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Abstract

The active sites of multisubunit RNA polymerases have a “trigger loop” (TL) that multitasks

in substrate selection, catalysis, and translocation. To dissect the Saccharomyces cerevi-

siae RNA polymerase II TL at individual-residue resolution, we quantitatively phenotyped

nearly all TL single variants en masse. Three mutant classes, revealed by phenotypes

linked to transcription defects or various stresses, have distinct distributions among TL resi-

dues. We find that mutations disrupting an intra-TL hydrophobic pocket, proposed to provide

a mechanism for substrate-triggered TL folding through destabilization of a catalytically

inactive TL state, confer phenotypes consistent with pocket disruption and increased cataly-

sis. Furthermore, allele-specific genetic interactions among TL and TL-proximal domain res-

idues support the contribution of the funnel and bridge helices (BH) to TL dynamics. Our

structural genetics approach incorporates structural and phenotypic data for high-resolution

dissection of transcription mechanisms and their evolution, and is readily applicable to other

essential yeast proteins.

Author Summary

Proper regulation of Pol II transcription, the first step of gene expression, is essential for

life. Extensive evidence has revealed a widely conserved and dynamic polymerase active

site component, termed the Trigger Loop (TL), in balancing transcription rate and fidelity

while possibly allowing control of transcription elongation. Coupling high-throughput

sequencing with our previously established genetic system, we are able to assess the in vivo
phenotypes for almost all possible single substitution Pol II TL mutants in the budding

yeast Saccharomyces cerevisiae. We show that mutants in the TL nucleotide interacting

and linker regions widely confer dominant and severe growth defects. Clustering of TL
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mutants’ transcription-related and general stress phenotypes reveals three main classes of

TL mutants, including previously identified fast and slow elongating mutants. Compre-

hensive analyses of the distribution of fast and slow elongation mutants in light of existing

Pol II crystal structures reveal critical regions contributing to proper TL dynamics and

function. Evidence is presented linking a previously observed hydrophobic pocket to NTP

substrate-induced TL closing, the mechanism critical for correct substrates selection and

transcription fidelity. Finally, we assess the functional interplay between TL and its proxi-

mal domains, and their presumptive roles in the function and evolution of the TL. Utiliz-

ing the Pol II TL as a case study, we present a structural genetics approach that reveals

insights into a complex, multi-functional, and essential domain in yeast.

Introduction

RNA polymerase II (Pol II) synthesizes all eukaryotic mRNAs. Structural studies of Saccharo-
myces cerevisiae (Sce) Pol II have illuminated mechanisms of transcription [1–6], especially

RNA synthesis. RNA synthesis occurs through iterative nucleotide addition cycles (NACs):

selection of correct substrate nucleoside triphosphate (NTP), catalysis of phosphodiester bond

formation, and enzyme translocation to the next template position. These critical steps in

NAC appear to be coordinated by a critical, conserved domain within the Pol II active site: the

trigger loop (TL).

TL functions are underpinned by its mobile and flexible nature (Fig 1A). The primary func-

tion of the TL is kinetic selection of correct NTP substrates while balancing transcription

speed and fidelity, and this function is highly conserved based on studies of RNAPs from

Escherichia coli (Eco) [7,8], Thermus aquaticus (Taq) [9], the archaeons Pyrococcus furiosus
(Pfu) [10] and Methanocaldococcus jannaschii (Mja) [11], and eukaryotic Pol II from Sce
[12,13] and human [14]. In a simplified two-step model, correct NTP binding appears to facili-

tate TL movement such that a bound, matched NTP shifts the TL from the “open” state to the

“closed” state [4,15–18], allowing capture of the matched NTP in the Pol II active site and pro-

motion of phosphodiester bond formation [4,17,19]. The subsequent release of the byproduct,

pyrophosphate, allows a conformational shift of the TL from the “closed” state back to the

“open” state [15,20,21]. TL opening has been proposed to be critical for enzyme translocation

relative to the DNA template, an essential step for the next nucleotide addition cycle

[8,13,15,22–25]. Furthermore, additional TL states have been implicated in transcriptional

pausing from studies in E.coli [17,22,26], backtracking from structural observations [27,28],

and, although controversial, intrinsic cleavage [7,29–32]. Thus, distinct TL conformations or

interactions are linked to different functions in transcription, with delicate control of TL

dynamics promoting proper transcription elongation while possibly incorporating signals

from the rest of Pol II or Pol II bound factors [17,33–36].

Genetic and biochemical studies have revealed TL functions in the NAC. First, the nucleo-

tide interacting region (NIR, Rpb1 1078–1085) discriminates matched rNTPs from 2’-dNTPs

and non-complementary rNTPs [12,13]. NIR substitutions in residues observed to interact

with rNTPs widely conferred lethality. Where viable, substitutions reduced catalytic activity in
vitro and were termed as partially loss-of-function (LOF) [7–10,12,37]. Second, a TL C-termi-

nal mutant E1103G, conferred increased catalytic activity in vitro, which we termed gain-of-

function (GOF) [12,13,38]. Fast kinetics experiments revealed that E1103G may bias TL

dynamics towards the catalytically active “closed” state [13], consistent with infidelity and

compromised translocation in addition to increased catalysis [12,13,23,39,40]. Furthermore,
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we previously described a set of Pol II TL mutants with broad and distinct alterations to tran-

scription in vivo, thus conferring allele-specific phenotypes (Table 1) that correlate with

decreased or increased activity [37,41] in vitro. Various genetic interactions (suppression,

exacerbation, and epistasis) have also been observed among TL substitutions, suggesting a

Fig 1. Establishment of a high-throughput platform for phenotyping comprehensive TL single variant library. (A) Multiple TL functions are

underpinned by its mobile nature. Structures of open (PDB:5C4J) and closed TLs (PDB:2E2H) are shown in the context of surrounding domains. Template

DNA (blue), RNA (red), Bridge Helix (cyan), Closed TL (magenta) and Open TL (yellow) are shown in cartoon rendering. The open TL has been proposed

to allow Pol II translocation while the closed TL has been shown to facilitate catalysis (right panel). (B) Mutational coverage of the TL variant library is

shown as a heatmap illustrating the allele frequencies of single substitution variants (WT amino acids and positions labeled on x axis; amino acid

substitutions on y axis). The WT amino acids for each position are noted with black boxes, and mutants excluded from library synthesis are noted using

blue boxes. (C) Schematic representation of experimental approach. Stars of different colors represent distinct substitutions. The TL variant library PCR

amplicon (encoding Rpb1 amino acids 1076–1106) flanked by RPB1 TL flanking sequence (orange) was co-transformed with a linearized LEU2 CEN

plasmid containing an rpb1 gene with the TL deleted, allowing construction of full-length RPB1 (with TL variants) by in vivo homologous recombination.

Heterozygous Leu+ transformants were replica-plated onto SC-Leu+5FOA to select against the WT RPB1 (URA3 CEN) plasmid and to create TL variant

pools. TL variant pools were subsequently replica-plated to different selective conditions for either traditional individual colony screening or high-

throughput phenotyping using deep sequencing. For the latter, replica-plated colonies were pooled for genomic DNA extraction, and the TL region was

amplified by emulsion PCR to prepare templates for deep sequencing.

doi:10.1371/journal.pgen.1006321.g001
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complex functional network within the Pol II TL [37]. Finally, context dependence for TL resi-

due function has been observed, wherein analogous mutations in a conserved TL residue

showed opposite effects in Sce Pol I and Pol II, suggesting different rate limiting steps for the

two enzymes [42]. Together, the intricate intra-TL functional network and the context depen-

dence of TL properties suggest importance of the extensive residue-residue interactions within

and outside the TL.

The possible multifunctional nature of each TL residue complicates interpretations of func-

tions if interpretations are based on a limited number of mutants. This is because the pheno-

type of any given mutant could result from removal of the wild type side-chain or additional

functions of the substituted residue. Furthermore, different substitutions may have distinct

effects on particular TL conformations [37,43]. In the TL, different substitutions in the same

residue can confer distinct phenotypes, so limiting mutational analyses to a single substitution

at a particular position may mislead about residue function [13,37]. Deep mutational scanning

is an emerging technique for studying large sets of mutants by assessing the enrichment or

depletion of variants after a strict selection process [44]. Different selection approaches have

been designed such that a specific protein property (sensitivity to substitutions [45], thermo-

stability [46], protein stability [47], etc) can be studied. Notably, our established genetic pheno-

types (Table 1) were well correlated with altered transcription elongation rates in vitro and spe-

cific transcription defects in vivo [37,41], thus providing a powerful phenotypic framework for

studying TL function. In this work, we have defined the fitness and phenotypic landscape of

the conserved, essential S. cerevisiae Pol II TL. We have found three distinct classes of tran-

scriptionally defective TL mutants that are associated with differential stress response profiles,

allowing the determination of functional contributions of each TL residue. We have examined

the mechanisms by which proximal Pol II domains communicate with the TL, while identify-

ing examples of inter-residue epistasis, which are the likely drivers of incompatibility of RNAP

evolutionary variants when placed in the Pol II context.

