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Production of itaconic acid from alkali pretreated
lignin by dynamic two stage bioconversion
Joshua R. Elmore 1,2, Gara N. Dexter1, Davinia Salvachúa3, Jessica Martinez-Baird1, E. Anne Hatmaker 1,

Jay D. Huenemann1,4, Dawn M. Klingeman1, George L. Peabody V1, Darren J. Peterson3, Christine Singer3,

Gregg T. Beckham 3 & Adam M. Guss 1,4✉

Expanding the portfolio of products that can be made from lignin will be critical to enabling a

viable bio-based economy. Here, we engineer Pseudomonas putida for high-yield production of

the tricarboxylic acid cycle-derived building block chemical, itaconic acid, from model aro-

matic compounds and aromatics derived from lignin. We develop a nitrogen starvation-

detecting biosensor for dynamic two-stage bioproduction in which itaconic acid is produced

during a non-growth associated production phase. Through the use of two distinct itaconic

acid production pathways, the tuning of TCA cycle gene expression, deletion of competing

pathways, and dynamic regulation, we achieve an overall maximum yield of 56% (mol/mol)

and titer of 1.3 g/L from p-coumarate, and 1.4 g/L titer from monomeric aromatic compounds

produced from alkali-treated lignin. This work illustrates a proof-of-principle that using

dynamic metabolic control to reroute carbon after it enters central metabolism enables

production of valuable chemicals from lignin at high yields by relieving the burden of con-

stitutively expressing toxic heterologous pathways.
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Valorization of lignin, a complex aromatic heteropolymer
and the second most abundant component of terrestrial
biomass, will be critical for the economic viability of lig-

nocellulosic biorefineries1. Biological upgrading of lignin has been
demonstrated with production of aromatic catabolic
intermediates2–7 and their derivatives8, as well as carbon storage
compounds such as polyhydroxyalkanoates (PHAs)9,10 and
lipids11 (Fig. 1, red boxes). However, the sizes of individual
chemical markets are typically at least an order of magnitude
smaller when compared to fuel markets. With an estimated bil-
lion tons of plant biomass able to be sustainably grown in the
United States for lignocellulosic biofuel production12, hundreds
of millions of tons of lignin-rich feedstock could be available for
valorization in the United States alone. Therefore, lignin will need
to be converted into a wide array of products to avoid over-
saturating individual chemical markets and to replace petroleum-
derived incumbent molecules.

To increase the portfolio of products that can be made from
lignin, additional parts of metabolism will need to be targeted.
The tricarboxylic acid (TCA) cycle is a potential source of valu-
able chemicals including succinate and citrate, but it has not yet

been harnessed for lignin valorization. Indeed, TCA cycle-derived
chemicals are ideal products for lignin valorization because aro-
matic carbon is typically funneled directly into this part of
metabolism. Itaconic acid is an unsaturated dicarboxylic acid
derived from cis-aconitate in the TCA cycle, with industrial uses
including as an acrylate alternative and for the production of
polymers.13 Itaconic acid has been produced industrially from
simple sugars, primarily glucose, since the 1950s14,15, and its
potential to functionally replace several petroleum-derived com-
modity chemicals was highlighted by its selection as one of the
top bio-based platform chemicals in several reports, including a
2004 United States Department of Energy report.16 However, the
relatively high cost of sugars makes itaconic acid production
expensive, limiting it to use as a specialty chemical. Using cheap
and abundant feedstocks, such as lignin, has the potential to
reduce production costs17 and enable much broader industrial
use of itaconic acid.

The saprophytic bacterium Pseudomonas putida KT2440 is a
microbe of industrial interest18,19 due to its robust metabolism20

and tolerance to xenobiotics.21–24 P. putida also has the ability to
tolerate and catabolize a wide-range of aromatic compounds25
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Fig. 1 Biological upgrading of lignin by funneling depolymerized lignin aromatics toward value added products up and downstream of central
metabolism. Solid colored and black arrows indicate known metabolic pathway steps for conversion of aromatic intermediates into central metabolites, with
dotted black arrows indicating predicted metabolic pathway steps. Dotted gray lines indicate heterologous pathways to convert aromatic intermediates to
value-added aromatic derivatives. Red boxed compounds are those whose production from deconstructed lignin have been demonstrated, including
itaconate from this study. Acronyms used above: 4-HB (4-hydroxybenzoate), 3-MMA (3-methylmuconate), 2,5-PDCA (2,5-pyridinedicarboxylate), 2,4-
PDCA (2,4-pyridinedicarboxylate), β-KA (β-ketoadipate), 2-HMSA (2-hydroxymuconate semialdehyde), 4-OMA (4-oxalomesaconate).
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which led to its recent use in upgrading depolymerized lignin into
PHAs10,26, cis,cis-muconic acid3,5,27, and other intermediates in
aromatic catabolism7. In P. putida, p-hydroxyphenyl (H) and
guiacyl (G) lignin-derived aromatics are funneled via the β-
ketoadipate pathway to acetyl-CoA and succinate (Fig. 2a). This
direct route to key TCA cycle intermediates suggests that high
yields of TCA cycle-derived products such as itaconic acid should
be possible from lignin. For instance, because the lignin-derived
aromatic compound p-coumaric acid is catabolized into one
succinate and two acetyl-CoA molecules, the theoretical max-
imum yield of itaconic acid is 1.33 mol itaconic acid/mol p-cou-
maric acid.

Growth phase production of itaconic acid may be challenging
because itaconic acid disrupts bacterial growth via inhibition of
enzymes in the glyoxylate shunt28 and citramalate cycle29. An
alternate approach is to use a two-stage process to decouple growth

of the microbial catalyst from conversion of feedstocks to chemi-
cals, which provides solutions to many problems present in
growth-associated processes (e.g., product toxicity, slow catalyst
growth).30 Such processes often take advantage of the natural
responses to nutrient limitations (e.g., nitrogen, sulfur, phosphate)
and environmental shifts (e.g., O2 limitation, temperature shifts)
that prevent microbial growth while maintaining the metabolic
reactions of interest. Coupling two-stage processes with dynamic
metabolic control has the potential to entirely remodel metabolism.

