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Abstract: Reproductive isolation is an important component of species differentiation. The plastid
accD gene coding for the acetyl-CoA carboxylase subunit and the nuclear bccp gene coding for the
biotin carboxyl carrier protein were identified as candidate genes governing nuclear-cytoplasmic
incompatibility in peas. We examined the allelic diversity in a set of 195 geographically diverse
samples of both cultivated (Pisum sativum, P. abyssinicum) and wild (P. fulvum and P. elatius) peas.
Based on deduced protein sequences, we identified 34 accD and 31 bccp alleles that are partially
geographically and genetically structured. The accD is highly variable due to insertions of tandem
repeats. P. fulvum and P. abyssinicum have unique alleles and combinations of both genes. On the other
hand, partial overlap was observed between P. sativum and P. elatius. Mapping of protein sequence
polymorphisms to 3D structures revealed that most of the repeat and indel polymorphisms map
to sequence regions that could not be modeled, consistent with this part of the protein being less
constrained by requirements for precise folding than the enzymatically active domains. The results
of this study are important not only from an evolutionary point of view but are also relevant for pea
breeding when using more distant wild relatives.

Keywords: acetyl-CoA carboxylase; hybrid incompatibility; hybrid necrosis; nuclear-cytoplasmic
conflict; pea; reproductive isolation; speciation

1. Introduction

Reproductive isolation is an important component of species differentiation. Mechanisms
that create reproductive barriers between once-conspecific organisms have long been a focus of
evolutionary biology [1]. Although geographical separation plays a vital role in speciation [2],
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ecological factors also contribute [3]. Ecological selection favoring a particular cytoplasm has been
described from various taxa [4,5]. Hybrid incompatibility due to the genetic divergence between the
hybridizing parents has been theorized already by Bateson [6], Dobzhansky [7], and Muller [8]. Hybrid
incompatibilities are proposed to be among the first genetic barriers to arise during speciation [9].
Although interspecific hybridization seems to be relatively frequent in plants, comparatively less
is known about the reproductive barriers within species [10]. The most classical definition of the
species relies on reproductive isolation, namely the inability to produce a viable offspring from
inter-species hybridization [11,12]. Reproductive barriers might be broadly classified into prezygotic
(pre-pollination) and postzygotic (post-pollination) ones [13]. Pre-pollination isolation mechanisms,
such as habitat divergence, temporal isolation, pollinator isolation, and mating system divergence, are
usually more effective than post-pollination isolation [2].

Interactions among nuclear-encoded genes can lead to diverse forms of hybrid incompatibility
via multiple gametophytic and sporophytic mechanisms [9]. The identification of so-called ‘speciation
genes’ is of interest because their knowledge would offer clues to the ecological settings, evolutionary
forces, and molecular mechanisms that drive the divergence of populations and species [12,14].
A speciation gene can be strictly defined as a gene that contributes to the splitting of two lineages by
reducing the amount of gene flow between them [12].

Until recently, characterization of genetic incompatibility has largely focused on the differences
between species and on nuclear incompatibilities [2,12,15–17]. As a result, the importance of
cytonuclear incompatibility (i.e., incompatibility between the nuclear and organelle genomes) in
driving the early stages of speciation received less attention [10]. There has been long co-evolution
between the nuclei and organelles. Molecular data indicate a large degree of interdependence
between the cellular sub-genomes [18]. The subdivided eukaryotic genome has resulted from
a massive restructuring and intermixing of the genomes of the initially free-living symbiotic
partner cells with loss, intracellular transfer, and gain of genetic information, with resulting high
interdependence and mutual “fine tuning” of both genomes that can easily become disrupted
upon intraspecific hybridization. Cytonuclear incompatibilities are predisposed to be substantial
contributors to reproductive isolation and speciation [19,20]. Empirical studies have shown that
intrinsic postzygotic barriers to reproduction—hybrid inviability and hybrid sterility—evolve through
mechanisms consistent with the classic Bateson–Dobzhansky–Muller model [9]. As adaptive or nearly
neutral substitutions accumulate in diverging lineages, these may in a particular lineage become fixed
in a state incompatible with that in the other lineage. As a result, the hybrid dysfunction occurs when
such incompatible alleles are brought together. The genetic basis for hybrid sterility has been studied
in several plants, such as Solanum [21], Oryza [22], Mimulus [23], Oenothera [24], Arabidopsis lyrata [25],
and A. thaliana [26,27]. There are two classes of cytonuclear hybrid incompatibility: cytoplasmic
male sterility (CMS), due to mitochondrial-nuclear mismatch, and cytonuclear chlorosis, caused by
plastome–nuclear incompatibilities. Organelle genomes have a reduced population size and lack
sexual recombination [28]. These characteristics both increase genetic drift, and lead to potential
accumulation of deleterious mutations and selection for compensatory evolution in interacting nuclear
genes. Due to these factors, cytonuclear incompatibilities have been proposed to be among the first
genetic incompatibilities to arise, influencing the earliest stages of speciation [10,19,20,24,29].

