knowl-
edge by combining Pareto-based ranking modeling with a par-
ticipatory approach. To the best of our knowledge, this is the 
first study to provide strong evidence for the success of such a 
combined approach. Compared with FP farmers, STB farmers 
improved the wheat yield, benefit-cost ratio, and N recovery 
efficiency by 15.2%, 22.0%, and 14.5%, respectively, and re-
duced GHG emissions by 20.0% (Figure 4). These improve-
ments are attributable to changes in agronomic practices, such 
as wheat management and soil nutrient management strategies 
(Table  1; Figure  5), that were determined by both scientists 
and farmers together, knowing the Pareto optimal solution and 
working backwards to achieve that solution.

Previous studies have shown that spatially optimal N ap-
plication rates for different regions on the North China Plain 
were introduced through a multicriteria evolution-based 
algorithm and provided a decision support system for poli-
cymakers (Khoshnevisan et al., 2020). This system has pro-
vided a valuable paradigm for sustainable wheat production. 
However, the applicability of this system was not tested in 
smallholder farmer field plots. Implementing multi-objective 
optimization on the ground and translating it into smallholder 
farmer actions is a complicated process. It depends on a se-
ries of factors, such as human capital, risk preference, and 
geographic considerations (Feder and Umali, 1993; Mariano 
et  al.,  2012). Therefore, the routine application of these 
solutions in actual decision-making has been limited (Groot 

et al., 2012; Kanter et al., 2016). Many factors can explain the 
low uptake rate of multi-objective solutions. One important 
cause is the serious lack of participation in research design 
and research process by smallholder farmers (Kristjanson 
et al., 2009). Although scientists provide generic recommen-
dations for sustainable crop production using formal logic, 
most solutions from scientists are not provided to a clear end-
user or stakeholder group (Sterk et al., 2011). Solutions have 
failed to bridge the knowledge/action gap because scientists 
often lack an understanding of the views of smallholder farm-
ers, and smallholder farmers lack an interest in building part-
nerships with scientists.

Many studies have shown that participatory research, in 
which researchers and community members join together 
in a process of collaborative inquiry to address real-world 
issues and practical problems, is an effective approach to 
handling the challenges of crop production (Bellon,  2001; 
Hoffmann et  al.,  2014; MacMillan and Benton, 2014). In 
this study, participatory research with Pareto-based ranking 
was used to provide basic knowledge of optimal solutions 
to willing farmers in order to increase their problem-solving 
skills. With clear Pareto optimal solutions to aim for, our re-
search team and farmers jointly envisaged a desirable future 
of wheat production in which economic and environmental 
goals were optimized. The barriers and constraints to achiev-
ing this multi-objective wheat production were jointly con-
sidered and analyzed. With the end vision in sight, scientists 
and farmers worked together to overcome the barriers they 
faced and jointly develop integrated agronomy practices for 
more optimal wheat production (Figure 6).

Our results indicate that, in particular, synergies existed 
between the grain yield and the N recovery efficiency and 
benefit-cost ratio. Trade-offs were found between GHG emis-
sions and grain yield, N recovery efficiency and the bene-
fit-cost ratio. Synergy was also found between the N recovery 

F I G U R E  6   Concept model of 
integrated agronomy practices for multi-
objective optimization of wheat production 
employed by OPT smallholders. BCR: 
Benefit-cost ratio, NRE: N recovery 
efficiency
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Optimize seed date 
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Population 
manipulation 
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Grain yield: 9.5 t ha–1 ; BCR: 2.1;  GHG emission: 7395 kg CO2eq ha–1; NRE: 100%
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(3) High GHG emission; (4) Low yield
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and transfer
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efficiency and the benefit-cost ratio. These factors are beyond 
the decision-making capacity of smallholder farmers. A series 
of comparative field trials and demonstrations were conducted 
with the engagement of scientists and smallholder farmers. 
For instance, to persuade smallholders to reduce their chemi-
cal N fertilizer use, optimal N field trials were set up by small-
holder farmers and scientists in farmers’ fields, and techniques 
for reducing N use were provided with guidelines. Through 
this approach, scientists transform from their traditional role 
of knowledge creators to becoming conduits between small-
holder farmers to support collaboration at the interface of dif-
ferent communities (Chinseu et al., 2019; Snapp, Dedecker, & 
Davis, 2019).