In this study, we engineer P. putida to produce a commercially
relevant chemical at high yields and gram-per-liter titers from
model aromatic substrates and corn stover-derived, alkali-
pretreated lignin. We further develop multiple production path-
ways and developed a signal-amplified biosensor for two-stage
production via dynamic metabolic control to increase efficiency
and mitigate toxicity.
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Fig. 2 Two-stage production of itaconic acid from p-coumaric acid. a Simplified p-coumaric acid assimilation, β-ketoadipate, and tricarboxylic acid (TCA)
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Results
Initial production of itaconic acid from aromatic compounds.
The enzyme cis-aconitate decarboxylase, encoded by the Asper-
gillus terreus cadA gene31, produces itaconic acid by enzymatic
decarboxylation of the TCA cycle intermediate cis-aconitate
(Fig. 2a). Using a previously developed site-specific DNA inte-
gration system in P. putida KT244032, we integrated a con-
stitutively expressed, codon optimized copy of cadA (Ptac:cadA)
into the genome of P. putida strain JE90 (named JE4305), and
measured itaconic acid production from p-coumaric acid, the
most abundant aromatic monomer released from corn stover
during alkaline treatment3, as the sole carbon source. Under
nitrogen-replete conditions, we were unable to detect itaconic
acid production.

P. putida diverts carbon toward fatty acid biosynthesis for PHA
production during nitrogen-starvation conditions (Fig. 2b).9,10

Thus, we hypothesized that more carbon would be directed to
itaconic acid production under similar conditions. As predicted,
nitrogen-starvation conditions enabled detectable itaconic acid
production, but the yield was low (4.2% mol/mol) (Fig. 2c;
Table 1). Because PHA production competes for carbon, we
deleted the PHA synthetases phaC1 and phaC2 (strain named
JE4306), increasing overall itaconic acid yield by approximately 3-
fold (12% mol/mol) (Fig. 2c; Table 1). However, the majority of
itaconic acid was produced during stationary phase, supporting
the notion that more carbon is directed to itaconic acid
production during nitrogen-starvation. During the non-growing
stationary phase from 24 to 96 h, also referred to as the
production phase, the itaconic acid yield from the remaining p-
coumaric acid increased from undetectable production during
growth phase to 33% mol itaconic acid /mol p-coumaric acid.

Modulating TCA cycle flux increases itaconic acid yields and
titers. As an obligate aerobe, P. putida maintains robust TCA
cycle activity for energy production. We hypothesized that
reducing flux through isocitrate dehydrogenase (Fig. 2a – icd, idh)
should increase accumulation of cis-aconitate, and therefore
increase yields. However, deletion of icd and idh would make
P. putida an energy-starved, α-ketoglutarate auxotroph, and likely
unable to grow on lignin-derived substrates. Thus, we aimed to
reduce the translation efficiency of icd and idh, which are encoded
next to each other on the chromosome and divergently tran-
scribed. Using reporter gene fusions, we showed that changing
the translational start codon of the fluorescent protein mNeon-
Green to GTG or TTG reduced fluorescence per cell by 2.3- and
4.2-fold, respectively (Supplementary Table 1), suggesting that
this approach could be used to decrease the level of TCA cycle
enzymes. Therefore, we altered the start codons of icd and idh
such that they were each GTG or TTG, generating strains JE4296
(icdGTG:idhGTG) and JE4274 (icdTTG:idhTTG), respectively. Cell
yield (as measured by final OD600) was largely unaffected by the
start codon alterations (Supplementary Fig. 1a). The growth rate
of JE4296 was also unaffected, while the growth rate of JE4274 on
p-coumaric acid was decreased by 43% (Fig. 2d, Supplementary
Fig. 1a).

To determine the impact of these mutations on itaconic acid
production, we integrated the Ptac:cadA cassette into both strains,
generating strains JE4308 (icdGTG:idhGTG, Ptac:cadA) and JE4307
(icdTTG:idhTTG, Ptac:cadA), and assayed itaconic acid production
from p-coumaric acid under nitrogen-limited and nitrogen-replete
conditions. Slowing the TCA cycle was sufficient to allow
detectable itaconic acid production under nitrogen-replete condi-
tions (Supplementary Fig. 1b), and nitrogen-limited conditions
increased overall yields from 12 to 27% and 30% mol/mol with
JE4308 and JE4307, respectively (Fig. 2c; Table 1). During the non- T
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growing production phase, itaconic acid yield increased to 72%
mol/mol for strain JE4308 and 97% for strain JE4307. While yields
improved, the detrimental effect of constitutive cadA expression
was highlighted by decreased growth rates in strains expressing
cadA (Fig. 2d). Growth rates in all three genetic backgrounds were
negatively impacted by constitutive cadA expression, suggesting
that expression of cadA may be toxic. The impact of cadA
expression was most pronounced in JE4307, where it caused a 36%
reduction in growth rate over parent strain JE4274.

Development of a signal-amplified nitrogen-limitation bio-
sensor for dynamic metabolic control in P. putida KT2440.

Limiting the expression of the apparently toxic CadA protein to
the production phase via dynamic regulation could substantially
improve both growth and itaconic acid production. Therefore, we
pursued development of an expression system that is induced
upon nitrogen starvation. Furthermore, native regulatory systems
are typically tuned to provide expression sufficient for associated
pathways, which is often insufficient for heterologous pathways.
However, use of an orthogonal RNA polymerase intermediary
such as the T7 RNA polymerase (T7pol)33 can allow amplifica-
tion of the original signal34 (Fig. 3a).

In the absence of preferred nitrogen sources, such as
ammonium, P. putida activates genes for both the nitrogen-
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starvation response and utilization of alternative nitrogen-
sources35,36. To identify a nitrogen starvation-sensitive promoter
in P. putida, we performed transcriptomics during growth with a
preferred (ammonia) or alternative (nitrate) nitrogen source
(Table 2 and Supplementary Table 2). Based on the combination
of these results and previous studies35,36, we selected four
candidate promoters to test as biosensors: PPP_2685, PPP_2688,
PurtA, and PglnK. Candidate promoters were used to express T7pol
and integrated into the JE90 genome along with the gene
encoding fluorescent protein mNeonGreen under control of a T7
promoter. Strains were grown under nitrogen-replete and
nitrogen-limited conditions (Fig. 3b–d). While the PglnK and
PPP_2685 promoters were surprisingly nitrogen-agnostic, display-
ing constitutive mNeonGreen expression similar to the σ70 tac
promoter (Supplementary Fig. 2), the other candidates PPP_2688
and PurtA responded to nitrogen-limitation, demonstrating 3.7
and 8.8-fold mNeonGreen induction upon entry into nitrogen-
depletion-induced stationary phase (Fig. 3d).

