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Hematology analysis, a common clinical test for screening various diseases, has conventionally 
required a chemical staining process that is time-consuming and labor-intensive. To reduce the 
costs of chemical staining, label-free imaging can be utilized in hematology analysis. In this work, 
we exploit optical diffraction tomography and the fully convolutional one-stage object detector 
or FCOS, a deep learning architecture for object detection, to develop a label-free hematology 
analysis framework. Detected cells are classified into four groups: red blood cell, abnormal red 
blood cell, platelet, and white blood cell. In the results, the trained object detection model 
showed superior detection performance for blood cells in refractive index tomograms (0.977 
mAP) and also showed high accuracy in the four-class classification of blood cells (0.9708 
weighted F1 score, 0.9712 total accuracy). For further verification, mean corpuscular volume 
(MCV) and mean corpuscular hemoglobin (MCH) were compared with values obtained from 
reference hematology equipment, with our results showing reasonable correlation in both MCV 
(0.905) and MCH (0.889). This study provides a successful demonstration of the proposed 
framework in detecting and classifying blood cells using optical diffraction tomography for label-

free hematology analysis.

1. Introduction

Hematology analysis is one of the most common clinical tests used to look for various disorders such as sepsis [1–3], infection 
[4–6], anemia [7–9], and blood cancer [10–13]. Chemical staining has traditionally been used for blood analysis, with requirements 
for complex equipment, numerous chemical reagents, difficult system calibration and procedures, and highly skilled personnel, 
factors that can significantly impact the status of cells during the process [14,15]. Additionally, the staining process itself is time-

consuming and difficult; it is generally estimated that it takes approximately 45 min for specialists to stain cells in accordance with 
strict staining protocols and to assess the staining quality under a microscope [15].
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Fig. 1. Schematic diagram of hematological analysis using ODT. (a) A 3D RI tomogram of a blood sample is acquired by partially coherent ODT. (b) The deep learning 
model automatically detects blood cells and classifies them into four types: RBC, ARBC, PLT, and WBC. See Section 2.2 for a detailed explanation of the object 
detection model implementation. (c) For RBCs and ARBCs, morphological and biochemical quantities such as MCV and MCH are measured by their RI distribution.

To solve this problem, various methods using label-free imaging modalities in hematology analysis have been studied. For 
instance, Raman microscopy [16–18], hyperspectral imaging [19–21], and defocusing phase-contrast imaging [22,23] have been 
exploited for hematology analysis. These methods use the endogenous imaging contrast of samples themselves without using any 
staining agent, but require complex optical systems and long data acquisition times. Recently, investigations have adopted quantita-

tive phase imaging (QPI) to enable reasonably quick and simple label-free imaging of biological samples [24,25]. The morphological 
and biochemical characteristics of a cell can be observed concurrently using QPI by measuring the phase delay of light passing 
through the sample and reconstructing the refractive index (RI) of the sample through the relationship between the scattered light 
and the sample.

Recent rapid advances in artificial intelligence (AI) have led to the application of AI to the QPI of various types of biological 
samples in a wide range of tasks including classification [26–30], segmentation [31–33], and inference [34–36]. In the field of 
blood cell identification, QPI and AI demonstrate a good synergy since they can simultaneously check morphological and biological 
properties in addition to their label-free nature and uniform data quality that is not affected by staining quality [37,28,29].

In this study, we utilize optical diffraction tomography (ODT) [38], a label-free and three-dimensional (3D) QPI modality that 
measures the RI distribution of a sample, and a deep learning technology for the hematological analysis of blood samples. Details 
of each step can be found in Fig. 1. To develop an object detection model for blood cells, the fully convolutional one-stage object 
detector (FCOS) [39], an anchor-free multitask deep learning model, is implemented and trained. With this framework, detected cells 
are classified into four groups: red blood cell (RBC), abnormal red blood cell (ARBC), platelet (PLT), and white blood cell (WBC). 
We demonstrate that the trained model is able to detect most of the cells, showing high accuracy in the four-class classification 
of blood cells. In addition, morphological and biochemical quantities are calculated, namely mean corpuscular volume (MCV) and 
mean corpuscular hemoglobin (MCH), for RBC and ARBC groups based on their RI distributions. Our quantitative analysis results 
also show highly acceptable agreement with commercial hematology analysis equipment.

2. Materials and methods

2.1. Dataset preparation

A total of 171 blood samples were collected from Chungnam National University Hospital (CNUH, Republic of Korea), and ODT 
was exploited to obtain RI tomograms of the blood samples. (This study was approved by the institutional review board at CNUH.) 
For each blood sample, 27 measurements were carried out because single-measurement coverage was restricted to 234 μm × 234 μm 
due to field-of-view limitations. Each measured 3D RI tomogram had a lateral resolution of 0.162 μm/pixel and axial resolution of 
0.731 μm/pixel.

