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At the 1-year anniversary of the cor-
onavirus disease 2019 (COVID-19) 
pandemic, we are living through one 
of the largest health events of the cen-
tury, where >109 million people have 
become infected with severe acute re-
spiratory syndrome coronavirus 2 
(SARS-CoV-2) and >2.4 million have 
died [1]. Remarkably, SARS-CoV-2, a 
zoonotic virus of likely bat origin, infre-
quently has caused illnesses and deaths 
among domestic animal populations (ex-
cept mink). In the United States alone, 
>27 million people have had confirmed 
COVID-19, yet only 132 animals (of 3625 
tested) were diagnosed as positive for 
SARS-CoV-2 infection as of 15 January 
2021. Notably, the animal infections were 
primarily domestic (n = 58 [44%]) or 
exotic (n = 14 [11%]) cats, including ti-
gers, lions, snow leopards, and a cougar 
[1–3]. Taken together, the high SARS-
CoV-2 infectivity rate among the human 

population, the significant COVID-19 
case numbers in community settings, 
and the commonality of pet ownership, 
the low rates of infection within the do-
mestic cat population are reassuring and 
may suggest that cats have resistance to 
symptomatic SARS-CoV-2 infection. 
However, due to gaps in One Health 
surveillance infrastructures focused on 
zoonotic pathogens, and in some cases 
guidance against routine testing in ani-
mals because of limited resources [4, 5], 
the low case counts among domestic cats 
may be the tip of the iceberg. Most testing 
of domestic and exotic animals has been 
ad hoc, and little is known about the po-
tential for non-human species to serve as 
transient or longer-term reservoirs for 
SARS-CoV-2, particularly within the 2 
most implicated animal families: muste-
lids (mink) and felids (cats).

Susceptibility of domestic and exotic 
felids to SARS-CoV-2 has been estab-
lished via experimental infection under 
laboratory conditions [6, 7] and natural 
infection in community and zoological 
collection settings [2, 8–10]. The report 
by Bao et  al in this issue of The Journal 
of Infectious Diseases builds on prior ex-
perimental studies of domestic cats that 
established the potential for cat-to-cat 
transmission [11, 12] to describe attenu-
ation in virus transmissibility through 
serial passage in both male and female 

cohoused cats. In other words, the au-
thors addressed the question of high epi-
demiological relevance: After a series of 
cat-to-cat transmission events, does the 
infectivity of SARS-CoV-2 in the subse-
quently infected cats weaken? To answer 
this question, researchers assessed serial 
passage between infected (ie, donor) cats 
and naive recipient cats. Donor and naive 
cats had 2  days of direct contact which 
began 1  day after donor cat inoculation. 
They repeated this chain for a second and 
third passage and assessed whether the 
original donor cats could transmit to new 
naive cats at a later point, modeling a late-
stage exposure (6–8  days postinfection). 
Recipient cats demonstrated lower viral 
shedding rates compared to the donor cats 
for both early- and late-stage exposures. 
Furthermore, transmissibility decreased 
during late-stage exposure compared to 
early-stage. The authors did not detect 
any genetic changes in the first passage of 
virus; however, live virus could not be re-
covered from subsequent passages, which 
precluded genomic analysis. Of note, 
antibody titers at 14  days postinfection 
were approximately 8-fold lower for first-
passage recipient cats than donor cats and 
were below the limit of detection for re-
cipient cats in the second or later passages.

Using young adult cats (8–18 months), 
Bao et  al confirmed prior pathological 
and clinical findings [6, 7, 11]: chiefly, 

applyparastyle “fig//caption/p[1]” parastyle “FigCapt”

mailto:mdavis65@jhu.edu?subject=
https://orcid.org/0000-0002-3475-4578


1310 • jid 2021:223 (15 April) • EDITORIAL COMMENTARY

that infection in young cats appears to be 
largely subclinical, with few overt signs 
and mild pathological changes in lung 
and intestinal tissues. Pathological find-
ings coincided with co-localization of 
SARS-CoV-2 and angiotensin-converting 
enzyme 2 (ACE2) receptors, the func-
tional mediator for SARS-CoV-2 infec-
tion [13]. Finally, they conducted ACE 
phylogenetic analysis compared to other 
susceptible species, and projected weaker 
interactions for feline ACE2 compared to 
human receptors, which is one potential 
mechanism to explain their findings of 
reduced transmissibility.