While the initial PurtA biosensor variant allowed strong induced
expression, basal expression in the presence of nitrogen was
relatively high. To reduce basal T7pol activity, we constitutively
expressed a catalytically-deactivated variant of T7 lysozyme
(LysY)37, which allosterically inhibits T7pol activity38 (Fig. 3a).
The expression of LysY substantially improved biosensor
performance, decreasing basal mNeonGreen expression by 78%
in exponential phase and increasing the maximal induced
mNeonGreen expression level. This resulted in a 60-fold
mNeonGreen induction, a 6.8-fold improvement over the strain
lacking LysY (Fig. 3d). As an orthogonal measurement of
biosensor performance, we utilized RNAseq to compare T7pol
gene expression in strain JE2212 (PurtA:T7pol:lysY+ PT7:mNeon-
Green) with ammonium or nitrate as the sole nitrogen source as
done above. Highlighting the function of this biosensor as a signal
amplifier, NO3-induced mNeonGreen mRNA abundance was
302- and 54-fold higher than urtA and T7pol, respectively
(Supplementary Data 1).

Optimal pathway performance often requires tuning expres-
sion of individual proteins. Tuning expression is often achieved
with promoter32,39 and/or RBS40 modifications. We utilized a
small library of T7 promoter variants39 with the red fluorescent
protein mKate2 to tune the magnitude of biosensor outputs.
Unlike the σ70 tac promoter (Supplementary Fig. 2a) which was
constitutively expressed, nitrogen-limitation was required for
induction of mKate2 production in all five T7 promoter variants
(Fig. 3e, Supplementary Table 3). Within the promoter library,
maximum protein expression levels varied over an 89-fold range.
Interestingly, we observed a 2-3.5-fold dynamic range improve-
ment over the standard T7 promoter with three of the variant

promoters—largely driven by considerably lower basal expression
—which approached the background autofluorescence.

Dynamic regulation improves two-stage production of itaconic
acid production from lignin-derived aromatics. We next tested
whether dynamic regulation of cadA would improve itaconic acid
production by combining the altered isocitrate dehydrogenase
start codons and the PurtA:T7pol:lysY+ biosensor cassette. The
original T7 promoter showed the highest maximal expression
level, so we integrated cadA under the control of this T7 promoter
into all three strains (named JE3221, JE3713, and 3717; Table 1),
and assayed production of itaconic acid from p-coumaric acid
under nitrogen-limited conditions. Similar to previous shake flask
experiments—with the exception of JE4307 (Ptac:cadA, icdTTG:
idhTTG)—growth is complete within the first 24 h, with some
itaconic acid production occurring, likely after growth is com-
pleted. Itaconic acid yields with JE3221 (PT7:cadA, icdATG:
idhATG) and JE3713 (PT7:cadA, icdGTG:idhGTG) were similar to
their corresponding constitutive cadA strains (Figs. 2c, 4a).
Strains JE3713 (PT7:cadA) and JE4308 (Ptac:cadA) also displayed
similar yield from remaining p-coumaric acid in the non-growing
production phase, 72 and 79% mol/mol, respectively. Strain
JE3717 (PT7:cadA, icdTTG:idhTTG), on the other hand, achieved
an overall itaconic acid yield of 51% mol/mol (Fig. 4a, Table 1), a
67% improvement over the best performing constitutive cadA
expression strain (Fig. 2c). Furthermore, dynamic regulation of
cadA eliminated the growth defect induced by cadA expression
(Fig. 4c), which has ramifications on itaconic acid productivity—
at 48 h JE3717 (PT7:cadA, icdTTG:idhTTG) itaconic acid produc-
tion is essentially complete (Fig. 4b), while production by JE4307
(Ptac:cadA, icdTTG:idhTTG) was not complete after 72 h (Fig. 2c).
Taken together, dynamic regulation of cadA improves perfor-
mance, and it will likely improve strain stability by eliminating
the growth defect.

Metabolic pathway selection to optimize itaconic acid pro-
duction. To date, other than in some organisms that natively
produce itaconic acid, attempts to engineer strains for itaconic
acid production have focused on the heterologous expression of
the cis-aconitate decarboxylase (termed here the cis-pathway)
from A. terreus. However, an alternate pathway for itaconic acid
production was recently discovered in Ustilago maydis.41 This
pathway, referred to here as the trans-pathway, proceeds through
two steps. First, cis-aconitate is isomerized by aconitate isomerase
(adi1) to the thermodynamically favorable isomer trans-aconitate,
which is subsequently decarboxylated by trans-aconitate dec-
arboxylase (tad1) to generate itaconic acid (Fig. 2a). The trans

Table 2 Differential expression of genes downstream of potential nitrogen-sensitive promoters in P. putida JE1657.

Locus Tag Gene Name log2 fold change (NaNO3 / NH4Cl) Base mean Predicted gene function

PP_1705 nirB 8.14 2029.14 nitrite reductase large subunit
PP_2092 nasA 6.31 361.67 nitrate transporter
PP_2094 nasS 2.79 51.23 nitrate binding protein
PP_2685 — 4.44 320.51 bacterial proteasome, beta subunit
PP_2688 — 3.99 132.41 circularly permuted ATP-grasp type 2
PP_2842 ureD 4.38 181.83 urease accessory protein
PP_4053 treY 2.19 1151.28 maltooligosyl trehalose synthase
PP_4841 urtA 4.37 455.68 urea ABC transporter substrate-binding protein
PP_4842 urtB 4.56 72.42 urea ABC transporter permease
PP_4845 urtE 3.77 67.21 ABC transporter ATP-binding protein
PP_5234 glnK 1.45 8496.51 NRII(GlnL/NtrB) phosphatase activator

Values represent the output of DEseq2 software package using four replicates for each nitrogen source.
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isomer comprises 88% of aconitate at equilibrium and is a
competitive inhibitor of the aconitase enzyme42—both features
that could increase substrate accumulation and therefore increase
flux to itaconic acid.

Taken together, we hypothesized that the trans-pathway would
improve itaconic acid production relative to the cis-pathway by
providing a thermodynamically favorable route to divert carbon
flux from the TCA cycle. To test this, we integrated codon-
optimized tad1 and adi1 genes under the control of the T7
promoter into strains JE3674 (icdGTG:idhGTG) and JE3681
(icdTTG:idhTTG) and assayed the resulting strains (JE3715 and
JE3719, respectively) for itaconic acid production (Fig. 4d). As
hypothesized, strains expressing the trans-pathway from U.
maydis produced higher molar yields than equivalent strains
expressing the cis-pathway (Fig. 4c, Table 1), and JE3719
produced the highest itaconic acid yield (56% mol/mol overall
yield) from p-coumaric acid in this study, with a production
phase yield of 116% mol/mol which is 88% of the maximum
theoretical yield of 1.33 mol itaconic acid/mol p-coumarate.