Most known plant sterility loci have been found in the mitochondrial genome, causing
CMS characterized by the absence of viable pollen. The genetics of hybrid CMS are remarkably
conserved across flowering plants. Molecular genetic studies indicate that CMS typically results
from rearrangements in the mitochondrial genome [30,31]. As mitochondria are usually maternally
inherited, CMS is typically transmitted through the ovules. In contrast, nuclear genes are transmitted
through both ovules and pollen. This difference in inheritance patterns creates a genetic conflict
between nuclear and cytoplasmic genes. Hybrid nucleo-organelle dysfunction can result in post-zygotic
hybridization barriers that usually manifest as differences in the offspring of reciprocal crosses owing to
non-Mendelian inheritance of organelles. Asymmetry in reproductive isolation appears to be common
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and taxonomically widespread among plant species. Plastids can also contribute to nucleo-cytoplasmic
incompatibility. Although cytonuclear chlorosis or albinism of hybrids is not as common as CMS, these
have been widely observed, and their implications for speciation were recognized early on [32–35].
The role of plastids in speciation processes is known from species with a biparental mode of plastid
inheritance, e.g., Geranium, Pelargonium and Medicago [36], and mainly from genus Oenothera, which
became one of the models for studying plant evolution [24]. Various incompatible phenotypes have
also been reported from Rhododendron, Hypericum, Trifolium, Zantedeschia, and Pisum [24]. Cyto-nuclear
co-adaptation has been described in Arabidopsis thaliana [18] and demonstrated to affect its adaptive
traits [37]. Interestingly, crop domestication may also increase the likelihood that genes causing
incompatibility become fixed in the population through genetic hitchhiking [38].

The plastid accD gene coding for the acetyl-CoA carboxylase beta subunit and the nuclear gene
bccp coding for the biotin carboxyl carrier protein of acetyl-CoA carboxylase were nominated as
candidate genes responsible for nuclear-cytoplasmic incompatibility in peas based on data from
crosses between wild and domesticated pea forms [39]. Incompatible hybrids exhibit chlorophyll
deficiency, reduction of leaf size low pollen fertility, low seed set, and poorly developed roots [40].
The acetyl-CoA carboxylase (ACCase) complex is involved in the biosynthesis of fatty acids, which
takes place in the plastids [40]. ACCase belongs to a group of biotin dependent carboxylases, catalyzing
acetyl-coenzyme A carboxylation to malonyl coenzyme A and providing the only entry point for all
carbon atoms in the fatty acid synthesis pathway [41]. Uniquely in Eukaryota, plants have two distinct
ACCases: one eukaryotic-like homomeric multidomain ACCase in the cytosol and a bacterial-like
heteromeric ACCase within the plastids [41]. The heteromeric form of ACCase is found in prokaryotes
and the plastids of Viridiplantae. Presumably, all genes encoding ACCase subunits initially resided in
the plastid genome after the original endosymbiotic event in algae and underwent sequential transfer
to the nuclear genome [42]. Plastid ACCase participates in fatty acid synthesis, whereas the cytosolic
enzyme is engaged in the synthesis of very long chain fatty acids, phytoalexins, flavonoids, and
anthocyanins. Plastid-localized ACCD enzyme is responsible for catalyzing the initial tightly-regulated
and rate-limiting step in fatty acid biosynthesis. Nuclear encoded Biotin Carboxyl Carrier Protein
(BCCP) is a part of the enzyme Acetyl-CoA carboxylase complex and serves as a carrier protein
for biotin and carboxybiotin throughout the ATP-dependent carboxylation of acetyl-CoA to form
malonyl-CoA. The resulting Acetyl-CoA carboxylase is a heterohexamer composed of the biotin
carboxyl carrier protein, biotin carboxylase, and two subunits each of the ACCase subunit alpha and
the ACCase plastid-coded subunit beta [40].

The plastid ACCase of legumes (Papilionoideae) consists of four subunits, each coded
by a separate gene: biotin carboxylase (accC), biotin carboxyl carrier protein (accB=bccp),
alpha-carboxyltransferase (accA), and beta-carboxyltransferase (accD). The genes coding accC, accB,
and accA are localized in the nuclear genome, whereas the accD gene is localized in the plastid
genome [42]. Multiple independent lineages have experienced accelerated rates of substitution in
similar subsets of non-photosynthetic genes, including accD (in legumes [43–45] and in Oleaceae [46]).
In Silene (Caryophyllaceae) species with accelerated plastid genome evolution, the nuclear-encoded
subunits of the ACCase complexes are also evolving rapidly, indicating a strong positive selection [47].
Such patterns of molecular evolution in these plastid–nuclear complexes are unusual for ancient
conserved enzymes but resemble cases of antagonistic coevolution between pathogens and host
immune genes. Genetic characterization of hybrid necrosis in crosses between tomato species [48]
and between Arabidopsis ecotypes [49,50] has revealed that incompatibilities among complementary
disease resistance genes might play such a role in the evolution of hybrid inviability [51].

In this work, we explored the allelic diversity of accD/bccp in the geographically diverse set of
wild pea (Pisum sp.). The accD/bccp are recently identified genes underlying nuclear-cytoplasmic
incompatibility in Pisum sp. [39]. We sought to map the allelic combinations of accD/bccp occurring in
nature to determine geographic patterns in their distribution, and to identify possible relationships to
pea genetic diversity.
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2. Results

2.1. Structure and Variation of accD Gene

The accD gene is located between positions 70,882 and 72,654 in the P. sativum cv. Feltham First
(HM029370) reference chloroplast genome, resulting in a 1772 bp DNA encoding a protein of 432 amino
acid residues. The primers used in our study were designed to match the most conserved region and
were located close to the ends of the accD coding sequence. Consequently, we did not capture the very
5′ and 3′ end of the coding sequence due to quality trimming. The beginning and end of the accD
sequence, comprising 48 nt from the start codon and 58 nt from the stop codon, consequently missing
the first 16 and last 19 codons, were thus excluded from the subsequent analysis.