Bounding boxes and cell types for all blood cell instances were annotated for 1,224 3D RI tomograms by three experts. The 
blood cells were categorized into four types: RBC, ARBC meaning a morphologically irregular RBC, PLT, and WBC. The criteria for 
morphological irregularity was determined by annotators. A total of 115,143 cell instances were annotated to train and evaluate the 
2

object detection model (Table 1). The whole dataset was divided into a 7:2:1 ratio for training, validation, and testing.
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Table 1

Distribution of cell types in the dataset.

Type of dataset RBC PLT WBC ARBC

Train 67,595 6,391 87 6,435

Validation 19,604 1,608 19 1,567

Test 9,661 1,143 18 1,015

Total 96,860 9,142 124 9,017

2.2. Training details of object detection models

In previous studies [40,41], YOLOv3 [42] or its variant model has been widely used and has shown reasonable performance. 
However, detection failures of PLTs were observed due to their small size compared to RBCs or WBCs. Hence, for the detection and 
identification of blood cells of various sizes, the FCOS, or fully connected one-stage object detector, [39], was exploited in this work, 
which is an anchor-free one-stage object detection framework optimized for detecting objects of various sizes at once.

For model implementation, the MMDetection library [43] was utilized, which is a PyTorch-based open-source object detection 
toolbox. FCOS detects objects by performing classification, regression, and centerness calculations on feature maps extracted from 
the backbone. In our experiments, we employed focal loss (FL, (1)), generalized intersection over union (GIoU, (2)) loss, and binary 
cross entropy (BCE, (3)) loss to evaluate classification, regression, and centerness prediction. These loss functions are the same as the 
improvement methods described in the original FCOS paper [39]. The mathematical formulations for these loss functions are defined 
as follows:

𝐹𝐿(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)𝛾 log(𝑝𝑡), (1)

𝐺𝐼𝑜𝑈 = 𝐼𝑜𝑈 (𝐴,𝐵) −
|(𝐶∖(𝐴 ∪𝐵)|

|𝐶| , (2)

𝐵𝐶𝐸 = −[𝑦 log(�̂�) + (1 − 𝑦) log(1 − �̂�)]. (3)

In this paper, we applied all the enhancements presented in the work of Tian et al. [39] to the FCOS framework.

For preprocessing, min-max normalization was applied to the RI images. An augmentation ratio of 0.5 was applied to the training 
dataset using the horizontal flip operation. In the training phase, the batch size was set to 4. The AdamW optimizer was used, and 
the learning rate was applied as 0.0005. In addition, mixed precision and gradient clipping were applied, and the number of epochs 
was 30.

We tested three backbone networks for the FCOS framework, namely ResNet-18, ResNet-50, and the Swin Transformer, to find 
the architecture with the best performance [44,45]. Since ResNet, one of the most famous convolutional neural networks, is known 
as a good feature extractor in various vision tasks, two variants of ResNet were tested for the backbone of our network. Recently, 
backbones based on transformers [46] have also shown high performance in various vision tasks. First achieving state-of-the-art 
performance in object detection tasks in 2021 [45], the Swin Transformer has a characteristic that it performs self-attention only 
among patches within each window. Our data has the feature that similarly shaped and sized cells are evenly distributed throughout 
the entire image; thus, to investigate whether the features of the Swin Transformer’s architecture can be advantageous for our images, 
we chose the Swin Transformer as one of the backbones. In the case of ResNet-18, the Feature Pyramid Networks (FPNs) to Path 
Aggregation Feature Pyramid Network (PAFPNs) were adjusted according to the model output, while for the Swin Transformer, the 
numbers of output channels and FPN input channels were adjusted.

Our network was implemented in PyTorch 1.12 using a graphics processing unit (GPU) server (Tesla V100 32GB). The GPU server 
environment was as follows: Python 3.8.12, CUDA 11.6, CUDNN 8.3.3, MMCV 1.5.1, and MMDetection 2.24.1.

2.3. Evaluation of the trained object detection model

A total of five metrics—mean average precision (mAP), recall (7), precision (8), F1 score (9), and total accuracy (10)—were 
calculated to evaluate the performance of the trained object detection model. In the case of mAP, the definition in the PASCAL 
VOC dataset was applied (average of 11-point interpolated AP, (4), (5), (6)). For an IoU threshold of 0.5, true and false cases were 
distinguished, and the average of the area under the precision-recall curve (PR curve) was used for each category. When calculating 
the base area, recall was divided into 0.1 units and interpolated with the highest precision value in the relevant section. Each metric 
is defined as follows:

𝐴𝑃 = 1
11

∑
𝑟∈(0.0,...,1.0)

𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟), (4)

𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟) =𝑚𝑎𝑥𝑟≥𝑟𝑝(𝑟), (5)

𝑚𝐴𝑃 = 1
𝑁

𝑁∑
𝑖=1

𝐴𝑃𝑖, (6)
3

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (7)
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Table 2

Comparison of the detection performance of each FCOS backbone.