Production of itaconic acid from depolymerized lignin and
other substrates. To test the viability of itaconic acid production

from lignin, we assayed the ability of strain JE3715 to upgrade a
depolymerized lignin stream produced from a lignocellulose
deconstruction process3 to itaconic acid. Base-catalyzed depoly-
merization of corn stover lignin was performed as described
previously3, and the resulting liquor was diluted with con-
centrated modified M9 salts containing either 2 or 3 mM NH4Cl.
The liquor provides 10.7 mM (1.74 g/L) p-coumaric acid, 0.5 mM
(0.09 g/L) ferulic acid, trace amounts of other monomeric carbon
sources, and residual higher molecular weight lignin. JE3715,
which contains the dynamically regulated trans-pathway and the
GTG start codons for icd and idh, was chosen as the biocatalyst as
its substantially higher growth rate and relatively similar yield
enables much higher volumetric productivity relative to JE3717,
and because JE3719 did not completely consume the provided
substrate (Table 1). This strain was inoculated into shake flasks
containing the two media variants and assayed for itaconic acid
production. Production of itaconic acid leveled off at 48 h with
titers between 1.40 and 1.43 g/L (Fig. 4e–f). The high apparent
yields (99% overall molar yield and 0.79 g itaconic acid/g aro-
matic monomer) suggest that there may be other components in
the lignin stream that lead to product and/or that the strain is
breaking down and utilizing oligomeric lignin, as previously
described43. Finally, to demonstrate the general utility of this
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organism and pathway, we demonstrated itaconic acid produc-
tion from other potential waste stream feedstocks, including other
aromatic compounds (benzoic acid, ferulic acid), sugars (glucose,
xylose, arabinose), glycerol, and organic acids (acetic acid, suc-
cinic acid, octanoic acid) (Supplementary Table 4). With JE3715,
the overall itaconic acid yield from ferulic acid (51.6% mol/mol)
was similar to p-coumaric acid in the same experiment (56% mol/
mol), and overall yield from benzoic acid reached 24% of the
theoretical maximum yield without any optimization.

Discussion
Until recently, robust itaconic acid production was limited to
sugar-utilizing fungi such as A. terreus and U. maydis, but in
recent years, bacterial strains have been engineered to produce
itaconic acid from glucose44,45, acetate46, and glycerol.47 How-
ever, all efforts to engineer heterologous itaconic acid production
relied on expression of the cis-pathway (cadA) from A. terreus.31

In our work, the trans-pathway (adi1/tad1) from U. maydis41

outperformed the cis-pathway, likely due to the production of a
thermodynamically favorable intermediate. Accordingly, the
trans-pathway may improve performance in other organisms.
Among bacteria, the itaconic acid yield with P. putida, 0.44 g/g
from p-coumaric acid, compares well to an engineered E. coli that
produced 0.5 g itaconic acid/g glucose.45 Furthermore, 1.43 g/L
itaconic acid was produced from a complex, depolymerized lignin
stream, yielding 0.79 g itaconic acid/g detectable aromatic
monomers. Of note, the yield during the production phase is
substantially higher than the overall yield in all cases, reaching
nearly 1.2 mol itaconic acid/mol p-coumaric acid (the theoretical
maximum yield is 1.33 mol/mol) using trans-pathway strains
(Fig. 4c, Table 2). Therefore, advanced feeding strategies with
extended production phases could improve yields even further.
Finally, this work demonstrates itaconic acid production in an
engineered bacterium in minimal salts medium without the use of
replicating plasmids, antibiotic selections, or expensive inducer
chemicals (e.g. IPTG), each of which will be critical for a com-
mercial process.

Dynamic metabolic control combined with two-stage produc-
tion is promising approach for biological chemical production30,
and the biosensor developed here can serve as a master regulator
for additional dynamic metabolic control tools such as
CRISPRi48, targeted proteolysis, and nested dynamic regulatory
systems. Our nitrogen biosensor will be a valuable tool for future
P. putida metabolic engineering because it is able to tune the
amplitude of the nitrogen-starvation induced transcriptional
response over an 89-fold range, increasing it by up to 60-fold over
the original response. Despite its utility, to the best of our
knowledge, lysY has not previously been used for metabolic
engineering. The dynamic response of this biosensor, already
allowing 200-fold induction, has the potential to be further tuned
by altering lysY expression. Although not explicitly demonstrated
here, one can modulate levels of sequentially utilized nitrogen
sources such as NH4 and NO3 for auto-induction of gene
expression in single-stage processes following depletion of NH4.
Finally, nitrogen-responsive σ54 promoters from P. putida similar
to PurtA have been ported to E. coli36, suggesting this biosensor
can work in other organisms expressing the activator NtrC.

In addition to lignin, recent work has demonstrated the
potential for P. putida to valorize other biomass streams –
including thermochemical wastewater49 and lignocellulosic sugar
hydrolysates50. Here, we demonstrated itaconic acid production
from multiple substrates that could be found in potential com-
mercial feedstocks, including biodiesel waste (glycerol), plant
biomass (sugars, aromatics, acetic acid), and lipids (octanoic
acid). Therefore, the technology developed here can serve as a

universal platform for the two-phase production of a portfolio of
chemicals from alternate carbon sources beyond lignin.

Methods
General culture conditions and media. The strains and plasmids used in this
study are listed in Supplementary Table 5. Routine cultivation of Escherichia coli
for plasmid construction and maintenance was performed at 37 °C using LB
(Miller) medium supplemented with 50 µg/mL kanamycin sulfate and 15 g/L agar
(for solid medium). All Pseudomonas putida cultures were incubated at 30 °C, with
shaking at 250 rpm for shake flask cultures with p-coumarate, shaking at 225 rpm
for BCDL medium shake flask cultures, and 548 rpm with a 2 mM orbital for
cultures performed in a Neo2SM plate reader (BioTek). LB (Miller) was used for
routine Pseudomonas putida strain maintenance, competent cell preparations, and
starter cultures. For itaconate production assay starter cultures, the media was
supplemented with 50 µg/mL kanamycin sulfate.

Modified M9 medium (M9*) with variable amounts of NH4Cl was utilized
for shake flask experiments, growth rate assays, and fluorescent reporter assays
(47.8 mM Na2HPO4, 22 mM KH2PO4, 8.6 mM NaCl, 1 mM MgCl2, 0.1 mM CaCl2,
18 µM FeSO4, 1x MME trace minerals, pH adjusted to 7 with KOH). In total, 1000x
MME trace mineral stock solution contains per liter, 1 mL concentrated HCl, 0.5 g
Na4EDTA, 2 g FeCl3, 0.05 g each H3BO3, ZnCl2, CuCl2·2H2O, MnCl2·4H2O,
(NH4)2MoO4, CoCl2·6H2O, NiCl2·6H2O. Unless otherwise noted, all M9* medium
was supplemented with 20 mM p-coumarate (neutralized with NaOH) as a sole
carbon source. MME medium (containing 9.1 mM K2HPO4, 20 mM MOPS,
4.3 mM NaCl, 0.41 mM MgSO4, 68 µM CaCl2, 1x MME trace minerals, pH
adjusted to 7.0 with KOH) supplemented with 20 mM glucose and either 20 mM
NH4Cl or 20 mM NaNO3 was utilized for transcriptomics experiments.