The length of the accD gene within our studied material ranged from 1403 bp to 1859 bp at
DNA level and from 467 to 619 amino acid residues, respectively (GenBank accession numbers
MK619486—MK619678). In the studied set of 195 accessions, there was extraordinary variation in the
gene length, due to the occurrence of 13 indels whose length varied between 3 and 167 nucleotides.
This variation is due to insertions consisting of tandem repeats of 10-150 bp units present in 1 to
37 nearly identical copies, all in the same (i.e., direct) orientation relative to each other (Figure 1).
The repetitive sequences can be divided into 6 categories. In the shortest 1403 bp allele (JI1010,
P. fulvum) there are four, three, and one repeats of 9 to 12 bp long. These expand in the longest 1859 bp
allele (JI267, P. elatius), which has 37 repeats of 10 to 33 bp, 1 repeat of 57 bp, 1 repeat of 102 bp,
and 1 repeat of 149 bp. We identified the main five longest tandem repeats blocks, which consist
of two or three individual blocks of different lengths and degrees of identity. These blocks are not
identical and contain many nucleotide changes and triplet duplications. Such repeats were identified
by the presence of small, almost identical blocks, that are part of larger tandem repeats. The first
tandem repeat block is the most complex and most degenerate, consisting of three sequential blocks
(highlighted in yellow in Figure 1, Figure S1). These blocks are of different lengths and are degenerate
to varying degrees from each other. The most similar are first two blocks (89%), which differ by 3 amino
acids and by the insertion L-I-L-I for a total of 64 amino acid residues. Characteristic for this tandem
repeat is the presence of multiple duplications of three amino acids D-T-N alone or together with
D-I-S. The complex, degenerate, and mixed tandem repeat is also the penultimate (3 and 4 grey blocks).
This tandem repeat has multiple duplications of five amino acid stretch of S-E-E-E-K. The remaining
repeats consist of two blocks separated from each other by 7 or 9 amino acids (Figure 1).
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Figure 1. The alignment of amino acid sequences of all identified accD alleles. The figure only shows
the region from 1 to 480 amino acid residues. The colored regions show the 5 translated repeats,
polymorphic amino acid exchanges (in magenta), Zn-finger (boxed), acetyl-CoA binding (light blue),
coA carboxylation catalytic (dark blue), and carboxybiotin binding (in green) sites. Residues in purple
are point mutations in at least one haplotype. There are no indels after position 480 (for full see
Figure S1).
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2.2. Variation in Nuclear bccp Gene

The predicted ORF of the bccp gene encoding the biotin carboxyl carrier protein of P. sativum
cv. Cameor from the pea RNA atlas is 873 bp long and encodes a protein of 290 amino acids. In the
pea RNA atlas, this is represented by the ubiquitously expressed PsCam051640 transcript, which
corresponds to Tayeh et al. (2015) map PsCam051640 at LGIII. The genomic DNA extracted from the
shotgun genome sequence is 5906 bp, with 9 exons interspersed by 8 introns (Exon 1 is 234 bp, exon
2 is 206 bp, exon 3 is 76 bp, exon 4 is 54 bp, exon 5 is 262 bp, exon 6 is 62 bp, exon 7 is 69 bp, exon 8
is 46, and exon 9 is 265 bp). The respective introns are 1170, 541, 263, 874, 111, 856, 84, and 733 bp.
The following analysis was conducted on cDNA, avoiding introns. The detected polymorphism,
thus, only concerns the coding sequence, and is correspondingly lower than that expected for the
complete locus. Notably, to obtain sufficient PCR product we had to perform out two consecutive
nested PCR amplifications. This likely reflects the relatively low expression level of the gene in young
leaf tissue. There were altogether 39 variable positions and no indels in a total of 195 studied accessions
(NCBI accession numbers MK644626—MK644819). These identified 31 protein bccp variants (Table S1).
Sixteen analyzed P. fulvum accessions had three bccp alleles (bccp1/2/3) separated by 4 to 10 amino
acid changes from the nearest P. elatius alleles. From domesticated P. sativum landraces (60 acc.), 16 had
the bccp_22, and six had the bccp_18 allele. From the independently domesticated Ethiopian pea
P. abyssinicum (24 acc.), 19 had the specific bccp_26 allele, shared with two P. elatius accessions (PI343978,
PI343979 from Turkey), four had the bccp_20 allele, separated by one or two amino acid exchanges
from nearest P. elatius. Ninety-five analyzed P. elatius accessions had the largest diversity (all together
28 distinct bccp alleles, Table S1).

2.3. Network and Maximum Parsimony Analyses

Various approaches in the visualization of the data through networks and maximum parsimony
(MP) analysis produced a very similar view, with only minimal differences. For further interpretation
of clustering of identified alleles into larger groups, the consensus maximum parsimony tree method
was used. This produced a very similar clustering of alleles as inspected networks (Median
network, NeighborNet, SplitDecomposition networks; not shown). The MP analysis found 18 equally
parsimonious trees for the accD gene (length 73 steps) and 19 for the bccp (42 steps) (Figure 2, Figure 3).
The resulting trees contained several polytomies. This is because of a large part of the total sequence
variability being due to indels in the case of accD, and this information was not included into the MP
analysis. In addition, a number of homoplasious mutations were also excluded, with the resulting
trees contained several polytomies. However, as we were not interested in the assessment of the
gene phylogeny, we did not try to interpret these polytomies. Produced clades (with a rather high
bootstrap support) were very similar to groups inferred from the network analyses. Based on the
similarity in the grouping of alleles between inspected networks and the MP analysis, the groups
of alleles were inferred from the consensus MP tree for both investigated genes. For the accD gene
10 groups (A–J) were inferred; 15 groups were inferred for the bccp gene (A–O) were inferred (Figure 2,
Figure 3, Table S1). The accD gene group D (comprising alleles accD_13 and accD_14) was specific for
P. abyssinicum, except for one sample of P. sativum from Montenegro (accession n◦ PI357292), which
also possessed the accD_14 allele. Group F (comprising alleles accD_17/18/19/20/21) was specific
for P. fulvum. Accessions of P. elatius and landraces of P. sativum were represented by multiple alleles
belonging to different groups.