Results

Strategy for studying in vivo effects of TL variant library

A comprehensively mutagenized TL variant library (Rpb1 1076–1106), excepting some previ-

ously well-characterized variants [12,37], was synthesized using the Slonomics technology

[48,49] and validated by deep sequencing (Fig 1B). Synthesis conditions were such that single

substitution mutants would predominate. Our TL mutant library showed an even distribution

Table 1. Plate phenotypes employed for the screening Pol II alleles in vivo.

Phenotype Affected Gene/Reporter Allele; Pol II mutant class

affected

WT growth Mutant growth

Sensitivity to 5FOA Detects ability of rpb1 LEU2 plasmid to complement

rpb1Δ [37]

Resistance to drug. RPB1

LEU2 plasmid complements

rpb1Δ

Sensitivity to drug (Partial or no

complementation of rpb1Δ by rpb1

LEU2)

Suppressor of Ty (Spt-) lys2-128@; reports on chromatin defects and start site

selection [52]. Specific class of GOF Pol II mutants

[37,41,53].

Lysine auxotroph (Lys-) Lysine prototroph (Lys+)

Mycophenolic acid sensitivity

(MPAS)

IMD2 expression required for resistance; reports on

start site selection [57,58]. Specific classes of GOF

and LOF Pol II mutants [37,41,56].

Resistance to drug Sensitivity to drug for GOF

mutants, relative resistance for

LOF mutants.

Modulation of transcriptional

readthrough at gal10Δ56

(GalR)

gal10Δ56; likely reports on termination, mRNA

processing and initiation [37,41,54,55]. It is found

widely in LOF Pol II mutants, some GOF.

Moderate sensitivity to

galactose (GalS)

Resistance to galactose (GalR)

doi:10.1371/journal.pgen.1006321.t001
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of substitutions across all positions and substitution types (S1A and S1B Fig), with generally

very low frequencies for excluded mutants, as expected (Fig 1B). We first sought evidence that

the measured allele frequencies reflected the real allele frequency distribution because PCR

fidelity for highly similar amplicons is often compromised by template switching [50,51]. We

spiked in five excluded single substitution variants (H1085Y, H1085Q, F1086S, G1097D,

E1103G) as controls. Double mutant variants comprised of these single substitution spike-in

variants would not be present in our library, but if observed they would presumably be the

result of template switching between spike-ins. We prepared TL amplicons from a subset of

conditions using both standard PCR and emulsion PCR (emPCR), which can suppress tem-

plate switching [50,51]. First, double mutants derived from spike in controls were found at a

significantly lower frequency than the relevant single substitution variants; Second, emPCR

further suppressed the template switching frequency for all possible double mutants derived

from spike-in single variants (Fig 2A, left), at about 2.5-fold on average (Fig 2A, right). We

conclude that template switching is likely not extensive in our reactions but further reduction

by emPCR led us to employ emPCR for our studies.

We have developed an experimental pipeline to examine mutations in an essential gene

using a plasmid shuffling strategy, and have applied it to study the TL variant library (Fig 1C).

To validate our pipeline and to isolate novel TL alleles, we performed a traditional genetic

screening for mutants with transcriptional defects (Table 1). We have shown previously that

these phenotypes correlate with Pol II biochemical activity in vitro [12,37,41]. Transcription-

related phenotypes employed include, first, the Suppressor of Ty (Spt-) phenotype, derived

from a transposon insertion into the 50 end of the LYS2 gene (lys2-128@ allele) [52,53]. The

transposable element insertion renders wild-type cells Lys-. A subset of Pol II TL mutants

allow expression of a normally silent promoter within the transposable element to express a

truncated but functional LYS2 transcript, conferring the Spt- phenotype by allowing cells to

become Lys+. Spt- mutants in the TL correlate with biochemical GOF phenotypes and their

related genetic interaction and gene expression signatures [37,41,53]. Second, we employed

suppression of the galactose-induced toxicity conferred by the gal10Δ56 allele of GAL10,

(GalR) [54,55]. gal10Δ56 contains a deletion in the major GAL10 polyadenylation signal, allow-

ing transcription readthrough and interference with the downstream GAL7 gene [54,55]. This

readthrough/interference alters the ratio of metabolic enzymes in the galactose-utilization

pathway, causing the buildup of a toxic intermediate, resulting in galactose sensitivity (GalS).

Mutations in transcription elongation factors and Pol II subunits can alter these transcription

defects and suppress gal10Δ56 galactose sensitivity [37,41,55]. Third, we employed Mycophe-

nolic acid (MPA) sensitivity. Sensitivity to MPA for examined Pol II TL mutants derives from

altered transcription initiation at the IMD2 promoter [37,56], whose transcription is controlled

through use of multiple start sites [57,58], and whose expression is required for cell resistance

to MPA [59]. We have linked Pol II catalytic activity to the ability to induce IMD2. Increased

activity Pol II alleles (GOF) fail to induce IMD2 in the presence of MPA due to aberrant tran-

scription start site selection [37,56]. By screening for these three transcription-related pheno-

types, we isolated 1166 candidate mutants (S1 Table), which included 154 singly-substituted

and 386 multiply-substituted variants.

To further distinguish mutants, we examined 50 single substitution variants under various

stress conditions to screen for conditions that could induce allele-specific phenotypes (Fig 2B,

S2 and S3 Figs). We observed that media containing caffeine, hydroxyurea, MnCl2, formam-

ide, cycloheximide, or NaOH induced allele-specific sensitivity or resistance, while media con-

taining ethanol, benomyl, HCl or NaCl showed fewer allele-specific effects (Fig 2B, S2 and S3

Figs). Therefore, in our high-throughput approach, we phenotyped TL variant library under

our established conditions (medium lacking lysine (Spt-), medium containing MPA (MPAS)

High-Resolution Phenotypic Landscape of the RNA Polymerase II Trigger Loop
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or medium containing galactose (GalR)) and appropriate media for the stress conditions

empirically determined to discriminate among our pilot alleles. Phenotypic scores were esti-

mated from the change of allele frequency normalized to WT, as is standard in mutational

scanning studies [44–47]. Quantitative phenotypic scores of the 50 mutants from the high-

throughput phenotyping were consistent with semi-quantitative growth scores derived from

standard phenotyping (Fig 2C, S2–S4 Figs), validating our approach.

The Pol II TL fitness landscape

The TL is highly conserved, especially in the NIR, the loop tip residue (Rpb1 G1088) and for

several TL C-terminal residues (Fig 3A). Highly-conserved residues are predicted to be critical

for protein function, thus substitutions during evolution are expected to confer fitness defects

and be selected against. We first sought to evaluate general fitness defects of observed TL

Fig 2. Quality controls for the TL high-throughput phenotyping approach. (A) Comparison of estimated template switching

frequencies in regular and emulsion PCR conditions. Template switching was estimated by the ratio (FreqDouble) / (FreqSingle1 ×
FreqSingle2) for all the possible double mutants combined from five spiked-in single mutants. (B) Additional growth conditions were

employed to increase resolution for distinguishing similar TL alleles. Growth scores for 50 individually isolated TL mutants (y axis) under

12 growth conditions (x axis), as determined by standard serial dilution plate phenotyping (S2 and S3 Figs), are shown as a heatmap.

Positive values shown in red indicate increase in allele frequency relative to WT and negative values in blue indicate decrease in allele

frequency relative to WT. (C) High-throughput quantitative phenotyping results are consistent with individual phenotyping of variants. Top

heatmap shows qualitative growth scores (as in Fig 2B) of 50 individually phenotyped TL variants on the y axis (S2–S4 Figs) with

selective conditions on the x axis. Deep sequencing results for the same mutants using median of fitness defects from three independent

high-throughput screens are shown in the middle panel. Pearson r calculated to show the correlation between each condition from the

two datasets is shown in the bottom panel.

doi:10.1371/journal.pgen.1006321.g002
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Fig 3. The TL fitness landscape distinguishes highly conserved TL residues and reveals high mutational sensitivity in the nucleotide

interacting region (NIR) and the Alanine-Glycine linker. (A) Conservation heatmap of TL residues in eukaryotic RNA polymerases. The conservation

scores were extracted from a multiple sequence alignment, including 182 Pol II, 59 Pol I, and 111 Pol III sequences utilizing the conservation metric from