Production of BCDL and depolymerized lignin media preparation. The pre-
paration of BCDL has been reported before.32 Specifically, dry solid material
remaining from the enzymatic hydrolysis of pretreated corn stover (which follows
the biorefinery process designed at NREL51) was added as 10% (w/v) solids to a 2%
NaOH solution and loaded into 200 mL stainless steel reactors. The reaction was
carried out at 120 °C for 30 min. The sterile and solubilized material was neu-
tralized with 4 N H2SO4 and centrifuged at 10,875 × g for 20 min in aseptic con-
ditions. Then, the supernatant (90% v/v) was mixed with 10x M9* salts (without
any nitrogen source) and NH4Cl to generate M9*-BCDL medium supplemented
with either 2 mM or 3 mM NH4Cl.

Plasmid and Pseudomonas strain construction. Phusion® HF Polymerase
(Thermo Scientific) and primers synthesized by Eurofins Genomics were used in all
PCR amplifications for plasmid construction. OneTaq® (New England Biolabs -
NEB) was used for colony PCR. Plasmids were constructed by Gibson Assembly
using NEBuilder® HiFi DNA Assembly Master Mix (NEB) or ligation using T4
DNA ligase (NEB). Plasmids were transformed into either competent NEB 5-alpha
F’Iq (NEB), Epi400 (Lucigen), or QP15 (Epi400 mated with NEB 5-alpha F’Iq to
transfer the mini F’ plasmid to Epi400). Standard chemically competent Escherichia
coli transformation protocols were used to construct plasmid host strains. Trans-
formants were selected on LB (Miller) agar plates containing 50 µg/mL kanamycin
sulfate for selection and incubated at 37 °C. Template DNA was either synthesized
by IDT or isolated from E. coli or P. putida KT2440 using Zymo Quick gDNA
miniprep kit (Zymo Research). Zymoclean Gel DNA recovery kit (Zymo Research)
was used for all DNA gel purifications. Plasmid DNA was purified from E. coli
using GeneJet plasmid miniprep kit (ThermoScientific) or ZymoPURE plasmid
midiprep kit (Zymo Research). Sequences of all plasmids were confirmed using
Sanger sequencing performed by Eurofins Genomics. Plasmids used in this work
are listed in Supplementary Table 5, and details regarding plasmid construction
and sequences are below. All DNA oligos used in this work can be found in
Supplementary Table 6.

P. putida JE90, a derivative of P. putida KT2440 where the restriction
endonuclease hsdR has been replaced with the Bxb1-phage integrase and respective
attB sequence32, was used as a parent for all P. putida strains used in this study
(Supplementary Table 5). All genome modifications were performed using either
the homologous recombination-based pK18mobsacB kanamycin resistance/sucrose
sensitivity selection/counter-selection system52,53 or with the Bxb1-phage integrase
system32 with minor modifications to competent cell preparation procedures.
Electrocompetent Pseudomonas putida were prepared as follows. Strains were
inoculated into LB broth and incubated at 30 °C, 250 rpm until they reached
stationary phase—typically ~16 h. Cells were centrifuged at 3000 × g for 20 min at
room temperature and following decanting of supernatant they were washed by
resuspended in 1/2 the original culture’s volume of room temperature 10% glycerol.
Resuspended cells were centrifuged, decanted and resuspended in 10% glycerol two
additional times. Following the final centrifugation, cells were resuspended in
1/50th the original culture’s volume of 10% glycerol. Cells were either used
immediately or stored at −80 °C. For transformation, 5 µL (200 ng-2 µg) of
plasmid DNA was added to 50 µL of the electrocompetent cells, transferred to a
0.1 cm electroporation cuvette, and and electroporated at 1.6 kV, 25 uF, 200 Ω.
Electroporated cells were resuspended following addition of 950 µL SOC medium,
transferred to a 1.5 mL microcentrifuge tube, and incubated with 250 rpm shaking
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for 1 h at 30 °C. Dilutions of the recovery cultures were plated onto LB agar
medium supplemented with 50 µg/mL kanamycin sulfate. For plasmids integrated
using Bxb1 integrase transformants were screened by colony PCR to verify plasmid
insertion into the genome. For strains constructed using homologous
recombination, transformants were streaked for single colony isolation on LB agar
medium supplemented with 50 µg/mL kanamycin sulfate and incubated overnight
at 30 °C to select against residual wild-type cells that are insensitive to sucrose. For
sucrose counter-selection, restreaked transformants were streaked for single
colonies on YT+ 25% sucrose plates (10 g/L yeast extract, 20 g/L tryptone, 250 g/L
sucrose, and 18 g/L agar), and incubated at 30 °C overnight. Colonies were streaked
a second time on YT+ 25% sucrose, and screened by colony PCR for desired
mutations. Gene deletions and replacements were performed by homologous
recombination, while integration of reporter and itaconate production pathway
cassettes was performed with the Bxb1-phage integrase system. Primers used for
screening P. putida strains for phaC1ZC2 deletion, ampC::T7_RNAP replacements,
and icd/idh start codon swaps can be found in Supplementary Table 6. Integration
of pJE990-derivatives using the phage integrase system was confirmed by colony
PCR using oligos oJE66 & oJE536.

Plasmid construction details. Annotated sequences of all plasmids can be found
in Supplementary Data 3. All enzymes used for plasmid construction were pur-
chased from NEB. Supplementary Table 6 contains the sequence of all oligos
listed below.

For construction of pJE473, homology arms to target deletion of phaC1ZC2

(PP_5003-5005) were amplified by PCR from wild-type P. putida genomic DNA
using primer combinations oJE331/332 and oJE333/334, assembled into gel
purified EcoRI/HindIII-linearized pJE382, and transformed into NEB 5-alpha F’IQ.
Resulting E. coli colonies were screened by colony PCR for the presence of
homology arms using primers oJE255/256. Candidates for pJE473 were purified
from E. coli and sequenced using primers oJE255/256.