In the case of the bccp gene, P. abyssinicum was represented by groups J (allele bccp_26) and G
(alleles bccp_20/22). However, in contrast to the accD gene, inferred alleles were not specific for
P. abyssinicum, but were also found within P. elatius and samples of P. sativum (Figure 3, Table S1).
The three identified alleles observed for P. fulvum (bccp_1/2/3) clustered together and represented
group A. Two of these alleles were specific (bccp_1/2) for P. fulvum and one (bccp_3) was shared with
two samples of P. sativum from Greece (JI1525 and JI2573). The identified alleles for the investigated
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accessions of P. elatius fall within 12 groups and for P. sativum within six groups, which were shared
between these two species (Table S1).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW  7 of 19 
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Figure 2. Midpoint-rooted consensus tree for the accD gene presenting the most parsimonious
relationships among the identified 34 alleles within the studied world-wide pea collection.
The consensus tree is build up from the 18 equally parsimonious trees (length 73, consistency index
0.900; retention index 0.972; composite index 0.892). Branch coloring follows the species presence of
particular alleles: olive green = alleles observed only within P. fulvum; grey = alleles shared among
P. fulvum and P. elatius; orange = alleles shared among P. sativum and P. elatius; red = alleles observed
only for P. sativum; turquoise = alleles shared among P. abyssinicum and P. sativum; yellow = alleles
observed only within P. abyssinicum; blue = alleles observed only within P. elatius. Bootstrap support
≥ 50 is shown above branches.
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Figure 3. Midpoint-rooted consensus tree for the bccp gene presenting parsimonious relationships
among the identified 31 alleles within the studied world-wide pea collection. The consensus tree
built from the 19 equally parsimonious trees (length 42, consistency index 0.762; retention index
0.900; composite index 0.793). Branch coloring follows species presence of particular alleles: olive
green = alleles observed only within P. fulvum; magenta = alleles shared among P. fulvum and P. sativum;
orange = alleles shared among P. sativum and P. elatius; red = alleles observed only for P. sativum;
green = alleles shared among P. abyssinicum, P. sativum and P. elatius; blue = alleles observed only within
P. elatius. Bootstrap support ≥ 50 is shown above branches.
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2.4. Frequency of Amino Acid Substitutions and Their Distribution

Analysis of the nuclear encoded bccp gene in a panel of 179 samples of 809 sites resulting in
269 analyzed codons revealed 196 synonymous sites (Pi(s): 0,00616 Pi(s), Jukes & Cantor: 0,00620) and
610 non-synonymous sites (Pi(a): 0,00553, Pi(a), Jukes & Cantor: 0,00556). This resulted in a Ka/Ks
ratio of 0.895. Despite the presence of frequent insertions and deletions, the accD sequence could
be translated into protein. The analysis covered 1306 sites (e.g., 425 codons). Nucleotide diversity
analysis of accD showed 278 synonymous sites (Pi(s): 0,00390, Pi(s), Jukes & Cantor: 0,00391) and 997
non-synonymous sites (Pi(a): 0,01048, Pi(a), Jukes & Cantor: 0,01064). This resulted in a high Ka/Ks
ratio of 2.726, which indicates positive selections and accelerated evolutions.

Analysis of protein sequence revealed that the ACCD protein has a ClpP protease/crotonase
domain (IPRO 29045; region of 251 to 296 and 384 to 584 amino acids), coiled coil domain (region of
380 to 407 amino acids), an acetyl-CoA-carboxyltransferase N terminal domain (IPRO 11762; in region
of 226 to 590 amino acids), and a zinc finger (230–252 amino acids) domain (Figure 1). The BCCP
protein has a biotin/lipoyl attachment (IPRO 000089) domain (region of 207 to 280 amino acids) and
a carboxytransferase (CT) interaction site (239G-284F-249G-250A-257D), where 249G is a conserved
biotinylation site.

We next attempted to investigate the location of the individual amino acid substitutions, and the
conspicuous indels found in accD. This was performed with respect to the 3D folding of both ACCD
and BCCP proteins, to the extent that we were able to predict their spatial structure by threading
on experimentally characterized related templates. We could produce only partial models for both
proteins (File S1, S2 For ACCD, the model covered approximately 43% of the sequence, corresponding
to the C-terminal portion of the protein). The N-terminal region and an additional loop within the
modelled segment were disordered in the prediction. For the BCCP protein, approximately 45% of the
sequence was covered by the best templates but only two short separate fragments from this domain
could be reliably modeled; the rest of the molecule was disordered in the prediction (Figure 4, Table 1).

Table 1. Distribution of protein sequence polymorphisms in structurally modelled versus non-modelled
parts of the ACCD and BCCP protein sequences.

Protein
Substitutions/Alignment Length Indels/Alignment Length

Modelled Not Modelled Modelled Not Modelled

accD 36/299 50/256* 2/299 17/256**

bccp 17/134 19/138 0/134 1/138

Asterisks denote significant differences in the frequency of the given category of mutations in non-modelled
(disordered) parts of the protein compared to the modelled ones (*—p < 0.05, **—p < 0.01).