Jalview 2.8 version 14.0 [91]. (B) Fitness defects of TL variants in the heterozygous state are shown as a heatmap. Unavailable data points are denoted by

filled grey squares. WT residues at indicated positions are denoted by black boxes. Surface representation (bottom panel) of the TL structure (PDB:2E2H)

is shaded by the median fitness value for all available variants at each position, in a gradient of white (rare defects) to blue (common defects). The position

of the matched GTP substrate is shown in orange stick representation. (C) General fitness defects of TL variants upon removal of WT RPB1. Fitness

defects predicted to result in lethality shown in black. Surface representation (bottom panel) of the TL structure is shaded by the median fitness value of all

available variants at each position, in a gradient of white (rare defects) to blue (common defects). (D) Complementation abilities of variants in the difficult-

to-substitute TL positions (L1081, A1087, G1088) or unexpected TL variants (H1085L) assayed by plasmid shuffling of individual strains. Ability to grow on

SC-Leu+5FOA indicates complementation of essential functions of RPB1. SC-Leu medium is the control state where WT RPB1 is present. (E)

Transcription-linked phenotypes of viable substitutions in difficult-to-substitute residues (L1081M, A1087V) or a TL variant with unexpectedly mild fitness

defects (H1085L).

doi:10.1371/journal.pgen.1006321.g003
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singly-substituted variants (termed the “fitness landscape”), both in the presence of WT RPB1
(Fig 3B) and upon the removal of WT RPB1 (Fig 3C). Notably, TL NIR and loop tip substitu-

tions conferred large fitness defects in general, while most perturbations in the similarly con-

served C-terminal residues did not confer severe growth defects (Fig 3B and 3C). This

observation highlights that conservation does not necessarily reflect sensitivity to perturba-

tions, and that the TL fitness landscape can further distinguish extremely highly conserved TL

residues, as discussed below:

First, substitutions in the NIR (Rpb1 1077–1085) generally conferred both fitness defects

(Fig 3C) and apparent dominance (Fig 3B). Observed fitness defects were consistent with pre-

vious observations that several NIR mutants render Pol II slow in elongation in vitro and cause

fitness defect in vivo [12,37]. The observed dominance for many NIR variants was consistent

with TL variants being assembled into Pol II complexes that interfere with WT Pol II function,

likely through clashes with WT Pol II on genes in vivo. Second, substitutions within the ala-

nine-glycine linker (Rpb1 1087–1088) almost universally conferred lethality or severe growth

defects. A Pol II structure with a closed TL [4] reveals that A1087 and G1088 are in a tight

pocket between the funnel and bridge helices, presumably necessitating small side-chain resi-

dues (S5A Fig). To determine the extent of spatial constraint, we individually assessed the fit-

ness of AG swapping variants, and small hydrophobic valine substitutions (Fig 3D). Notably,

all the swapping variants (A1087G, G1088A and A1087G/G1088A) were lethal (Fig 3D).

While G1088V is lethal, A1087V is severely sick but viable (Fig 3D), suggesting extremely

high, but differential spatial constraint but differential tolerability for the two residues. This

pocket/TL interaction is only observed in the closed TL [4] but not in any of the open states

[60], suggesting function in stabilizing the active, closed TL conformation for promoting catal-

ysis. Consistent with disruption of the pocket/TL interaction and the closed TL state, we

observed genetically LOF phenotypes for A1087V (GalR, slight MPAR) (Fig 3E). Finally, substi-

tutions in the conserved C-terminal helix, though not strongly defective in general fitness, are

likely to have transcription defects, based on our prior studies, and were further characterized

(discussed below).

Novel TL NIR mutants allow mechanistic insights

The TL fitness landscape identified residues highly sensitive to perturbations, while also reveal-

ing variants in NIR residues previously known to be difficult to viably substitute. We highlight

L1081 and H1085 as two examples. L1081 directly interacts with the nucleobase moieties of

matched NTPs [4], and equivalent residues in Eco, Taq and Pfu RNAPs are important for sub-

strate selection or catalysis [7,9,10]. L1081 is the most sensitive residue to perturbations among

the hyper-conserved NIR. All previously tested L1081 variants were lethal [37], though viable

substitutions were identified for all other NIR residues of interest. Furthermore, the GOF allele

E1103G can generally suppress lethal substitutions for most NIR residues, but could not for

tested L1081 substitutions [37]. In our TL fitness landscape, almost all L1081 variants were

indeed predicted to be lethal based on our fitness threshold (Fig 3C). L1081M conferred a

severe growth defect, but was predicted to be just above the viable threshold (Fig 3C). To vali-

date this prediction, we constructed L1081M for direct analysis, and found that L1081M was

indeed viable yet severely sick (Fig 3D). Furthermore, L1081M conferred GalR and slight

MPAR phenotypes, consistent with other LOF mutants (Fig 3E). Eukaryotic multi-subunit

RNA Polymerases share a stringent evolutionary requirement for L at this TL position, while

bacterial and archaeal lineages show both M and L variants. Consistent with evolutionary tol-

erance of variation within bacterial and archaeal lineages, the Taq RNAP M1238L variant

shows near WT activity for substrate selection and catalysis in vitro [9]. The severe growth

High-Resolution Phenotypic Landscape of the RNA Polymerase II Trigger Loop
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defect of L1081M highlights epistasis within Sce Pol II and likely eukaryotic RNAP lineages,

which imposes a stringent requirement for Leucine at this position.

H1085 interacts with the β-phosphate of the matched NTP [4], and has been implicated in

substrate selection, catalysis, intrinsic cleavage and PPi release [29,61]. We previously con-

structed several H1085 variants (A/N/D/F were lethal, K/R/W/Y caused severe growth defects,

Q caused slight growth defect [12,37,41]), suggesting that some polar or positively charged res-

idues, but not a hydrophobic phenylalanine or alanine, could partially complement loss of the

histidine [37]. Here, we found that H1085L was viable and healthy in the fitness landscape (Fig

3C), and validated it with phenotypic analyses of a reconstructed H1085L allele (Fig 3D).

While H1085L conferred slight MPAR and GalR phenotypes, consistent with other LOF

mutants (Fig 3E), it also conferred a slight Spt- defect, suggesting distinct defects from most

other NIR mutants and all known LOF mutants [37]. This observation alters our understand-

ing of the likely bounds of active site chemistry (see discussion).

There are at least three distinguishable TL mutant classes

The overall TL fitness landscape revealed the essentiality of almost all single substitution TL

variants in standard growth medium, but could not indicate the nature of transcriptional

defects, as we had previously found that both LOF and GOF alleles conferred growth defects.

Therefore, we sought to determine the phenotypic outcome of the TL variants for the tran-

scription-related GalR, MPAS and Spt- phenotypes and a variety of allele-distinguishing stress

conditions (investigated earlier in Fig 2A). Here, we term this response profile as the “pheno-

typic landscape”, as it distinguishes the TL mutants with presumably distinct transcription

defects, in contrast to the general “fitness landscape” described above.

Hierarchical clustering of the phenotypic landscape for 412 TL variants passing fitness fil-

ters revealed three major mutant classes with distinct features (Fig 4A and 4B). Class 1

mutants generally conferred a strong GalR phenotype yet were Spt+, and in some cases were

also slightly MPAR relative to WT, consistent with previously characterized LOF mutants.

We also identified high formamide sensitivity as a new signature phenotype for Class 1

mutants. Class 2 mutants showed generally weaker GalR, slight formamide resistance, and

did not confer strong phenotypes otherwise, representing a novel TL mutant class yet to be

biochemically characterized. Class 3 mutants generally conferred GalR, Spt- and MPAS phe-

notypes, consistent with previously characterized GOF mutants. Mn2+ hypersensitivity

(MnS) was correlated broadly with Spt- and MPAS phenotypes, suggesting a relationship

among these phenotypes, and consistent with previous in vitro biochemical and in vivo phe-

notypic data for a subset of known GOF mutants [62,63]. Notably, our spike-in LOF

(F1086S, H1085Q and H1085Y) and GOF mutants (E1103G and G1097D) co-clustered with

Class 1 and Class 3 mutants, respectively.

Functional contribution of TL residues in different states and substrate-

induced TL closing mechanism

The distributions within different mutant classes predict distinct functional contributions of

TL residues to TL dynamics. Perturbations predicted to bias the TL towards the active, closed

TL state have been shown to result in GOF, whereas destabilization of the closed TL state gen-

erally leads to LOF [8,12,13,17,37]. Therefore, distributions of Class 1 (LOF) and Class 3

(GOF) mutants predict alterations to TL dynamics, as follows:

Class 1 (LOF) mutants included most variants from F1086, V1089, V1094 and P1099 (Fig

4C, left), suggesting important functions of these residues in stabilizing the closed TL.

F1086 and V1089 are both proximal to multiple funnel helix residues when TL is closed

High-Resolution Phenotypic Landscape of the RNA Polymerase II Trigger Loop
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[4,18], while F1086 was proposed to orient H1085 for correct substrate interaction [18].

Therefore, alteration of these interactions may disrupt the closed TL state and result in LOF.