For construction of pJE387, homology arms to target deletion of ampC
(PP_2876) were amplified by PCR from wild-type P. putida genomic DNA using
primer combinations oJE89/90 and oJE91/92, assembled into gel purified EcoRI/
HindIII-linearized pK18mobsacB, and transformed into NEB 5-alpha F’IQ.
Resulting E. coli colonies were screened by colony for the presence of homology
arms using primers oJE255/256. Candidates for pJE387 were purified from E. coli
and sequenced using primers oJE255/256.

For construction of pJE382, we utilized QuikChange PCR mutagenesis with
oligos oJE69/70 to amplify a version of pK18mobsacB with the lac promoter that
drives expression of the lacZalpha fragment deleted. Following amplification, the
PCR reaction was digested with 20 U of DpnI (NEB) for 1 h at 37 °C to reduce
parental plasmid background. The purpose of this plasmid was to reduce likelihood
of recombination with lac/tac-based promoters in pK18mobsacB with similar
promoters in our synthetic constructs, and to reduce potential toxicity from
unintended transcription of homology arms/expression cassettes in E. coli. The
DpnI-digested PCR product was transformed into NEB 5-alpha F’IQ. Resulting E.
coli colonies were screened by colony for the presence of the lac promoter using
primers oJE71/72. Candidates for pJE382 were purified from E. coli and lac
promoter deletion verified by sequencing with primer oJE72.

For construction of pJE1031, homology arms for the deletion of ampC
(PP_2876) were amplified from pJE387 using primer combination oJE92/608,
assembled into gel purified EcoRI/HindIII-linearized pJE382, and transformed into
NEB 5-alpha F’IQ. Resulting E. coli colonies were screened by colony PCR for the
presence of homology arms using primers oJE255/256. Candidates for pJE1031
were purified from E. coli and sequenced using primers oJE255/256.

For construction of pJE1032, pJE1033, pJE1037, and pJE1039 promoter
sequences containing ~200-300 bp upstream of PP_2685, PP_2688, urtA
(PP_4841), and glnK (PP_5234), respectively, were amplified from P. putida
(Supplementary Table 6 for oligos) and assembled with T7 RNAP and a synthetic
terminator sequence. The T7 RNAP polymerase and a downstream terminator was
amplified from BL21(DE3) pLysS (Promega) genomic DNA using oligos oJE625/
626. A double terminator sequence for insulation of the construct was amplified
from the T7_dbl_term gBlock using oJE627/628. Parts were assembled into
BamHI/XbaI-linearized pJE1031, and transformed into NEB 5-alpha F’IQ.
Resulting E. coli colonies were screened by colony PCR using primers oJE177/178.
Candidates for the plasmids were purified from E. coli and sequenced using
oJE177/178/631/632/633.

For construction of the reporter plasmids we annealed oligos containing desired
promoter sequences and ligated the promoters into a promoterless mNeonGreen
reporter plasmid, pJE990. Plasmid pJE990 was linearized with BbsI. Promoter
oligos pairs were phosphorylated with PNK (NEB) in T4 DNA ligase buffer,
annealed by heating to 95 °C and cooling at 1 °C/minute to room temperature.
Annealed oligo sets oJE634/635, oJE97/98/133/134, oJE826/827, oJE828/829,
oJE830/831, and oJE832/833 were ligated to BbsI-linearized pJE990 to construct
plasmids pJE1040, pJE1045, pJE1118, pJE1119, pJE1120, and pJE1121 respectively.
Ligated DNA was transformed into NEB 5-alpha F’IQ. Plasmids were isolated from
transformant colonies and confirmed by sequencing with oJE535. For construction
of mKate2 variant plasmids, mKate2 was amplified from the mKate2 gBlock using
oligos oJE1724/1725 and digested with NdeI/XbaI. Plasmids pJE1045, pJE1040 and
pJE1118-1121 were digested with NdeI/XbaI and ligated with NdeI/XbaI digested

mKate2 gBlock to generate plasmids pGW55, pJE1454-1458. Ligations were
transformed into NEB 5-alpha F’IQ, and candidates confirmed by sequencing of
isolated plasmid DNA using oligos oJE535/536.

For construction of pJE1180 we amplified the cat and lysS genes from pLysS
(Promega) as two parts with primers designed to introduce the lysY mutation,
assembled the resulting parts into SpeI-linearized pJE1040. Primers oJE817/818
and oJE819/820 were used to amplify the two parts. The resulting lysY/cat fragment
was digested with SpeI and ligated into XbaI-linearized pJE1037, generating
plasmid pJE1180.

For construction of pJE1380, codon-optimized cadA from Aspergillus terreus
was assembled into NdeI/XbaI-linearized pJE1040—replacing mNeonGreen. The
cadA gene was synthesized as gBlocks cadA_gBlock_1 & cadA_gBlock_2. gBlocks 1
& 2 were amplified using oligos oJE1408/1409 and oJE1410/1411, respectively. The
assembly was transformed into NEB 5-alpha F’IQ, and transformants were
screened using oJE535/536. Plasmid DNA was isolated from PCR positive
candidates and sequenced using oJE535/536/1412.

For pJE1390, the cadA gene from pJE1380 was excised using NdeI/XbaI, and
ligated into NdeI/XbaI linearized pJE1045. The ligation was transformed into
QP15, and transformants were screened by colony PCR using oligos oJE535/536.
The assembly was transformed into NEB 5-alpha F’IQ, and transformants were
screened using oJE535/536. Plasmid DNA was isolated from PCR positive
candidates and sequenced using oJE535/536/1412.

For pJE1443, codon-optimized tad1 and adi1 genes from Ustilago maydis were
assembled into AflIII/XbaI-linearized pJE1040 - replacing mNeonGreen and its
RBS sequence. The tad1 and adi1 genes were synthesized as gBlocks tad1 and adi1,
which were amplified using primer combinations oJE1554/1547 and oJE1555/1548,
respectively. The assembly was transformed into NEB 5-alpha F’IQ, and
transformants were screened using oJE535/536. Plasmid DNA was isolated from
PCR positive candidates and sequenced using oJE535/536/1559/1560/1561.

For the construction of the icd / idh start codon swap plasmids pJE1444 and
pJE1445, we assembled several PCR reactions containing homology arms for
targeting, and mutations in the start codons (and RBS neutral mutations in the
region between core RBS and start codon) of icd & idh. The homology arms for
targeting insertion of the two plasmids into the icd/idh locus were amplified using
primer pairs oJE1564/1565 and oJE1568/1569 for both plasmids. The central
fragment contained between the two homology arms, containing the various
mutations, was amplified using oligos oJE1566/1567 for pJE1444 and oligos
oJE1570/1571 for pJE1445. The parts were assembled into EcoRI/HindIII-
linearized pJE382, transformed into NEB 5-alpha F’IQ, and transformants were
screened using oJE255/256. Plasmid DNA was isolated from PCR positive
candidates and sequenced using oJE255/256/1572/1573.