Backbone mAP Number of model parameters

ResNet-18 0.970 21.45 M

ResNet-50 0.970 32.12 M

Swin Transformer 0.977 35.56 M

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (8)

𝐹1 = 2 ⋅ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙
, (9)

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
. (10)

2.4. Comparison of blood cell indices

Refractive index, which is used as an imaging contrast in ODT, is a biochemical quantity related to the number of molecules per 
unit volume. With a 3D RI tomogram, RI can be used to calculate not only morphological quantities such as corpuscular volume (CV) 
but also biochemical quantities like corpuscular hemoglobin (CH). Therefore, hematological analysis using ODT opens the door to 
quantitative analysis beyond simple blood cell counting and classification. First, a cell contour is generated by a simple thresholding-

based contouring algorithm. In this work, the threshold was set to 0.005, which means the cell contour was set based on the voxels 
where RI exceeds the medium RI + 0.005. Then CV is measured by equation (11).

𝐶𝑉 = #𝑣𝑜𝑥𝑒𝑙𝑠 × 𝑢𝑛𝑖𝑡𝑉 𝑜𝑙𝑢𝑚𝑒, (11)

where #𝑣𝑜𝑥𝑒𝑙𝑠 denotes the number of voxels in a cell contour and 𝑢𝑛𝑖𝑡𝑉 𝑜𝑙𝑢𝑚𝑒 is the volume of a single voxel, which is 0.0192 μm3 for 
the device used in this study. CH is calculated as equation (12):

𝐶𝐻 = (sum(𝑅𝐼) −𝑁 × 𝑛𝑚)∕𝑅𝐼𝐼 × 𝑢𝑛𝑖𝑡𝑉 𝑜𝑙𝑢𝑚𝑒, (12)

where sum(𝑅𝐼) is the sum of RI values for all voxels in the cell contour, 𝑛𝑚 denotes the RI of the medium (1.337 for water), and 𝑅𝐼𝐼

means refractive index increment [47–51], 0.0029 for this study.

By averaging the above quantities of each RBC instance in the same blood sample, the MCV and MCH of the blood sample 
are obtained. In this study, MCV and MCH were calculated for RBCs detected through the trained FCOS model for 1,539 3D RI 
tomograms, which were not included in the dataset for object detection model training and evaluation. The calculated values were 
compared with those measured from reference hematology analysis equipment (DxH-800 and LH-780, Beckman Coulter).

3. Results and discussion

3.1. Evaluation of the trained object detection model

The cell detection performance of each of the three backbones (ResNet-18, ResNet-50, and Swin Transformer) was first compared. 
Among the models used as the FCOS backbone, the Swin Transformer showed the best performance by a very narrow margin 
(Table 2). The highest performance was 0.977 mAP when the backbone network was the Swin Transformer, but it also had the 
largest number of model parameters, about 1.7 times that of ResNet-18. ResNet-18 and ResNet-50 showed similar performance.

The classification performance of the three backbone networks was also compared. ResNet-18 showed the highest classification 
performance with 0.9708 weighted F1 score and 0.9712 total accuracy. While the difference between these results and those from 
the Swin Transformer is relatively small (about 0.03), when compared to ResNet-50, ResNet-18 had higher scores of more than 
0.1 (Table 3) Detailed classification results of each backbone network can be found in Fig. 2. Considering RBCs and ARBCs only, 
ResNet-18 failed 306 cases, while ResNet-50 and Swin Transformer failed 472 and 344 cases, respectively. Because of the severe data 
imbalance for the WBC class (only 124 cases in 115,143 cells), the WBC classification performance of each model was neglected.

In summary, ResNet-18 performed the best in terms of classification while achieving competitive detection performance despite 
having the smallest number of model parameters. Therefore, ResNet-18 was chosen to be utilized as the backbone of our hematology 
analysis framework.

Compared with the results of a previous related study [41], our model improved mAP by about 0.23, and the accuracy for the 
RBC, WBC, and PLT groups improved by more than 3%. Since our imaging modality is relatively new, it should be noted that there 
are no previous experimental results using the same type of modality.

Although our model achieved an F1 score over 0.8 for ARBC classification, it should be noted that the criteria for the ARBC/RBC 
boundary are ambiguous. Hence, there is a limit to determine the model’s performance in identifying ARBCs through its accuracy with 
the label, since the standard of morphological irregularity for an ARBC depends on the annotator. To investigate ARBC classification 
performance in more detail, t-SNE [52] analysis, which is a method of reducing high-dimensional data to low-dimensional data, 
4

was performed using extracted features from the trained FCOS model. T-sne result can be found in Fig. 3 (a), and Fig. 3 (b) shows 
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Table 3

Comparison of the classification performance of each FCOS backbone.