Remarkably, mapping of the identified protein sequence polymorphisms revealed that most
of the above-described repeat and indel polymorphisms in the ACCD sequence map to sequence
regions could not be modelled due to the lack of suitable templates and intrinsic disorder. This is
consistent with this part of the protein being less constrained by requirements for precise folding than
the enzymatically active domain. Point mutations were also somewhat enriched in the part of the
ACCD protein that was not modeled. However, no such bias was detected for BCCP (Figure 4, Table 1).
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Figure 4. Parts of the ACCD (A) and BCCP (B) protein sequences covered by the molecular model
are marked in bold. Residues on gray background were not covered by the population sequence
alignment. Residues exhibiting one, two, or more allelic variants are shown on a colored background.
Residues shown in red are deleted only in some alleles. Black arrows indicate the location of insertions
in some alleles.

2.5. Allelic accD/bccp Combinations

We found 34 accD and 31 bccp alleles yielding altogether 1054 possible combinations. Within the
wild pea (P. elatius) we detected 61 combinations (Table S2). Most of these combinations (45) were
found only once. Cultivated P. sativum landraces had 20 combinations; the most frequent were
accD_29/bccp_22 (30), followed by accD_29/bccp_18 (8). P. abyssinicum accessions had 4 distinct
combinations, with accD_14/bccp_26 being predominant (17). P. fulvum had 9 combinations,
accD_21/bccp_1 (4), accD_20/bccp_1 (3), and accD_17/bccp_3 (2). The only exception in our P. fulvum
set was JI2539 from Israel, which had accD_22 (accD_G lineage) shared with P. elatius. There were two
bccp alleles (bccp_22 and bccp_31) that formed the highest number of combinations with 18 and 10 accD
alleles, respectively. Conversely, two accD alleles, accD_29, accD_25, and bccp_22, bccp_31 formed 8,
9, and 19, 10 combinations, respectively. Notably, the most frequent combination found in P. sativum
landraces accD_29/bccp_22 was found in these high occurrence alleles (Figure 5).
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2.6. Relationship to Pisum Genetic Diversity

Having previously analyzed genetic diversity based on genome-wide sampled polymorphism [52,53],
we examined the distribution of both accD and bccp alleles within respective genetic groups. Cultivated
Pisum sativum accessions can be divided into two (nr. 3 and 6) equally abundant (24 and, 27 accessions,
respectively) groups. The independently domesticated Ethiopian pea (P. abyssinicum) forms a separate
(nr. 7) group (Table S1). With respect to accD/bccp alleles, accD_29 and bccp_22 alleles predominate in
60 analyzed P. sativum accessions (41, 38 accessions respectively) (Supplementary Table S1), while all 24
P. abyssinicum accessions had single unique accD_14 and bccp_26 (17 acc.), bccp_20 (5 acc.) and bccp_22
(JI1974) alleles corresponding to its separate domestication history and associated bottleneck. P. fulvum
as a separate species forms a separate genetic group (nr. 2) and has also distinct and the most distant
accD (accD_17-21) and bccp (bccp_1-3) alleles, separated by 39 to 40, and 7 to 8 amino acids, respectively,
from the closest P. elatius alleles. On the contrary, wild P. elatius is genetically the most diverse and has
seven genetic groups (Trněný et al. 2018), one of which (nr. 3) overlaps with P. sativum. This diversity
is also reflected with 22 different accD and 25 bccp alleles, respectively. The most abundant are accD_25
(13 acc.), accD_29 (9 acc.), accD_2 (11 acc.), and bccp_22 (28 acc.), and bccp_31 (16 acc.) (Table S1).
There is only a partial relationship between the genome wide DARTseq and accD/bccp based diversity.
Genetic group nr. 10 of P. elatius accessions from the Caucasus region has the most distinct accD_30, 31,
34, but not bccp alleles. Similarly, genetic groups nr. 4 and 5 have a high proportion of accD_2 (8 acc.)
and accD_15/16 (5 acc.) alleles in samples from Israel or eastern Turkey and Georgia, respectively. No
clear genetic group assignment was found for bccp alleles within P. elatius accessions.

2.7. Geographic Distribution of accD/bccp Alleles

Pisum fulvum (16 acc.) is geographically restricted to Israel (7 acc.), Syria (7 acc.), Jordan
(1 acc.), and southeastern Turkey (1 acc.), and displays distinct accD/bccp alleles. Genetically and
geographically the most diverse set is from P. elatius (96 acc.). Of these, there were 34 accessions from
Turkey, which had the highest genetic diversity (Figure 6, Table S1). These accessions have various
accD/bccp alleles, although the combination accD_25 and bccp_20 is the most frequent (10). The next
large group is P. elatius from Israel, which had 25 accessions that belong to various genetic groups.
These also have different accD_2 and bccp_5 (22 alleles occurring in 13 accessions). European samples
cover a large region of Western (Spain, Portugal, France), Central (Italy), and Eastern (Greece, Hungary,
Serbia) Europe (Table S1). The later samples are distinct by both by genome wide analyses and by
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accD/bccp alleles analysis. Finally, the most separate group of P. elatius is from Armenia, with unique
accD_34 and bccp_21/22 alleles (Figure 6).
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Figure 6. Geographic distribution of ACCD/BCCP allelic combinations assigned to large groups (for
details see Table S1) within the Middle East.