For construction of pJE365, homology arms to target deletion of gcd (PP_1444)
were amplified by PCR from wild-type P. putida genomic DNA, assembled into gel
purified XbaI/HindIII-linearized pK18mobsacB, and transformed into NEB 5-
alpha F’IQ. Resulting E. coli colonies were screened by colony for the presence of
homology arms using primers oJE255/256. Candidates for pJE365 were purified
from E. coli and sequenced using primers oJE255/256.

For construction of plasmid pJE1345, we had IDT synthesize gBlocks
containing a P. putida codon-optimized araA2-araE2 oxidative L-arabinose
catabolic pathway cassette from Burkholderia ambifaria AMMD and a P. putida
codon-optimized E. coli araE1 L-arabinose:H+ symporter cassette. The gBlocks
were assembled in between Δgcd homology arms in pJE365 backbone and
transformed into NEB 5-alpha F’IQ. Resulting E. coli colonies were screened by
restriction digest for the presence of the properly assembled B. ambifaria
araCDABE cassette. Candidates for pJE1345 were purified from E. coli and
confirmed by Sanger sequencing. See plasmid map for sequence details.

For construction of pJE1479, we had IDT or GenScript synthesize portions of a
cassette that contains a P. putida codon-optimized E. coli xylE xylose:H+ symporter
expression cassette that is divergent from a P. putida codon-optimized
Burkholderia xenovorans xylCDBX oxidative xylose catabolic pathway expression
cassette. These cassettes were assembled using Gibson Assembly with homology
arms to target insertion downstream of fpvA in the Pseudomonas putida KT2440
genome. See plasmid map for sequence details.

Plasmid pJE1045 was PCR amplified using primers pJE1045-ATGGTCf /
pJE1045-ATGGTCr, pJE1045-GTGGTCf / pJE1045-GTGGTCr, and pJE1045-
TTGGTCf / pJE1045-TTGGTCr to produce plasmids pJE1045-ATGGTC,
pJE1045-GTGGTC, and pJE1045-ATGGTC, respectively by PCR mutagenesis. The
resulting PCR products were digested with DpnI, transformed into NEB 5-alpha
F’IQ. Plasmids from resulting colonies were screened by Sanger sequencing.

Growth rate analysis. LB medium was inoculated from glycerol stocks and
incubated overnight at 30 °C, 250 rpm for precultures. Cultures were washed twice
by centrifugation (~4000 × g for 10 min) and resuspension in equal volumes of 1x
M9 salts lacking NH4Cl to remove residual LB medium and resuspended in 1/3
volume 1x M9 salts. Optical density (OD600) of resulting suspensions was measured
using a 1 cm pathlength cuvette. Growth assays were performed with 600 uL M9*
medium supplemented with 20 mM p-coumarate and 20 mM NH4Cl in clear 48-
well microtiter plates with an optically clear lid (Greiner Bio-One). All cultures
were inoculated with washed cultures to an OD600 equivalent to 0.03 in a 1 cm
pathlength cuvette. Plates were incubated at 30 °C, fast shaking in an Epoch2 plate
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reader (Bio-Tek) using Gen5 software (V3.0), with OD600 readings taken every 10
minutes. Exponential growth rates were determined using the CurveFitter software
(Version 1; http://www.evolvedmicrobe.com/CurveFitter/) with data points in early
mid-log phase. All growth rates were calculated from 3 replicate experiments.
Standard deviations are two-sided.

Fluorescent reporter assays. Strains were revived from glycerol stocks in 5 mL
LB with overnight incubation at 30 °C, 250 rpm. 5 mL starter cultures in M9*+
20 mM glucose + 10 mM NH4Cl were inoculated with 1% of the recovery culture
and similarly incubated. Coupled growth and fluorescence assays were performed
with a Neo2SM (Bio-Tek) plate reader using 200 µL/well of M9*+ 20 mM p-
coumarate + 2 mM (limiting) or 20 (replete) mM NH4Cl in black-walled, µClear®
flat-bottom, 96-well plates (Greiner Bio-One) with an optically clear lid. Plate
cultures were inoculated with 0.5% inoculum from starter cultures, and incubated
overnight at 30 °C, fast shaking with OD600 and fluorescence (F510,530 for
mNeonGreen and F588,633 for mKate2) measured every 10 minutes. Reporter
expression per cell was estimated by dividing relative fluorescence units (RFU) by
OD600 (as a proxy for cell number) for each time point and averaging those values
for time points occurring during either exponential growth or stationary phase.
Background absorbance and fluorescence readings from wells containing media
blanks were averaged and subtracted from sample readings prior to analysis.
Exponential phase was defined as time points where OD600 was between 0.039 and
the OD600 curve inflection point, typically OD600 ~0.2 (nitrogen limited) or ~0.6
(nitrogen replete). Stationary phase was defined as time points starting 2 h fol-
lowing end of exponential phase. Standard deviations are two-sided.

Shake flask experiments for itaconate production. Starter cultures were pre-
pared as described for growth rate assays with the exception that 50 µg/mL
kanamycin sulfate was added to the medium. Starter cultures were inoculated to a
final OD600 of 0.1 (p-coumarate cultures) or 0.2 (BCDL cultures) into 25 mL of
M9*-coumarate or M9*-BCDL medium, supplemented with either 2 mM NH4Cl
(all p-coumarate cultures) or 3 mM (BCDL cultures), in a 125 mL Erlenmeyer flask
and incubated at 30 °C, 250 rpm. Cultures were sampled periodically to measure
growth by OD600, and analyte concentrations by high performance liquid chro-
matography (HPLC).

Analytical techniques. For shake flask experiments with M9*-p-coumarate,
optical density at 600 nm (OD600) was measured directly from cultures using a
spectrophotometer (Amersham, UltroSpec10) blanked with M9*-coumarate.
HPLC analysis for p-coumarate and organic acid detection was performed by
injecting 20 µL of 0.2 µm filtered culture supernatant onto a Waters 1515 series
system equipped with a Rezex RFQ-Fast Acid H+ (8%) column (Phenomenex)
and a Micro-Guard Cation H+ cartridge (Bio-Rad). Samples were run with column
at 60 °C using a mobile phase of 0.01 N sulfuric acid at a flow rate of 0.6 mL/min,
with a refractive index detector and UV/Vis detector measuring A230 & A280 for
analyte detection. Analytes were identified and quantified by comparing retention
times and spectra with pure standards.