Alternatively, recent Pol II structures with open TL revealed potential function of

F1086-V1089 interaction in TL closing dynamics (S5B Fig) [60]. V1089 forms a backbone-

backbone hydrogen bond with F1086 when TL is open, while its side chain flips towards the

Fig 4. Three distinct TL mutant classes, revealed from TL phenotypic landscape, have specific distribution on the TL structure and distinct

stress response profiles. (A) Hierarchical clustering of 412 single TL variants’ (x axis) phenotypes (calculated as in Fig 1C) under 14 different conditions

(y axis) reveals distinct mutant classes. Positive (yellow) and negative (blue) fitness scores are shown as a heatmap. Mutant classes (clusters) are

annotated by colored lines beneath the heatmap. (B) Distribution of three major mutant classes is shown in a single substitution variant heatmap. Class 1

(genetic GOF) mutants are shown in green; Class 2 mutants are shown in brown and Class 3 (genetic LOF) mutants are shown in blue. (C) Distribution of

different mutant classes on the TL structure. TL is shown in surface and colored in the gradient from white to red by the number of clustered mutants at

each position. (D) Differential stress responses in genetic GOF and LOF mutants. Genetic GOF mutants are more sensitive to Mn2+, caffeine and

cycloheximide, whereas genetic LOF mutants are more sensitive to formamide. **p<0.01, ****p<0.0001 (Two-tailed unpaired t-test). (E) Differential

Mn2+ sensitivity and its suppression by Mg2+ for selected TL variants representative of mutant classes. (F) Mn2+ effects on different mutants’ transcription

start sites (TSSs) distribution at ADH1, determined by primer extension analysis. TSSs at ADH1 are distributed in a range of positions and were divided

into six bins for quantitation: from upstream (left) to downstream (right). Change of TSSs (normalized to untreated WT) is calculated by the change in TSS

fraction for each bin relative to the WT distribution. Average and standard deviation of three experimental replicates are shown as a bar graph with error

bars.

doi:10.1371/journal.pgen.1006321.g004
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F1086 to form a hydrophobic interaction when TL is partially closed, suggesting that this

side-chain interaction may be important for particular TL states (S5B Fig), though it was

not discussed in previous molecular dynamics (MD) studies [18]. Furthermore, V1094 was

observed to be proximal to the BH residue K830 in the closed TL state [4]. An interaction

between K830 and V1094 side-chains could be counter-intuitive and possibly undervalued.

However, neutralization of lysine’s positive charge through ionic interactions (such as

D836) can promote hydrophobicity of the lysine side chain [64], supporting the observed

K830-V1094 interactions in the TL closed state (S5C Fig). Most variants in V1094 are LOF

(Fig 4B), consistent with disruption of K830-V1094 interaction and concomitant destabili-

zation of the closed, active TL conformation.

Models for NTP substrate-induced TL closing remain largely untested [4,15–18]. A recent

Pol II structure [60] exhibiting an open TL state led to explicit implication of a hydrophobic

pocket formed by TL residues (A1076, M1079, T1080, G1097 and L1101) and other TL proxi-

mal residues (I837, L841, V1352, V1355 and I1356) in substrate-induced TL-folding (S5D

Fig). Q1078 recognition of the 2’-OH of a matched NTP substrate was proposed to promote

release of the adjacent residue M1079 from the hydrophobic pocket, triggering TL closing

[60,65]. Consistent with disruption of this observed pocket and concomitant destabilization of

the inactive open TL state, A1076T, a pocket variant previously isolated as genetically GOF,

conferred increased transcription activity in vitro (Fig 5B). Notably, GOF phenotypes were

observed for a large number of variants in pocket residues. Among them, we observed almost

universal GOF phenotypes for G1097 variants, but not the extreme fitness defects found for

the previously observed GOF variant G1097D. We individually phenotyped ten G1097 vari-

ants from the traditional screening and confirmed this observation (S5E Fig). Together, these

results are consistent with the hydrophobic pocket stabilizing the inactive, open TL and pro-

viding a plausible mechanism for substrate-induced TL closing. A single residue, M1079, can

act as a linchpin for the entire TL through a network of interactions.

Identification of stress conditions that alter transcription in vivo

GOF and LOF TL variant classes have distinct phenotypic profiles. In general, compared to

LOF variants, GOF mutants are more sensitive to Mn2+, caffeine and cycloheximide yet gener-

ally resistant to hydroxyurea and formamide (Fig 4D). The allele-specific Mn2+ response

amplified our previous observation that the GOF allele E1103G was highly sensitive to Mn2+

while the LOF allele H1085Y was resistant to, or even slightly suppressed by, Mn2+ (while the

Mn2+ effects on both mutants were suppressed by Mg2+ supplementation) [61]. The TL pheno-

typic landscape showed that this Mn2+ response was general and class-specific for GOF and

LOF mutants (Fig 4D). To validate this observation, we individually analyzed seven additional

variants (two LOF and five GOF) for Mn2+ sensitivity in the presence or absence of Mg2+ sup-

plementation. Notably, all tested LOF mutants conferred Mn2+ resistance while all tested GOF

mutants conferred Mn2+ hypersensitivity (Fig 4E). Allele-specific Mn2+ responses could be

suppressed by Mg2+ supplementation (Fig 4E). Mn2+ has been shown to stimulate transcrip-

tional activity while compromising fidelity in vitro [62,63]. Our observations suggested that

Mn2+ may suppress LOF mutants by stimulating transcriptional activity yet exacerbate GOF

mutants by further decreasing their already compromised transcriptional fidelity in vivo
[12,13]. Increased Pol II catalytic activity correlates strongly with upstream transcription start

site (TSS) shifts in vivo [37,41]; therefore we assayed for TSS alterations upon Mn2+ treatment.

Primer extension analysis at ADH1 revealed that Mn2+ treatment shifted the TSS distribution

upstream, and further exacerbated the upstream shift conferred by E1103G (Fig 4F). Deletion

of PMR1, the golgi Mn2+ export channel, causes accumulation cytosolic Mn2+ [66,67], and can
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be used to alter Mn2+ levels apart from supplementation of the medium. Our prior high

throughput genetic interaction analyses of Pol II mutants showed that pmr1Δ strongly inter-

acts with Pol II mutants in a highly allele-specific fashion [41], suggesting an intimate relation-

ship between increased cellular Mn2+ levels and altered transcription activity. Here we find

that pmr1Δ also shifted ADH1 TSSs upstream (Fig 4F). While Mn2+ may have other indirect

effects on Pol II mutants, these observations support direct effects of Mn2+ on Pol II transcrip-

tion activity in vivo, raising the possibility that other allele-specific stress conditions (e.g. form-

amide) may also directly alter transcription in vivo.

Fig 5. Functional contribution of TL tip and Funnel Helix α-21 to proper TL dynamics. (A) Observed and predicted interactions between TL and TL-

proximal domains. TL schematic is shown with residues identified by single-letter amino acid code and positions of interest annotated. Positions of GOF

mutants isolated in our screen, along with the positions for a subset of previously isolated TL-proximal GOF mutants, are color coded in green. Observed

TL interactions with other Rpb1 domains from structures or simulation studies are shown as grey dashed lines. (B) Maximal in vitro elongation rates

(nucleotides/second) of Pol II WT and genetic GOF mutants S713P, I1327V and A1076T. (C) Observed interactions between open TL tip and TL adjacent

charged residues (PDB: 5C4X). Funnel Helix refers to the Rpb1 α-21 alpha-helix. (D) Genetic interactions between the TL tip and proximal Rpb1 domains.

Schematics of the TL and adjacent domains are shown in lines, with positions of interest shown in single-letter amino acid code. Substituted residues are

shown in grey, with substituting amino acids shown in white, blue or green filled circles based on single substitution phenotypes (S8F Fig). Double

substitution phenotypes are shown as colored lines connecting the two relevant single substitutions. Some sets of similar interactions were grouped into

nodes to reduce complexity in interaction lines.

doi:10.1371/journal.pgen.1006321.g005
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Functional contributions of the TL tip region

The TL tip region (Rpb1 1090–1096) is a random-coil region that forms an α-helical structure

when the TL is closed, and helical formation has been proposed to assist TL closing [8,18,43].

Mejia et al characterized two Eco RNAP TL tip mutants I1134V and G1136S (Equivalent to Sce
Pol II V1094 and S1096) with decreased or increased transcription activity, respectively [43].

These results were interpreted as I1134V and G1136S substitutions decreasing or increasing

helical propensity and thus disfavoring or favoring TL closing [43]. Sce Pol II contains each of

these variants as the WT residue, therefore individual substitutions to the E. coli variants

(V1094I and S1096G) would be predicted to confer opposite phenotypes under the helical pro-

pensity model. However, V1094I and S1096G did not confer phenotypes clearly consistent

with either GOF or LOF (Fig 4B), failing to support the helical propensity model. We asked if

the proposed correlation from Eco RNAP studies was a general property for TL substitutions

in this region, if extended to more than two substitutions. Our data, calculated from 122 vari-

ants, fail to support a general correlation between helical propensity and predicted catalytic

activity for Pol II substitutions in this region (S8A Fig). As discussed above, V1094 may be

involved in interaction with BH residue K830, and LOF in most V1094 variants may result

from disrupted BH/TL coordination. Therefore, we repeated the analyses excluding V1094

variants, yet still failed to observe a correlation (S8A Fig). We cannot rule out contributions of

helical propensity in this region to TL function; however, we did not find compelling or wide-

spread evidence for it.