The cultivated pea is geographically less precisely localized, except for P. abyssinicum, which is
found only in Ethiopia and Yemen. All P. abyssinicum accessions have accD_14/bccp_20/26 alleles.
Landraces of P. sativum originate from 24 countries and span a large geographical area from the Western
Mediterranean to Central and Southern Asia. They predominantly have accD_29 (41 acc.) and bccp_22
(36 acc.) alleles typical for cultivated pea. There are few distinct accessions that have different alleles.
Two were from Algeria (accD_32/bccp_11/12), and two accessions were from Greece (specific bccp_3
allele). Two accessions from China (ATC6925, ATC6937) have a accD_6 allele shared with P. elatius,
while PI560969 from Nepal has distinct accD_2/bccp_5 alleles (Table S1).

3. Discussion

Here we report the allelic composition and geographical distribution of two genes involved
in postzygotic reproductive isolation in the pea [39]. Taking advantage of the available germplasm
resources [52,53], we analyzed the allelic composition of chloroplast localized accD and nuclear
encoded bccp genes. Our results extend the experimental data of Bogdanova et al. [39]. We analyzed
the allelic composition of accessions collected from the wild (including all recognized Pisum species)
and domesticated peas of various geographical origins.

Postzygotic reproductive isolation, expressed as hybrid sterility or inviability, hybrid weakness or
necrosis, and hybrid breakdown, is considered one of the two major fundamental processes leading to
speciation [2,9]. The plastome–genome dysfunctions concern various kinds of albinism. Generally,
incompatible hybrid materials suffer from reduced pigment content, lower rates of photosynthesis,
and an impaired thylakoid structure. We detected the occurrence of albinotic plants in crosses of wild
Pisum fulvum or P. elatius with the cultivated pea P. sativum, which upon identification of the respective
genes [39] prompted this study.

3.1. Hypervariability of the Chloroplast accD Gene

The region of the chloroplast genome around the accD gene has been found to be prone to
accumulation of repeats, resulting in high interspecific variability in numerous species (Pisum and
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Lathyrus [45], Capsicum [54], Glycine [43], Silene [47], Oenothera [55,56], Cupressophytes [57]) but much
less variability at the intraspecific level (Medicago truncatula [44], tea, Camellia sinensis [58], and pea,
Pisum sp. [39,40]). Our present study substantially expands the previous reports [39,40] by analyzing
195 pea samples covering the entire geographical and species range [52,59]. Our results on the ratios
of nonsynonymous to synonymous substitutions (Ka/Ks) in the pea accD gene agree with data from
Oenothera, Silene, and Cupressophytes [47,55,57]. This indicates positive selection, since Ka/Ks values
significantly above 1 are unlikely to occur without at least some of the mutations being advantageous.
The large variation in plastid-encoded accD gene sequences, both between and within the Pisum species,
is consistent with findings in Silene, where positive selection in the phylogenetic context has been
detected [47]. In many cases of plastid genome evolution, mutations have disproportionately affected
nonsynonymous sites, resulting in elevated ratios of nonsynonymous to synonymous substitution
rates. Notably, plastid genome comparison between Lathyrus sativus and Pisum sativum resulted in
identification of a region spanning the accD gene with increased mutation rate [45]. Analysis of publicly
available accD sequences for Lathyrus and Vicia species supported these findings (unpublished).

Variation detected in the Pisum sp. accD sequence is mainly caused by the insertion of multiple
tandem repeated sequences, as found in Cupressophytes [57] and Medicago [44]. In particular, the
later study corresponds well to our pea accD data, since each of the 24 studied Medicago truncatula
genotypes appears to have a different accD sequence, yet with maintained reading frames despite
the high variability. Mapping of the insertion sites onto the predicted protein structure indicated
their clustering within the N-terminal part of the ACCD protein that could not be reliably modelled
due to intrinsic disorder. Such disordered protein regions are known to be extremely flexible and
dynamic, alleviating some structural constraints [60], and were reported to be prone to insertions
and deletions [61]. It has been suggested that regions surrounding tandem repeats evolve faster than
other non-repeat-containing regions, which results in increased frequency of substitutions near the
flanking sequences [62]. As shown in tobacco, a functional accD is essential for development [63].
Interestingly, the relationship to biparental inheritance of plastids was proposed to be related to the
plastid competition [56]. Since about 20% of all angiosperms contain plastid DNA in the sperm cell, it
is likely that this mechanism of cytonuclear conflict is also present in other systems [64–67].

3.2. Allelic accD/bccp Combinations Found in Wild and Domesticated Peas

One of our major aims was to detect allelic combinations of both genes occurring in wild peas,
as well as in cultivated pea crop. Altogether we found 36 accD and 35 bccp alleles in the set of 195
accessions. Within the wild pea (P. elatius) these occurred in 60 out of 671 possible combinations,
indicating a high diversity, while both domesticated P. sativum and P. abyssinicum had only a reduced
subset. There was no overlap between P. fulvum and P. elatius, except for one P. fulvum JI2539 accession
from Israel, which had accD_22 (G lineage) allele shared with three P. elatius samples from Turkey.
Notably, in our previous study [52], we have found in this accession a typical P. elatius trnSG_E6 allele,
suggesting some past hybridization event between P. fulvum and P. elatius. Interestingly, in another two
P. fulvum accessions (JI2510, JI2521) that also have the trnSG_E6 allele [52], the accD allele was canonical
to P. fulvum (accD_20, 21, e.g., F lineage). P. abyssinicum had accD alleles and combinations distinct from
P. sativum, supporting its independent domestication [53]. The accD_14 allele of P. abyssinicum was
not found in any of P. elatius or P. sativum samples. Notably, two of the most frequent alleles of each
gene, accD_29 and bccp_22, contributed to the most frequent combination of accD_30/bccp_25 found in
domesticated P. sativum.