For shake flask experiments with M9*-BCDL, optical density at 600 nm
(OD600) was measured with a Nanodrop (ThermoFisher Scientific) after diluting
samples sixfold. Uninoculated M9*-BCDL medium was used as a blank to subtract
signal coming from components in the medium.

Itaconic acid quantitation in M9*-BCDL. Prior the analysis, a 0.1 mL aliquot
was taken from each sample and 0.9 mL of water were added to make a 10x
dilution. Then, 34 µL of 72% sulfuric acid were added to each diluted sample to
decrease the pH below 2.0 and precipitate acid insoluble lignin. Samples were
centrifuged, and the supernatant was filtered through a 0.2 µM filter pore size.
Itaconic acid quantification was performed on an Agilent 1100 series HPLC system,
with a diode array detector (DAD) at 210 nm (Agilent Technologies). Analysis was
performed by injecting 6 µL of filtered culture supernatant onto a Phenomenex
Rezex™ RFQ-Fast Acid H+(8%) column with a cation H+guard cartridge (Bio-Rad
Laboratories) at 85 °C using a mobile phase of 5 mM sulfuric acid at a flow rate of
1.0 mL/min.

Aromatic compounds quantitation in M9*-BCDL. Metabolite analysis in BCD
was performed on an Agilent 1200 LC system (Agilent Technologies) equipped
with a DAD. Each sample and standard was injected at a volume of 10 μL onto a
Phenomenex Luna C18(2) column 5 μm, 4.6 × 150 mm column (Phenomenex).
The column temperature was maintained at 30 °C and the buffers used to separate
the analytes of interest were (A) 0.05% acetic acid in water and (B) 0.05% acetic
acid in acetonitrile. The chromatographic separation was carried out using a
gradient of: initially starting at 1% B going to 50% B at 35 min before immediately
switching to 99% B at 35.1 min, before equilibrium for a total run time of 47 min.
The flow rate of the mobile phases was held constant at 0.6 mL/min. The same
standards used in the BCDL experiments were also used to construct calibration
curves, but between the ranges of 5–200 µg/L. Three separate wavelengths from the
DAD were used to identify and quantitate the analytes of interest. A wavelength of
210 nm and 225 nm was used for the analytes vanillic acid and 4-hydroxybenzoic
acid. A wavelength of 325 nm was used for the analytes p-coumaric acid, and
ferulic acid. A minimum of five calibration levels was used with an r2 coefficient of
0.995 or better for each analyte. Standard deviations are two-sided.

Transcriptional profiling of P. putida. For the determination of NO3 induced
promoters, we utilized strain JE1657, an engineered P. putida strain containing a
Bxb1 phage integrase system for rapid genomic integration of DNA32, and a PT7:
mNeonGreen reporter cassette. JE1657 was cultured at 30 C in 50 mL MME
mineral medium in a 250 mL Erlenmeyer shake flask at 30 °C, 250 rpm shaking and
harvested mid-log (OD600= ~0.2) by centrifugation (~16,000 × g, 2 min, 4 °C).
Supernatants were quickly decanted, and cell pellets were frozen rapidly in
liquid nitrogen prior to storage at −80 °C for storage prior to RNA isolation.
Four samples were prepared for each condition. For characterization of
biosensor performance, strain JE2212 was cultured under identical conditions.

Cell pellets, were resuspended in TRIzol (ThermoFisher-Invitrogen, Waltham,
MA USA) and processed according to the manufactures protocol for TRIzol
reagent. In general, TRIzol was added to cell pellets and mixed by vortex and
pipetting. Chloroform was then added and mixed and samples were centrifuged.
After centrifugation the aqueous layer was removed and mixed 1:1 with 80%
ethanol. The samples were then purified on a RNeasy column (Qiagen Hilden,
Germany) following the manufactures protocol and the on-column DNase
digestion. RNA was eluted off the column in 35 µL RNAse free H20 (Qiagen,
Hilden, Germany). RNA concentration was quantified using a Nanodrop 1000
instrument (ThermoScientific, Waltham, MA) and RNA quality was verified by
obtaining RNA Integrity Numbers (RIN) using an RNA 6000 Nanochip on an
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA).

Ribosomal RNA was depleted from total RNA samples using a RiboZero rRNA
Removal Kit (Epicentre-Illumina Inc. San Diego, CA) according to manufacturer’s
instructions. The depleted sample was purified on a RNA Clean & Concentrator-5
(Zymo Research, Irvine, CA, USA) following the manufacturer’s protocol, and then
the depleted material was quantified using a Nanodrop 1000 and visualized on an
Agilent 2100 Bioanalyzer instrument with a RNA 6000 Nanochip (Agilent
Technologies, Santa Clara, CA). RNA depleted of ribosomal RNA was used as
input material to synthesize cDNA libraries using a ScriptSeq v2 RNA-Seq Library
Preparation Kit (Illumina-Epicentre, San Diego, CA, USA) according to
manufacturer’s instructions and TruSeq compatible barcodes. Pooled barcoded
libraries were sequenced in one direction for 50 bases (SE50) on an Illumina Hi-
Seq2500 using v4 chemistry (Illumina Inc. San Diego, CA) and de-multiplexed as a
sequencing service provided by The Genomic Services Lab at Hudson Alpha
Institute for Biotechnology (HudsonAlpha, Huntsville, AL).

Differential gene expression analysis. After Illumina sequencing, RNA-seq reads
were mapped to modified versions of the P. putida KT2440 reference genome
(NC_002947) containing the mutations found in JE1657 and JE2212 using the
Geneious for RNA-seq mapping workflow. Read count per annotated gene was
calculated for each treatment and replicate, as well as fragment per kilobase million
(FPKM), a common normalization technique. We then exported gene locus tags
and raw read counts into tab-delimited files, one for each replicate. To calculate
differential gene expression, we used the R package DESeq254 (version 1.10.0),
which calculates log-fold change in expression and allows comparison between
treatments using several replicates. We had three (JE2212 assay) or four (JE1657
assay) replicates per treatment, for a total of six or eight inputs per experiment.
Differential expression data can be found in Supplementary Data 1 (JE2212) and
Supplementary Data 2 (JE1657).

Statement on measurements. For all data points in this manuscript, measure-
ments were taken from distinct samples.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and its
Supplementary Information files. A reporting summary for this Article is available as a
Supplementary Information file. The datasets, plasmids, and microorganisms generated
and analyzed during the current study are available from the corresponding author upon
request. NGS expression data generated in this study were deposited in the Gene
Expression Omnibus (GEO) under accession number GSE147420. Source data are
provided with this paper.
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