A number of recent studies have suggested potential functions of the TL tip region in regu-

lating TL dynamics [18,60,68]. In a simulated TL closing process, positively charged K1092

and K1093 were predicted to interact with several TL-proximal residues, and some of the pre-

dicted interactions were validated by subsequent Pol II crystal structures with alternative open

TL states (Fig 5A). These interactions were proposed to stabilize the open, inactive TL state,

and thus alanine (K1092A, K1093A) or charge reversing substitutions (K1092D/E, K1093D/E)

were predicted to disrupt the inactive TL open state and result in GOF [18]. Contrary to this

prediction, none of the above substitutions conferred GOF (Fig 4B). Networks of residue-resi-

due interactions near the TL tip were observed [18,60], some of which may be functionally

overlapping or redundant, adding complexity to simple models. Our previous point mutant

epistatic miniarray profile (p-EMAP) studies predicted two TL-proximal mutants (S713P and

I1327V) to be GOF, which we confirm here (Fig 5B), suggesting that perturbation near the TL

may interfere with native interactions, or create new ones, to destabilize the open TL. The

tested variants here also extend the correlation between genetically predicted GOF and

increased activity in vitro (Fig 5B). Additionally, several TL tip variants with bulky side chains

(K1092W, K1093Y, K1093M) conferred GOF phenotypes (Fig 4B). Given the complexity and

observation of both GOF/LOF phenotypes, we wished to further assess the functions of these

residue-residue interactions.

Functional interactions among residues can be explored by the similarity between single

substitution variants and the phenotypes of double mutants. We first sought evidence that var-

iants in potential TL interaction partners could confer similar GOF or LOF phenotypes. In the

simulation, K1092 switched interaction partners between two funnel helix residues D716 and

E712 [18], and other charged residues were either observed or simulated to interact with

S1091, K1092 or K1093 (Fig 5A). Therefore, we constructed a panel of mutants in the residues

D716, E712, R1281, E1307, and D1309 for phenotypic analyses. Notably, we observed GOF

phenotypes (MnS and MPAS) in E1307K but not E1307A, suggesting that E1307K gained an

interfering interaction to destabilize the open TL state. Furthermore, we observed the GalR

phenotype in D716A (Fig 5D, S8F Fig), consistent with LOF. D716K and E712A were lethal
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(Fig 5D, S8B and S8C Fig), and their defects were further explored by double mutant analyses

(discussed below). Together, both GOF and LOF variants were observed in the TL tip proximal

residues, consistent with roles in regulating TL dynamics.

To further dissect functional relationships, we phenotyped double mutants from potential

interaction partners, and observed a number of genetic interactions (Fig 5D, S9 Fig). First,

GOF and LOF mutants were mutually suppressive when combined, and most TL mutants

from same biochemical class (GOF/GOF or LOF/LOF) showed additive effects (synthetically

sick or lethal). The observed class-specific genetic interactions are similar to the previously

reported intra-TL genetic interactions [37], consistent with alteration of TL function in TL tip

proximal variants. Furthermore, K1092A/D single substitutions did not confer transcription-

related phenotypes, but were able to suppress the E1307K GOF phenotypes. This observed

epistasis suggested that loss of K1092 relieved a putative gain of interaction in E1307K (dis-

cussed above). Finally, E712A lethality was fully suppressed by K1092A, K1092D or K1093M,

adding an additional instance of epistasis. A model to explain this complex genetic relationship

is that loss of native E712-K1092 interaction re-directed K1092 towards an alternative interac-

tion or strengthened an existing interaction with D716, causing lethality. Alteration of TL tip

interaction potential through K1092/1093 substitutions relieves this allele-specific effect.

Taken together, the observed allele-specific and epistatic interactions between TL tip and prox-

imal residues suggest a highly complex genetic network of residues controlling TL dynamics,

and illustrate how individual residues might constrain or allow diversification of the TL

through evolution.

Functional interplay of the TL and Bridge helix (BH) domains

The BH is a strikingly conserved structural domain of multi-subunit RNA polymerases span-

ning the wide central cleft between polymerase “jaws”, adjacent to the active site and proximal

to the TL [1,69,70]. Although the BH is a straight helix in most published structures [1–6],

some Thermus thermophilus RNAP structures revealed a bent BH conformation proposed to

support translocation [69]. This BH bending mechanism was supported by a number of simu-

lation studies but has never been directly tested [1,11,25,69,70]. In the archaeal Mja RNAP,

proline substitutions at two hinge-proximal residues M808 and S824 (equivalent to Sce Rpb1

M818 and T834) resulted in GOF, suggesting kinking by the proline substitution results in

increased translocation or catalysis [11,71]. Furthermore, Mja GOF TL and BH mutants were

not additive when combined, suggesting mutual dependence on BH and TL functions [11].

To explore the functional consequence of BH kinking in Sce Pol II, we constructed and phe-

notyped BH mutants analogous to the characterized GOF and LOF variants in Mja RNAP.

Notably, Sce T834 and other BH C-terminal hinge substitutions conferred in vivo phenotypes

consistent with the altered transcriptional activities in Mja RNAP (S10F Fig), and we directly

confirmed the altered activity of T834 variants in vitro (Fig 6A). In contrast, substitutions in

M818, a predicted BH N-terminal hinge, showed defects deviating from expected conservation

of function. M818P caused lethality, and could not be suppressed by any tested TL variants,

precluding us from classifying it (S10A Fig). Furthermore, M818S and M818Y, although via-

ble, did not confer any clear phenotypes (S10F Fig). Therefore, we further assessed the func-

tional interplay between BH and TL by double mutant analyses, including BH variants

(M818S/Y, T834A/P) and TL substitutions covering a range of altered transcriptional activities

(Fig 6B–6E). Notably, the GOF BH variant T834P, along with M818S and M818Y, were mutu-

ally suppressive with biochemically strong LOF TL variants (Fig 6B, 6C and 6E), revealing

both additive behavior between BH and TL for some combinations, and cryptic phenotypes

for M818S/Y in others. The LOF BH variant T834A also suppressed GOF TL variants
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(Fig 6D). However, the additive interactions (exacerbation, synthetic lethality) we observed for

GOF BH and TL double mutants were in contrast to the epistasis for Mja RNAP [11].

Multiple lines of evidence suggested additional, specific defects exist in BH mutants, beyond

simple cooperation with the TL. First, M818P lethality could not be suppressed by any tested

TL variants (S10A Fig), which cover a wide range of transcriptional activities. Second, suppres-

sion between BH and TL mutants of different biochemical classes (GOF/LOF) was partial and

not as strong as the previously observed intra-TL suppression. Third, GOF M818S, M818Y

and T834P variants appeared to exhibit activity-dependent genetic interactions with TL vari-

ants. BH GOF variants suppressed strong LOF TL variants Q1078S and H1085Y but failed to

suppress, or even exacerbated slightly LOF TL variants H1085Q and F1086S (Fig 6B, 6C and

6E), consistent with conditional epistasis, where GOF activity of BH variants can suppress

Fig 6. Functional interplay between the TL and Bridge Helix (BH). (A) Maximal in vitro elongation rates (nucleotides/second) of BH variants T834A

and T834P. (B) Genetic interactions between BH M818S and TL substitutions. M818S suppressed (yellow lines) the strong LOF TL variants (dark blue)

but not the slight and moderate LOF TL variants (light blue), and showed synthetic sickness (red lines) with the GOF TL variants (green). (C) Genetic

interactions between BH M818Y and TL substitutions. Similar to M818S genetic interactions with TL variants (Fig 6B), M818Y suppressed (yellow lines)

the strong LOF TL variants (dark blue) but not the slight and moderate LOF TL variants (light blue), and showed synthetic sickness (red lines) with GOF TL

variants (green). (D) Genetic interactions between BH T834A and TL substitutions. T834A suppressed (yellow lines) the GOF TL variants and was

synthetic lethal with all the tested LOF TL variants (blue). (E) Genetic interactions between BH T834P and TL or BH. Similar to M818 variants (Fig 6B, 6C),

T834P suppressed strong and moderate LOF TL variants (dark blue) but was synthetic sick with weak LOF TL variants (light blue), while synthetically

lethal with GOF TL variants (green). T834P was also suppressed (yellow line) by two LOF BH mutants Y836A/H.

doi:10.1371/journal.pgen.1006321.g006
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either specific TL variants or otherwise exert their effects in specific contexts. Finally, recent

modeling studies predicted that the BH residue Y836 assists Pol II forward translocation [72]

by interacting with the DNA:RNA hybrid. Y836A/H conferred GalR phenotypes, consistent

with LOF and compromised translocation (S10F Fig). Notably, GOF T834P was suppressed by

Y836A/H (Fig 6E, S12B Fig), consistent with T834P conferring a TL-independent fast translo-

cation defect, suppressible by Y836A/H.