It remains to be experimentally tested by crosses if the allelic combinations detected in the
natural conditions create barriers against gene flow in natural pea populations. Some experimental
crosses between cultivated pea and selected P. fulvum and P. elatius accessions were conducted by
Bogdanova et al. [68]. These crosses revealed hybrid sterility, ultimately leading to identification
of the respective genes [39]. In our work, we made reciprocal crosses between P. elatius L100
(accD_2/bccp_5) and P. sativum cv. Cameor (accD_29/bccp_22), which resulted in the appearance
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of albinotic plants (Smýkal, unpublished), while a cross between P. elatius JI64 (accD_30/bccp_5)
and P. sativum JI92 (accD_29/bccp_22) was fully viable and fertile [69,70]. This corresponds to the
findings of Bogdanova et al. (2015) [39] of a incompatible cross between P. elatius L100 (accD_2/bccp_5)
and P. sativum WL12238 (accD_29/bccp_22); a cross between P. elatius JI1794 (accD_25/bccp_27), 721
(accD_5/bccp_22), and P. abyssinicum VIR 2759 (accD_14/bccp_26) were compatible with the cultivated
pea P. sativum WL12238 (accD_29/bccp_22) [68]. Moreover, the existence of a second, unlinked, and yet
unidentified nuclear scs2 locus also involved in nuclear-cytoplasmic conflict has been proposed [39].
In this study, the authors proposed a model of determinants, based on seven substitutions and
three deletions in ACCD and four amino acid substitutions in the biotinyl domain of BCCP protein.
The results of our study add to this complexity, as there are far more possible combinations.

3.3. Domestication and Hybrid Incompatibility

In crops, artificial selection and hybridization accelerate the evolutionary process [71].
The majority of economically important crops were isolated from their progenitors through the
existence of prezygotic or postzygotic reproductive barriers (or both), even though geographic isolation
was absent during the domestication [38]. The reproductive barriers between wild crop progenitors
and domesticated crops might be attributed to several mechanisms, including differences in karyotype
or chromosomal rearrangements. Such karyotype differences are reported between P. fulvum and
P. elatius, P. sativum, and between P. sativum and P. abyssinicum [72,73], and contribute to the partial
fertility of the respective hybrids. Much less is known about the interactions between nuclear and
cytoplasmic genomes. To date, only a few genes implicated in hybrid incompatibility have been
isolated in crops. In maize, Tcb1, Ga1, and Ga2 alleles influence interaction of pollen tubes with silk
tissue and confer prezygotic barriers in crosses between cultivated Zea mays and the wild teosinte
Z. m. mexicana [74]. About 50 loci controlling postzygotic reproductive barriers between rice subspecies
have been identified and molecular products of some genes have been characterized [22]. For example,
the S5 locus, a determinant of japonica-indica sterility, is located in proximity to the domestication
OsC1 gene [75]. Similarly, the Gn1a gene involved in rice yield formation is linked with S35, which
determines pollen sterility of japonica-indica hybrids [76]. Another example was shown in the tomato,
where the Cf-2 gene from wild Lycopersicon pimpinellifolium confers resistance to the fungus Cladosporium
fulvum in an Rcr3 dependent manner [48]; these two genes interact with each other to induce hybrid
necrosis syndrome in the hybrids. Although the occurrence of albino plants in many interspecific
crosses in crops is widely documented [77,78], its causes have not been studied in most cases. Notably,
crosses between cultivated chickpea (Cicer arietinum) and its progenitor (C. reticulatum) yielded yellow
and albino plants and a biparental plastid inheritance [77,78]. We speculate that this was caused by a
similar mechanism as in the pea.

The results of this study might be relevant for breeding, particularly using more distant crop wild
relatives, as well as hybrid crop breeding [79,80], but it remains to be tested by experimental crosses to
identify causal effectors.

4. Material and Methods

4.1. Plant Material

We analyzed 195 previously described pea accessions (Smýkal et al. 2017, 2018, Trněný et al.
2018) [52,53,59], consisting of wild P. elatius (95) and P. fulvum (16) accessions (Table S1). Sixty
domesticated P. sativum landraces and 24 domesticated P. abyssinicum accessions were selected to
maximize the genetic diversity and to cover the entire range of the wild and landrace pea habitats.
This span is approximately 5000 km in longitude from Morocco to Iran, and in latitude from Tunisia to
Hungary; altitude ranged from sea level to about 2000 m. This material was previously morphologically
described and assessed for its genetic diversity structure [52,53]. Plants were grown in 5 L pots with
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peat-sand (90:10) substrate mix (Florcom Profi, BB Com Ltd. Letohrad, Czech Republic), in glasshouse
conditions (UP campus, Olomouc, Czech Republic).

4.2. DNA and RNA Analysis

Genomic DNA was isolated from a single plant per accession from approximately
100 mg of dry leaf material using the Invisorb Plant Genomic DNA Isolation kit (Invisorb,
Berlin, Germany) and standard protocol [52,59]. Total RNA was isolated from young leaves
using plant RNA kit (Macherey-Nagel, Düren, Germany). Isolated RNA was treated with
DNaseI to remove genomic DNA. The accD gene was amplified directly from genomic DNA
using primers (F1—GCATTAGTTTTCATTTTCAGTCC located 27 bp upstream of stop codon,
R4—CTTTAATAGGGGTTTAGAATACA, located 94 bp upstream of ATG codon) [39]. We used
cDNA as a template to avoid large intron sequences present in the bccp3 gene. One microgram of a
total RNA was reversely transcribed with Oligo(dT) primer and AMV reverse transcriptase (Promega,
Madison, USA) according to manufacturer´s protocol (Hradilová et al. 2017) [71]. Two step nested
PCR amplification was used. After the first PCR (with primers F—CTAATGAAAGTGGCGGAAATC,
R—CCTTATTACGCGTCTTAGTGAATG), the product was diluted (1:100) and the second PCR was
performed (F33—CCATTCTCTGCACTCCCTTTCGCG, R1113—CAATTATTTCTCAATCTATTCAAA
ACG), using the conditions as described in Hradilová et al. [71]. PCR products were verified on a 1.5%
agarose gel, treated with Exonuclease-Alkaline Phosphatase (Thermo Scientific, Brno, Czech Republic)
and sequenced at Macrogene.