Backbone Class Recall Precision F1 score Weighted F1 score Total Accuracy

ResNet-18 RBC 0.9873 0.9803 0.9838 0.9708 0.9712

PLT 0.9912 0.9937 0.9925

WBC 0.9286 0.5417 0.6842

ARBC 0.7967 0.8645 0.8292

ResNet-50 RBC 0.9596 0.9899 0.9745 0.9593 0.9568

PLT 0.9924 0.9937 0.9930

WBC 0.8571 1.0000 0.9231

ARBC 0.9004 0.6871 0.7795

Swin RBC 0.9921 0.9716 0.9818 0.9663 0.9680

Transformer PLT 0.9950 0.9901 0.9926

WBC 0.6875 1.0000 0.8148

ARBC 0.7090 0.8964 0.7918

Fig. 2. Normalized confusion matrix results for each FCOS backbone: (a) ResNet-18, (b) ResNet-50, and (c) Swin Transformer. ResNet-18 showed the best performance 
in classifying RBCs and ARBCs.

representative sample RI images. For the feature extraction, cells detected in the RBC and ARBC channels were used, meaning that 
features were able to be extracted for both classes, as FCOS utilizes multiple binary classifiers for multi-class identification.

By projecting high-dimensional features extracted from the trained FCOS model onto a two-dimensional plane, we could see 
that the features were largely divided into two clusters with a gray area between them. As a result of visualizing numerous points 
corresponding to each prediction/label result shown in the figure legend, the morphological characteristics of a clear circular shape 
for RBCs and a clear irregular shape for ARBCs were observed at the ends, while cells of a shape difficult to assign to either class 
were observed in the middle area. These results demonstrate that our FCOS model distinguished RBCs and ARBCs based on their 
degree of morphological irregularity.

3.2. Comparison of blood cell indices

In terms of MCV and MCH, our results showed acceptable agreement with the reference equipment. Fig. 4 (a), (b) and (c) show 
MVC data comparison, and (d), (e), and (f) show MCH comparison. The Pearson correlation coefficients for MCV and MCH were 
0.905 and 0.889, respectively, while the gradients of Passing–Bablok regression were 1.04 and 0.97, respectively.

The indices of the RBC and ARBC classes were also compared. Fig. 5 (a) shows cell indices comparison of MCV, and Fig. 5 (b) 
shows MCH results. There was a clear difference between the physical quantity distribution of RBCs and ARBCs. The MCV and MCH 
of the ARBCs were clearly lower than those of the RBCs. A larger divergence of the ARBC MCV and MCH was also observed, caused 
by the irregularity of the cell shape.

Discussion about the issue of cell contouring is required in this section. For an accurate quantitative analysis, an appropriate 
cell contour is necessary. Because of the low axial resolution caused by the missing cone problem [35], the RI distribution changes 
depending on the shape and angle of the cell. This causes distortion of the cell contour and consequently affects quantitative analysis. 
To solve this issue, recognition of the lying angle of each cell and corresponding compensation will be studied in follow-up research.

4. Conclusions

This study showed that the detection and classification of blood cells using ODT technology is feasible for label-free hematology 
analysis and also that physical quantities can be calculated with QPI equipment that uses refractive index as the imaging contrast. We 
5

applied FCOS, an anchor-free one-stage detection framework, for hematological analysis in 3D RI tomograms of blood samples. Our 
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Fig. 3. t-SNE result of the classification model: (a) t-SNE plot and (b) representative sample RI images for each legend entry.

model achieved 0.977 mAP for blood cell detection, and achieved 0.9708 weighted F1 score and 0.9712 total accuracy for four-class 
blood cell classification (RBC, ARBC, PLT, and WBC). The RBC indices from the RI distribution in each cell were also calculated 
and compared with those obtained from reference equipment. The result showed reasonable correlation in MCV (0.905) and MCH 
(0.889) with the reference equipment.

While previous study [29] has conducted hematological analysis on single red blood cells (RBCs) using 3D QPI, the significance 
of our research lies in detecting blood cells and calculating the physical quantity of blood cells from the same type of blood sample 
used in actual clinical settings. Our proposed framework has high potential to be extended to more various types of hematology 
analysis, such as WBC subtype classification, through additional data acquisition.
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Fig. 4. Comparison of RBC indices, (a–c) MCV and (d–f) MCH, obtained from our model and the reference device. CBA denotes our result, and Coulter means the 
reference device.

Fig. 5. Comparison of cell indices, (a) MCV and (b) MCH, for RBC and ARBC classes.
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