Context dependence of TL function

We previously observed that E1103G, a GOF allele in Sce Pol II, caused LOF in Pol I, highlight-

ing divergent contributions of active site residues in different enzymatic contexts [42]. We also

observed that the Pol I TL [42] and L1081M (this study) were functionally impaired in the Pol

II context. We next sought to determine the functional compatibility of other evolutionary TL

variants in the Sce Pol II context, using our fitness and phenotypic landscape (Fig 7). Most

tested evolutionary TL variants did not confer fitness defects, with several exceptions (Fig 7A).

Furthermore, some variants, although compatible for general growth, conferred transcription-

related phenotypes and could be further classified by our phenotypic landscape (Fig 7B). These

observations further suggest that the evolution of TL function is shaped by likely epistasis

between the TL and proximal domains.

We next asked what substitutions might underlie the large difference in compatibility of the

Sce Pol I TL (versus the Sce Pol III TL) within Pol II [42]. From our phenotypic landscape,

although many individual Sce Pol I and Pol III TL substitutions appeared to be compatible,

functionally impairing variants were identified (Fig 7B). The yeast Pol III TL contains Pol II

GOF (A1076G) and LOF (N1082K) variants, both of which hypothetically could be mutually

suppressive, resulting in close to WT activity in the Pol II context [42]. The Pol I TL contains

three Pol II LOF substitutions (V1089H, A1090G and S1091A). The net incompatibility of Pol

I TL is consistent with additive defects of the three LOF variations, given that most TL LOF

combinations show additive effects [37]. Since three evolutionarily observed variants with

LOF phenotypes were all localized in the TL tip, we examined the difference between Pol I and

Pol II structures for the TL tip proximal domains [60,73]. The Pol I funnel helix appears to

impose less constraint than the Pol II funnel helix (Fig 7C), suggesting that Pol I controls its

TL with a distinct network of interactions. In all, our mutational data, together with the recent

Pol I crystal structure, reveal enzyme-specific mechanisms to control a highly conserved

domain at the heart of eukaryotic transcription.

Discussion

The ability of the TL to fold into multiple conformations and the dynamic conversion between

these states are critical for its functions. Previous studies from us and others demonstrate that

TL function is delicately balanced, such that perturbations result in either increased or

decreased catalytic activity and altered translocation dynamics. Distinct consequences for tran-

scriptional activity manifest in vivo as what we term LOF and GOF phenotypes. In this study,

we have advanced our genetic framework with which to dissect Pol II mechanisms. From our

phenotypic landscape, we assessed the functional contributions of almost all TL residues to fit-

ness in S. cerevisiae under multiple conditions. Our data indicate that both intra-TL interac-

tions and TL interactions with nearby domains (e.g. BH and funnel helices) are critical for TL

function. This conclusion is also supported by recent work on Rpb9 organizing the TL indi-

rectly through an Rpb1 TL-adjacent α-helix 21 (one of the funnel helices, discussed below)

[68], interactions between the TL and F-loop regions in bacteria [31], and predictions of TL-

proximal variants as GOF from our previous pEMAP analysis [41] (validated in this study).

High-Resolution Phenotypic Landscape of the RNA Polymerase II Trigger Loop

PLOS Genetics | DOI:10.1371/journal.pgen.1006321 November 29, 2016 16 / 28



Our system allows efficient analysis of a large number of variants to evaluate accumulating

computational [18,24,25,74] and structural [4,5,27,60] predictions for interactions within the

TL and from without.

The major function of the TL is to link substrate recognition to catalysis, while it is also pro-

posed to gate translocation such that translocation probability is linked to phosphodiester

bond formation. Critical to this recognition is that a substrate be positioned correctly by base-

pairing to the DNA template, and that the 2’-OH allows NTPs to be selected over 2’-dNTPs by

the TL residue Q1078 [4,9,28]. We have proposed that the Q1078-substrate interaction releases

the adjacent M1079 from its intra-TL hydrophobic pocket to trigger TL closing [60]. In this

study, we find a great number of variants within the pocket residues A1076, M1079, G1097,

L1101 to cause GOF phenotypes, providing evidence that disruption of the hydrophobic

pocket destabilizes the open, inactive TL state. Additionally, while the TL shows incredibly

Fig 7. Phenotypic analyses of evolutionary variants suggest context-dependent functions for many TL residues. (A) General growth fitness

defects of the TL single-substituted variants observed in the TL across Pol I, II, III evolution including 38 Pol II, 42 Pol I and 42 Pol III amino acid variants

relative to Sce Pol II. (B) Evolutionary TL variants in three mutant classes from the TL phenotypic landscape (Fig 4A and 4B). Existing variants from Sce

Pol I are colored in blue, and existing variants from Sce Pol III are colored in red. Sce Pol I has three substitutions (V1089H, A1090G and S1091A) that

cause LOF in the Pol II context; Sce Pol III has one substitution (A1076G) classified as GOF and one substitution (N1082K) classified as LOF. (C)

Difference in positioning of funnel helices (relative to TL) in Pol I and Pol II. Cartoon representation of TL/funnel helices from Pol I and Pol II are shown in

cyan and yellow, respectively (PDB: 5C4J and 2VUM).

doi:10.1371/journal.pgen.1006321.g007
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high evolutionary conservation for a number of residues, prior work indicated alteration of

ultra-conserved residues (eg. E1103 in Pol II, E1224 in Pol I) in different RNA polymerases

could have distinct effects, suggesting the importance of the evolved context within each

enzyme [12,37,42]. Here, we evaluate many evolutionarily observed eukaryotic TL variants in

the Sce Pol II system, and discover a number of functionally impaired TL variants. Our results

highlight that TL proximal domains may impose constraint and also allow functional diversifi-

cation in the molecular evolution of the highly conserved TL by epistatic interactions.

One example of a proximal region, the so-called “funnel helices” (Rpb1 α-20 and α-21) or

“rim helices” in the bacterial RNAP literature, shows both evolutionary conservation and func-

tional diversification. Funnel helices are both surface exposed and proximal to the TL [60,75].

Multiple pieces of evidence from three mutations in α-21 suggest roles for funnel helices in

controlling TL function. One, the C4 allele of Drosophila melanogaster, corresponding to

R726H in Sce Rpb1, confers a slow elongation rate in both Drosophila (in vitro) and human

Pol II enzymes (in cells) [76,77]. The molecular mechanism of this allele is not currently

known, but based on another α-21 substitution (G730D) identified in yeast, we would specu-

late C4 enzymes have altered TL dynamics. rpb1-G730D was identified in yeast twice, in inde-

pendent genetic screens [78–80]. rpb1-G730D is catalytically slow [81], confers a severe

growth defect but can be suppressed by a GOF mutant, rpb9Δ [68,78]. In fact, rpb1-G730D
behaves as if it is incompatible with Rpb9 [68]. Recent work from the Peterson lab strongly

supports a model where Rpb9 normally coordinates a loop of Rpb1 –the “anchor loop”–to

appropriately interact with the TL [68]. When Rpb9 is removed, anchor loop-TL interactions

are disrupted, and the open conformation of the TL is destabilized. In rpb1-G730D, structural

perturbations are proposed to alter Rpb9-Rpb1 interactions such that they interfere with the

TL, therefore rpb1-G730D is incompatible with Rpb9. Removal of Rpb9 or alteration of specific

Rpb9 residues that organize the Rpb1 anchor loop relieve the incompatibility between

rpb1-G730D and the TL. Third, we previously identified rpb1-S713P, a substitution just proxi-

mal to the anchor loop (between α-20 and α-21), as conferring gene expression, genetic inter-

action, and initiation phenotypes indistinguishable from GOF TL mutants [41]. Here we show

that rpb1-S713P also confers increased biochemical activity, similar to both TL GOF alleles and

anchor loop GOF alleles. We propose that rpb1-S713P, through constraints of the proline on

structure, alters the anchor loop and therefore TL dynamics. It is conceivable, given that the

secondary channel and funnel helices are accessible to factors, factor binding might also be

communicated to the TL from distal sites. In addition to the three previously identified

mutants, we utilized a new set of TL mutants to assess genetic interactions between the TL and

the funnel helix α-21, and discover epistasis between K1092A/D (TL) and a lethal mutant

E712A (funnel helix) along with multiple allele-specific genetic interactions (Fig 5D). We have

suggested a more relaxed control mechanism in the Pol I compared to Pol II (Fig 7C). Taken

together, funnel helices may serve as a regulatory hotspot for direct or allosteric control of the

Pol II active site through the TL. While structurally conserved, evolutionary diversification of

sequence may allow distinct interactions with the TL in different msRNAPs.