4.3. Sequence Analysis

For initial analysis, Geneious 7.1.7 (Biomatters Ltd., Auckland, New Zealand ) was used to edit
and align sequences. Due to the presence of large gaps in the accD gene, sequences were translated
into protein sequences, which reduced the overall length of the accD nucleotide alignment and
partially helped to eliminate large gaps. This procedure reduced the complexity of the accD sequences.
Sequences of the bccp gene were treated in the same manner, although these sequences were largely
devoid of large indels. The translated protein sequences were aligned in Geneious using the MAFFT
algorithm and the final alignment was manually adjusted. From the final alignment, different alleles
and their frequencies were identified using the online tool FABOX [81].

To explore possible connections or relationships among the identified alleles, the reduced dataset
(including each allele defined only once) was used for the network analysis. Several approaches of
network construction were used (based on characters, Median network, Median-joining; based on
distances, Neighbor network, Split decomposition) and implemented in SplitsTree [82]. The results
were then compared. To compare the results of network analysis with a classically constructed
bifurcating tree, a maximum parsimony (MP) tree was built using MEGA 6 with 1000 bootstrap
replicates [83]. Because of the complex pattern of gaps within the accD gene, indels were treated
as “partially deleted” (pairwise deletion, option implemented in MEGA) during the MP analysis.
The final consensus tree was computed from all the equally parsimonious trees found during the
analysis and was midpoint rooted. The tree topology was compared against the constructed networks.
To simplify or reduce the number of identified alleles, groups of related alleles were inferred based
on the constructed networks and the final consensus MP tree for both investigated genes. DnaSP
v5.10 was used to determine nucleotide diversity and synonymous/non-synonymous sites ratios [84].
All studied accD and bccp sequences were deposited in the GenBank database under the accession
numbers MK619486 to MK619678, and MK644626 to MK644819, respectively.

4.4. Tandem Repeat Analysis

Tandem repeats within DNA and protein sequences were identified in a combination of two
algorithms (FastPCR [85] and RADAR [86]). The consensus DNA sequence of accD gene was first
scanned by FastPCR at a repeat length ≥20 bp (k-mer = 12 with a tolerance for up to one mismatch
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within k-mer) with a similarity of above 70%. Potential tandem repeats for consensus protein sequence
were further identified by RADAR software. Both methods complemented each other, since the
boundaries of some degenerate and mixed tandem repeats were difficult to identify separately.

4.5. Protein Sequence Analysis and Structure Modelling

To identify the domains we used InterPro (www.ebi.ac.uk/interpro) and SMART databases
(http://smart.embl-heidelberg.de). To generate molecular models of both proteins, standard sequences
of the pea accD (GenBank YP_003587558.1) and bccp (GenBank DR89228.1) were used as queries
to identify suitable templates and to perform molecular modelling by threading using Phyre2 in
“normal” mode [87]. Only a partial model was generated for each protein, as portions of the sequence
predicted to be disordered or lacking a suitable template (including some internal loops) could not
be reliably modeled. In the case of ACCD, the structure of Staphylococcus acetyl-CoA carboxylase
carboxyltransferase (PDB 2F9I) was identified as the best template. The second best template (PDB
2F9Y, also of bacterial origin) yielded a model of similar coverage and spatial organization. A similar
model, also based on the PDB 2F9I template, was obtained for the same part of ACCD using another
algorithm, RaptorX [88]. For BCCP, the best template identified by Phyre2 was the pyruvate carboxylase
from Methylobacillus flagellatus (PDB 5KS8). The same template was also found by RaptorX as second
best; namely, pyruvate carboxylase from Listeria monocytogenes (PDB 4QSH) yielded a spatially similar
model. The Phyre2-generated models were subjected to additional refinement in the DeepView
environment [89] to eliminate amino acid sidechain clashes. Subsequent evaluation of the resulting
models using the WHAT_CHECK tools [90] revealed no critical errors, with scores for some parameters
only slightly poorer than observed for the template for both proteins.

4.6. Mapping Protein Sequence Polymorphisms on Predicted Structure

Unique protein sequences encoded by alleles, each of the two loci were identified within aligned
protein sequence sets using the ElimDupes tool at the Los Alamos HIV database website (https:
//www.hiv.lanl.gov/content/sequence/elimdupesv2/elimdupes.html). A map of polymorphisms
was then generated manually from the resulting unique sequence alignments. A distribution of
the polymorphisms between the modeled and non-modeled portions of the protein was statistically
evaluated using the Chi-square test.
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s1. Table S1: List and description of analyzed material, Table S2: Table of accD/bccp combinations, Figure S1: The
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structure, (co-ordinates in standard PDB format), File S2: Model of BCCP protein structure. Theoretical model
of pea ACCD protein structure, (co-ordinates in standard PDB format). File S3: Theoretical model of pea BCCP
protein structure, (co-ordinates in standard PDB format).
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