In the present study, compared with farmers using typical 
practices (FP farmers), STB farmers reduced their sowing rate 
and chemical fertilizer use (Table 1; Figure 5). An integrated 
soil–crop management strategy, rather than solely technology 
alone, was employed. The optimal sowing rate and chemical 
N input level were the key points for achieving high yields 
and economic benefits with limited environmental impacts. 
On the North China Plain, due to the late maturity of maize, 
late sowing is common for wheat production. To maintain 
high tillering for high-yield wheat, increasing the sowing rate 
and excessive chemical N use are common agronomic prac-
tices for smallholder farmers (Zhang et al., 2020). However, 
many studies have shown that excessive chemical N fertilizer 
inputs combined with a high sowing rate do not lead to high 
wheat production (Alzueta et al., 2012). This has caused mas-
sive N losses in cropland due to the limited N requirement 
in the early wheat growth stage without any corresponding 
benefits in terms of increased yield (Chen et al., 2018). In the 
present study, STB farmers reduced chemical N use and sow-
ing rate to 246 kg/ha and 171 kg/ha, respectively (Figure 5). 
At the same time, wheat yield increased by 15.2% and GHG 
emissions decreased by 20.0%.

Furthermore, intensive, bottom-up training rather than 
one-time, top-down training has been shown to be effec-
tive in improving the adoption of technology and im-
proved agronomic practices by smallholder farmers (Zhao 
et  al.,  2016). The present study confirms this. The STB 
model in particular has the potential to disseminate inno-
vative and participatory techniques and technology trans-
fer for smallholder farmers (Zhang et  al.,  2016). In order 
to transform experimental science into smallholder farmer 
action, STBs conduct a series of demonstration field trials 
covering crop varieties, chemical fertilizer use, and pesti-
cides based on farmer interests (Cui et al., 2018). Through 
this approach, the knowledge of integrated soil–crop man-
agement strategies is localized and more easily accepted by 
the smallholder farmers. The adoption rate has been shown 
to increase by 30% due to the novel approach of the STB 
program (Zhang et  al.,  2016). Our results here show that 
increased adoption rates have, in turn, led to more optimal 

farming outcomes for STB farmers versus other farmers 
using conventional practices (FP farmers).

4.3  |  Uncertainty analysis

There are some uncertainties surrounding the data used for 
our input parameters, which may to some extent impair the 
robustness and soundness of our results and conclusions. 
In the study, the coefficient of N flow, covering N har-
vested in grain (Nup), NH3 volatilization (NNH3), N leach-
ing (Nleach), and N2O emissions (NN2O), was adopted from 
Chen et  al.  (2014). We also adopted their corresponding 
conversion factors to GHG emission from the same study. 
Generally speaking, N flow and GHG emissions are very 
difficult to obtain and are mainly determined in the fields 
plot conducted by scientists. However, it is possible to ac-
quire a fair estimate by a comparison with other calculated 
N flow and GHG emissions in other regions. This was our 
approach, as noted in Section 2.2 and 2.4. Such uncertain-
ties could be minimized by employing an intensive range of 
reference sources, including literature, questionnaires, and 
interviews. Local field experiment and monitoring may be 
an effective approach to acquire accurate data. In our cases, 
however, given the constraints of our study, we relied on the 
data provided by Chen et al. (2014).

5  |   CONCLUSIONS

In this study, we have shown that optimizing wheat pro-
duction by smallholder farmers—both economically and 
environmentally—is possible by combining participatory 
research with Pareto optimality modeling. Under typical 
farmer practices (FP), the wheat yield and benefit-cost ratio 
were 8.0 t/ha and 1.6, respectively, and GHG emissions were 
as high as 10,737 kg CO2eq ha−1 due to the low N recov-
ery efficiency. Compared with these farmers, the grain yield 
and benefit-cost ratio of Pareto optimal farmers (OPT) were 
9.5  t/ha and 2.1, respectively; their N recovery efficiency 
and GHG emissions were 100% and 7,395 kg CO2eq ha−1, 
respectively. OPT farmers demonstrated higher grain yields 
and higher benefit-cost ratios, along with lower GHG emis-
sions and lower N inputs. Overall, STB farmers came closer 
to Pareto optimal levels than other (FP) farmers. Given the 
engagement of scientists and smallholder farmers through 
the STB model, grain yield and benefit-cost ratio were im-
proved by 15% and 22%, respectively, compared to FP farm-
ers due to the improved N recovery efficiency. This resulted 
in a 20% reduction in GHG emissions for STB farmers. From 
the bottom-up perspective, the corresponding adaptive agro-
nomic practices, including optimizing chemical N use and 
the sowing rate, were employed by the STB farmers. The 
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results indicate that multi-objective optimization in wheat 
production can be achieved by modifying the appropriate ag-
ronomic practices through scientists and smallholder farmer 
engagement, with the help of Pareto optimality modeling to 
provide optimal, yet also realistic and attainable, end goals.

Connecting top-down optimization and bottom-up partic-
ipatory implementation is a new frontier of sustainable ag-
riculture research. The STB approach provides one way to 
combine this type of top-down and bottom-up strategizing. 
Through scientist–farmer experimentation, this approach 
offers a method for translating Pareto optimal solutions into 
sustainable crop production on the ground in smallholder 
field plots across China. Our study thus confirms that scien-
tist–farmer engagement through STBs is an effective method 
for reducing the knowledge/action gap and optimizing wheat 
production by combining top-down modeling with bottom-up 
participatory approaches.
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