These data convey important impli-
cations for natural infections in com-
munity settings, where there have been 
some concerns for the potential for do-
mestic and feral cat populations to serve 
as reservoirs for human exposure [11, 
12]. Good news first: It seems likely that 
sustained cat-to-cat transmission (eg, 
in feral cat colonies) will be limited for 
the tested strain. Nonetheless, the re-
sults from Bao et  al reinforce evidence 
that susceptible cats can become infected 
given exposure to an infected cat at both 
earlier and later stages of donor cat in-
fection and support recommendations 
that humans with suspected or diagnosed 
COVID-19 should practice contact pre-
cautions when handling their family cats 
to prevent potential human-cat-human 
transmission (or a rare-but-possible scen-
ario of human-cat-cat-human transmis-
sion). Another result reinforced by these 
data and the previous reports is the un-
certain duration of antibody-mediated 
immunity among cats. Bao et  al identi-
fied that cats in the later passages neither 
shed virus nor seroconverted. While this 
is encouraging for concerns related to sus-
tained transmission, it does suggest that 
these tertiary infected cats would remain 
susceptible. Furthermore, at least 1 prior 
study [14] suggested that a short duration 
of immunity in domestic cats could occur 
due to the brief peak in neutralizing anti-
bodies and a reduction in natural titer con-
centrations. To date, all studies of naturally 
infected cats have been limited by small 

sample size, and laboratory studies have 
targeted young, healthy adult cats. This 
suggests that larger studies with greater 
population variance are needed to better 
understand the natural course of infection 
and immunity in community populations 
of cats, including older cats and those with 
comorbidities. Such studies would allow 
surveillance for more rare events of public 
health and veterinary importance, such as 
longer-term virus shedding and more se-
vere clinical disease and pathology. Given 
that rates of more severe disease are 10%–
15% in humans overall—and much lower 
among adolescents and young adults 
[15]—similar or lower rates in felines 
would require studies that evaluated hun-
dreds or thousands of exposed cats.

Another reassuring element of this 
study—at least in the highly controlled 
conditions of cat-to-cat passage in a la-
boratory setting—was that the authors 
found genetic stability of the SARS-
CoV-2 strain used in the cats. This is 
in contrast to identification of a mink-
associated variant in Denmark with 
spread into people, including those not 
in contact with mink [16], where muta-
tions in this strain occurred in the spike 
protein, the leading vaccine target. Spike 
protein mutations have already occurred 
in the B.1.135 variant from South Africa, 
which may increase penetrance in vac-
cinated individuals and reduce anti-
body treatment effectiveness [17]. The 
mink-associated variant also showed 
increased binding to the mink ACE2 re-
ceptor, suggesting potential host adapta-
tion [18]. Investigators also evaluated 24 
stray cats on infected mink farms in the 
Netherlands and identified that 7 (29%) 
developed SARS-CoV-2 antibodies (sug-
gesting exposure), and 1 was weakly 
positive by polymerase chain reaction 
[19]. Unfortunately, live virus could not 
be recovered from this cat, precluding 
genomic analysis [19]. If a variant with 
improved binding to the cat ACE2 re-
ceptor should emerge, it is possible that 
this would impact cat-to-cat transmis-
sion and increase the potential for cats to 
serve as reservoirs of the virus.

Despite recent attention to the need for 
outbreak response and preparedness ef-
forts focused at the human-animal inter-
face [20–24], necessary resources have 
been limited for epidemiological surveil-
lance in cats and other domestic animals 
for COVID-19 or genomic surveillance 
for SARS-CoV-2 variants from these 
species [25]. As of mid-February 2021, 
the United States Centers for Disease 
Control and Prevention does not recom-
mend routine testing of privately owned 
domestic cats in contact with people con-
firmed with COVID-19 unless the cat 
also shows clinical signs consistent with 
SARS-CoV-2 infection [5]. Improved 
One Health approaches—targeting hu-
mans, animals, and the environment—to 
extend research-based and surveillance 
testing of felids in community, veter-
inary hospital, and zoological collection 
settings are warranted and should be a 
public health priority. The importance of 
One Health surveillance systems extends 
beyond this pandemic [25]. Given that up 
to 75% of emerging infectious diseases 
are zoonotic in origin [26, 27], a compre-
hensive and global One Health surveil-
lance system is needed to guard against 
pathogens with higher spillover propen-
sity and strengthen global health security. 
This may require a system-wide approach 
that engages collaboration at the policy, 
institutional, and operational levels 
[28]. Denmark’s antimicrobial-resistant 
pathogen surveillance system [29] is one 
example of the kind of integrated ap-
proach needed to bolster preparedness 
and inform response mechanisms for 
all zoonotic diseases, including a future 
“Disease X” [30].

In a scientific landscape with so many 
uncertainties, we also should recognize 
the essential companionship roles that 
domestic cats and other pets provide to 
people, particularly those otherwise iso-
lated by COVID-19 pandemic restric-
tions. Equally, exotic felids in the wild 
serve critical ecological niches, and in 
captive settings, aid in important edu-
cation and conservation efforts. Despite 
the important findings by Bao et  al that 
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extended cat-to-cat transmission chains 
with the current SARS-CoV-2 variant are 
unlikely, their data nonetheless support 
the susceptibility of felids to the virus 
and highlight the potential for cat-to-
cat transmission, particularly at certain 
stages of the donor cat’s infection. As the 
global struggle to contain the COVID-19 
pandemic continues, scientists and polit-
ical bodies should continue to recognize 
the importance of SARS-CoV-2 trans-
mission dynamics in animal populations 
and investigate to prevent potential gen-
etic drift and spillover into the human 
population. Ongoing and future One 
Health responses will need to balance 
these surveillance and other health se-
curity activities with attention to the im-
portance of the human-animal bond.
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