The characterization of the unexpectedly healthy H1085L variant clouds the issue of how

H1085 functions in substrate selection and catalysis. H1085 interacts with the substrate NTP

through salt bridge and hydrogen bond [4], and previous simulations with limiting H1085 var-

iants predicted the hydrogen bonding to be critical for maintaining substrate interaction [74].

The discovery of H1085L argues that productive substrate interactions may be supported by

entirely different chemistry, although we cannot rule out the possibility that H1085L redirects

substrate interactions to an alternative residue. Furthermore, H1085 variants may have multi-

ple defects in NAC, such as substrate selection [12], catalysis [12,61], intrinsic cleavage [61]

and PPi release [20,21], and whether or not H1085 or analogous residues act as a general acid
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remains controversial in different RNAPs [4,7,9,61,82]. Function of H1085L in all of these

steps remains to be determined, but the H1085L phenotype suggests that function of H1085 as

a general acid may be entirely bypassed.

The established TL phenotypic landscape can be further explored to study intra- and

inter-TL epistasis. First, whether individual TL residues work collaboratively or indepen-

dently to ensure balanced TL dynamics and proper function is an open question. Some TL

residues can be functionally overlapping and act at similar steps, or functionally discrete,

acting at distinct steps. For example, combination of LOF mutations in Q1078, N1082 and a

TL-proximal residue N479 resulted in non-additive genetic interaction, suggesting func-

tionally overlapping roles for these residues. In contrast, combination of variants from

Q1078 (or N1082) and H1085 resulted in exacerbation or synthetic lethality, suggesting

independent functions [37]. Coupled with structures of partially folded TL states, these

genetic studies support the functional distinction between NIR residues and a multi-step TL

folding model for the promotion of catalysis [37]. Here, we have identified many more pre-

dicted GOF and LOF TL variants (Fig 4B), some of which are predicted to confer epistatic

interactions (e.g. F1086 and V1089). We expect the phenotypic landscape of a multiply-

substituted TL library to be extremely informative for understanding functional relationship

between TL residues.

Second, the TL phenotypic landscape is an extremely sensitive readout for assessing active

site re-arrangement. Transcription is under control by many factors, some of which may alter

the Pol II active site conformations, though few studies directly address these possibilities. Ini-

tiation factors and Pol II TL mutants confer similar alterations in transcription start site selec-

tion, consistent with initiation factors functioning through the Pol II active site and altering

the efficiency of Pol II catalysis during initiation [41,61,83]. Furthermore, TL may communi-

cate with other Pol II sites, such as the RNA exit channel or clamp domain [36], or in direct

competition with external factors, such as TFIIS [33]. Perturbations of this communication

may alter TL dynamics and cause allele-specific genetic interactions (Figs 5 and 6). Specifically,

an external perturbation by a relevant factor or Pol II TL distant domain may show epistasis or

synergy only with specific TL alleles of a class (either LOF or GOF), whereas a non-interacting

factor may not. Finally, similar perturbation of the TL phenotypic landscape by different fac-

tors would suggest functional similarity between them, thus clustering of phenotypic landscape

changes upon different perturbations is expected to provide valuable insight.

The TL phenotypic landscape, along with our previous work [37], illustrates a strategy of

utilizing in vivo genetic reporters or stress response profiles to distinguish a large number of

mutants with distinct in vivo defects. As discussed above, the phenotypic landscape sheds light

on functional contribution of TL residues to its dynamics, to the mechanism of catalysis and to

the evolutionary constraints of the TL sequence and function. The phenotypic landscape strat-

egy expands the current scope of existing deep mutational scanning studies [44–47], and can

be generalized to study most, if not all, of the yeast proteins.

Materials & Methods

Yeast strains, media and plasmids

All yeast strains are derived from a GAL2+ derivative of S288C [84]. Genotypes of yeast strains

are in S2 Table. Standard yeast media and the media for assessing established transcription-

related phenotypes are as described previously [37]. For studies with 15 mM caffeine (Sigma),

150 mM hydroxyurea (Sigma), 5 mM and 15 mM MnCl2 (Sigma), 0.5 M NaCl (EMD), 3%

formamide (JT Baker), 6% ethanol (KOPTEC), 0.07 μg/mL cycloheximide (Sigma), 10 mM

HCl (EMD), 10 mM NaOH (EMD), 10 μg/mL benomyl (Sigma), each compound was added
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to the minimal SC-Leucine (SC-Leu) medium at the indicated concentration from concen-

trated stock solutions.

Detailed description of plasmids is in S2 Table, and complete sequences of plasmids are

available upon request. For studies involving individual analyses of Pol II mutants, site-

directed mutagenesis was performed via the Quickchange strategy from Stratagene. All muta-

genized regions have been verified by sequencing before sub-cloning into pRS315-derived

plasmids, as previously described [37].

Genetic and biochemical analyses of individual Pol II mutants

Phenotypic analyses of individual Pol II mutants were performed by plasmid shuffling assays,

with viable mutants further subjected to standard plate phenotyping. Each mutant in a

pRS315-derived plasmid (CEN LEU2) was transformed into CKY283 (rpb1Δ::CLONATMX,

pRP112 RPB1 CENURA3). Transformants (Leu+) were patched on SC-Leu plates and subse-

quently replica plated to SC-Leu+5FOA (1mg/mL) to assay complementation ability upon loss

of the RPB1 CENURA3 plasmid. Experimental details are as previously described [12,37]. Sat-

urated cultures from single colonies of viable and shuffled Pol II mutants were subject to

10-fold serial dilution and spotting on indicated phenotyping media, as described in various

previous reports [12,37].

Pol II enzymes were purified via a tandem-affinity tag (TAP) protocol derived from [85]

with modifications described in [12]. Transcription elongation reactions were performed with

Pol II elongation complexes assembled on a nucleic acid scaffold, in a procedure described in

[12] with slight modifications in the amount of Pol II and nucleic acids as described in [60].

For each enzyme, elongation assays were performed with 25 μM, 125 μM, 500 μM and 750 μM

NTPs (each of ATP, GTP, CTP, UTP), and maximal elongation rates were extracted exactly as

previously described [12].

ADH1 transcription start site selection was analyzed by primer extension. In brief, indicated

strains were grown in YPD until mid-log phase (~1×107 cells/mL), and diluted with YPD with

10mM MnCl2 or equal volume of H2O. Total RNA was extracted as described [86], and 30 μg

of total RNA was subject to primer extension analysis, following a protocol derived from [87]

with modifications described in [37].

High-throughput phenotypic analyses of the TL variants library

The TL variant library was synthesized by Sloning Biotechnology (now MorphoSys) with well-

characterized TL variants excluded (specified in Fig 1B) using a building block approach

[48,49]. The TL variant library was transformed into CKY283 via a gap-repair strategy as pre-

viously described [41]. In brief, the amplified TL variant library with flanking sequence was

transformed into CKY283 together with a linearized pRS315-derived plasmid (CEN LEU2)

containing rpb1 deleted for the TL (TLΔ) and linearized at the deletion junction, allowing in
vivo homologous recombination. Homologous recombination produced a library of complete

rpb1 genes containing TL variants. The gap-repaired TL variants (Leu+) were titered and

plated at 200–300 colonies per plate to reduce inter-colony growth competition, and Leu+ col-

onies were first replica-plated to SC-Leu+5FOA (1mg/mL), and subsequently to additional

selective and control media. Three independent biological replicate screens were performed.

In each replicate, we pooled 6000 to 12000 colonies. Each cell pool was subjected to genomic

DNA extraction and TL amplification by emulsion PCR. Amplification of the TL region was

performed using Micellula DNA Emulsion & Purification (ePCR) Kit (Chimerx) per manufac-

turer’s instructions. To minimize amplification bias, each sample was amplified in a 15-cycle

ePCR reaction, purified and subject to additional 13–15 cycle scale-up ePCR reactions. The
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two-step ePCR amplification protocol ensured sufficient yield of DNA for NGS sequencing

while minimizing perturbation of the allele distribution in the DNA pool. The amplified sam-

ples were subject to Illumina HiSeq 2500 sequencing, and on average over 2 million reads were

obtained from each replicate of a sample, with high reproducibility and minimal perturbation

of the mutant distribution within the TL variant library (S1D Fig).

Allele frequency was subsequently measured by deep sequencing of the TL amplicons. All

the sequencing data (FASTQ format) for the reported analyses are deposited and available

under the NCBI bioproject PRJNA340979. To identify the mutations that were present for

each set of paired-end reads, a codon-based alignment algorithm was developed to align each

paired-end read set in which the overlapping substrings from both flanking regions agreed

perfectly to the WT sequence. The purpose of our approach was to identify real variants using

an expected set of mutant codons used in the programmed library synthesis from sequencing

errors. A dynamic programming algorithm was applied so that an exact match of three letters

was assigned a positive score, a mismatch of at least one letter in a codon was assigned a nega-

tive score, and the insertion or deletion of either one, two or three letters was assigned a con-

stant negative score. The allele frequency was subsequently calculated from the mapped reads,

and the phenotypic score of each TL variant was calculated by allele frequency change (nor-

malized to WT) under each condition, as below:

f ¼ log
f mut;sele

f mut;unsele

� �

� log
f wt;sele

f wt;unsele

� �

Mutants with less than 200 reads in the transformed pool (SC-Leu) and allele frequency

changes assessed from less than 50 reads from both conditions were excluded from further

analyses. Median values from three independent biological replicates were used for fitness and

phenotype scoring. Fitness score cutoff for lethality was estimated based on fitness scores (on

SC-Leu and 5FOA) of 163 known viable TL and 16 known lethal mutants. Hierarchical cluster-

ing for generating phenotypic landscape was performed by Gene Cluster 3.0 using centered

correlation [88]. Figures displaying structural information were generated using Pymol

(https://www.pymol.org/).

Evolutionary analyses

Eukaryotic RNA polymerase large subunit sequences were obtained from BLAST using Sce
Rpb1 (Pol II), Sce Rpa190 (Pol I), and Sce Rpo31 (Pol III) sequences as queries. Sequences were

assigned to Pol I, II, or III based on highest similarity when compared to each of the three

query sequences, with prokaryotic sequences further filtered out. Multiple sequence align-

ments (MSAs) were generated by first applying CD-HIT [89] to cluster sequences so that the

identity between sequences in different clusters was less than 90%, then applying MUSCLE

[90] to obtain an alignment that contains one representative sequence from each cluster. The

TL conservation score was generated using Jalview 2.8 version 14.0 [91] and plotted as a heat-

map using Gene-E (http://www.broadinstitute.org/cancer/software/GENE-E/index.html).

Supporting Information

S1 Table. Pol II mutants isolated in traditional screening of TL variant libraries and their

phenotypes.

(XLSX)

S2 Table. Yeast strain genotypes and plasmid descriptions.

(XLSX)
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S1 Fig. TL variant library composition and screening reproducibility. (A) Fraction of TL

substitutions at each position of the TL (Rpb1 1076–1106). Allele frequencies were determined

by deep sequencing of the TL variant library, and calculated by the number of reads from all

the variants at a position divided by the total number of mapped reads.

(B) Fraction of TL substitutions for codons encoding specific amino acids. The allele frequency

for each substitution was determined by deep sequencing of the TL variant library, calculated

by the number of reads for variants substituted at a particular substitution divided by the total

number of mapped reads.

(C) Distribution of allele frequencies for the detected TL single substitution variants.

(D) The TL library is robust to PCR amplification and yeast transformation. Pearson correla-

tion coefficients calculated between different libraries are shown as a heatmap. TL library

(Lib), PCR amplified TL library (Lib_PCR) and two yeast pools independently transformed

with TL library (SC-Leu_screen1 and SC-Leu_screen2) were amplified and sequenced in tripli-

cate (rep1, rep2 and rep3), and pairwise Pearson correlation analyses were performed between

different sequencing libraries.

(TIF)

S2 Fig. Screening for allele-specific stress conditions by standard plate phenotyping of 50

isolated TL variants. 10-fold serial dilutions of saturated cultures of the 50 TL variants were

plated on the indicated conditions, including 15 mM caffeine, 150 mM hydroxyurea, 5 mM

Mn2+, 15 mM Mn2+ and 0.5 M NaCl.

(TIF)

S3 Fig. Screening for additional allele-specific stress conditions for 50 isolated TL variants.

10-fold serial dilutions of saturated cultures of the 50 TL variants were plated on the indicated

conditions, including 3% formamide, 6% ethanol, 0.07 μg/mL cycloheximide, 10 mM HCl, 10

mM NaOH and 10 μg/mL benomyl.

(TIF)

S4 Fig. Transcription-related phenotypes of 50 isolated TL variants. GalR, MPAS and Spt- phe-

notypes of the 50 TL variants were assessed as a control for the high-throughput phenotyping.

(TIF)

S5 Fig. Structures of different TL states allow prediction of functionally important resi-

due-residue interactions. (A) A1087-G1088 linker is highly spatially constrained. The closed

TL (magenta) is shown in cartoon (A1087, G1088 in sticks), and TL-proximal domains are

shown in surface representation. Rpb2 domains are colored in grey; Bridge Helix (Rpb1 800–

860) in cyan; Funnel helix α-21 (Rpb1 700–750) in green.

(B) Change of F1086-V1089 interactions in different TL states. V1089 forms a backbone-back-

bone hydrogen bond with F1086 in the open TL (orange, PDB: 5C4X), but the side chain flips

towards the F1086 for a hydrophobic interaction when the TL is in a less open state (yellow,

PDB: 5C4J).

(C) V1094-K830 interaction in the closed TL state. The charged K830 side chain appears to be

neutralized by D826 through a salt bridge interaction, and the neutralized K830 side chain

interacts with the V1094 side chain.

(D) Observed hydrophobic pocket in the open TL surrounding M1079 (PDB: 5C4J). TL (yel-

low) and the proximal domains (cyan) are shown in the cartoon representation with the

M1079-proximal hydrophobic residues shown in spheres. M1079 is highlighted in red.

(E) Transcription-related phenotypes of G1097 variants.

(TIF)
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S6 Fig. Phenotypic scores of TL variants under screened conditions. Phenotypic scores of

TL single substituted variants under indicated conditions are shown in separate heatmaps.

Unavailable data points are shown as filled grey squares. WT residues at indicated positions

are outlined in black boxes. Predicted lethal mutants are in filled black squares.

(TIF)

S7 Fig. Quantitation of maximal elongation rates for Pol II WT and mutant enzymes.

(A-F) Determination of elongation rates at different NTP concentrations for indicated

enzymes. Fraction of run-off transcripts by the total (Fraction elongated) was quantified and

plotted versus reaction time for indicated Pol II mutants. Lines of different colors indicate the

different concentrations of NTPs used. At least three experimental replicates were performed

and each replicate was separately curve fitted with non-linear regression (GraphPad Prism

6.0h).

(G) Determination of maximal elongation rates for indicated enzymes. Elongation rates

(determined from S7A-F Fig) were plotted versus NTP concentrations and curve fitted with

non-linear regression (GraphPad Prism 6.0h).

(TIF)

S8 Fig. Construction and transcription-related phenotypes of the TL tip and nearby

charged residue variants. (A) x-y plot showing the lack of correlation between helical propen-

sity change and phenotypic score on MPA, a good indicator of altered transcription activity.

120 variants from the TL tip region (top panel) and 104 variants from the same region but

excluding V1094 mutants (bottom panel) are shown, with linear regression fit of the data

shown in (some color).

(B-E) Complementation abilities of TL tip (S1091, K1092, K1093) variants, tip proximal D716

(B), E712 (C), E1307 (D), R1281 (E) variants and the corresponding double mutants were

determined by plasmid shuffling assays.

(F) Transcription-related phenotypes of TL tip and the TL-proximal charged residue variants.

S1091C, K1093M and E1307K confer MPAS phenotypes, and K1093M additionally confers an

Spt- phenotype, while others alone don’t confer any strong transcription-related phenotypes.

(TIF)

S9 Fig. Genetic interactions of the TL tip and nearby charged residue variants on tran-

scription-related phenotypes. Genetic interactions between tip variants and nearby charged

residues D716 (A), E712 (B), R1281 (C) and E1307 (D, E) variants detected by alterations in

transcription-related phenotypes.

(TIF)

S10 Fig. Construction and transcription-related phenotypes of TL and BH variants. (A-E)

Complementation ability of the indicated TL variants, BH single variants M818P (A), M818S

(B), M818Y (C), T834A (D), T834P (E) and the corresponding double/triple mutants were

determined by plasmid shuffling assays.

(F) Transcription-linked phenotypes of BH single-substituted mutants. M818S and M818Y are

substitutions in a predicted BH N-terminal hinge; others are substitutions in predicted BH C-

terminal hinge positions or additional C-terminal substitutions.

(TIF)

S11 Fig. Genetic interactions of BH M818 and TL mutants for transcription-related phe-

notypes. Genetic interactions between TL variants and the BH variants M818S (A), M818Y

(B) were assessed by standard plate phenotyping of transcription-related phenotypes.

(TIF)
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S12 Fig. Genetic interactions of BH T834 and TL mutants on transcription-related pheno-

types. Genetic interactions between TL variants and the BH variants T834A (A), T834P (B)

were assessed by standard plate phenotyping of transcription-related phenotypes. Additional

genetic interactions between T834P (GOF) and two LOF BH mutants (Y836A) and Y836H are

included in (B).

(TIF)
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