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Abstract

Solid-solution strengthening in six Al-X binary systems is investigated using first-principle
methods. The volumetric mismatch parameter and the solubility enthalpy per solute were
calculated. We derive three rules for designing solid-solution strengthened alloys: (i) the
solubility enthalpy per solute is related to the volumetric mismatch by a power law; (ii) for
each annealing temperature, there exists an optimal solute—volume mismatch to achieve
maximum strength; and (iii) the strengthening potential of high volumetric mismatch solutes is
severely limited by their low solubility. Our results thus show that the thermodynamic
properties of the system (here Al-X alloys) set clear upper bounds to the achievable
strengthening effects owing to the reduced solubility with increasing volume mismatch.
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1. Introduction

The rapid, physics-based development of materials with
tailored properties that match the demands of modern
manufacturing and design is probably the most important
challenge in modern materials science. The fine-tuning of
properties during the materials design process is essentially a
multi-criteria optimization, in which secondary aspects, such
as the availability of components, are often also of decisive
importance (see e.g. [1]). To accelerate this optimization,
a theory-guided materials design concept has recently been
proposed in which the most promising candidates are
pre-selected employing theoretical tools (see e.g. [2]) before
experimentally casting and testing materials.

In this paper, we aim to identify and analyze fundamental
limitations related to one of the most important strengthening
mechanisms, namely solid-solution strengthening (see e.g.
[3, 4]). It is a typical multi-criteria concept that is controlled
not only by the solute strengthening capability [5-7], but
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also by thermodynamic properties of the solute—solvent
system, such as the solubility. Therefore, a universal
solid-solution design function that combines the strengthening
capability with the solubility is of considerable interest
for the physics-based design of advanced metallic alloys.
To identify these relations, we exploit the facts that the
volumetric mismatch is by far the dominant contribution to the
strengthening effect [7] and that 7 = 0K ab initio calculated
lattice parameters (of static lattices without considering
thermal vibrations) reproduce experimental data typically
within —5% to 3% at T = 0K [8, 9] (for calculations also
considering harmonic and quasi-harmonic approximations to
thermal vibrations, see e.g. [10-13]).

The design rules we derive not only provide a guideline
for a more efficient alloy design but also theoretically explain
the experimentally observed inverse relationship between the
solubility of a solute and its strengthening capability (see Ni,
Cu and Au binaries [14] or «-Fe binaries [15]). As a higher
strength is often accompanied by a lower ductility, identifying
the limitations of solid-solution strengthening can also help
in revealing the limitations of ductility. Besides, modeling
the solid-solution strengthening effect is an essential step in
multiscale modeling schemes aimed at designing Al alloys
with high formability [16].
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2. Methods and computational details

The relation between the strengthening effect and the
solubility, as well as the resulting alloy-design limits, is
investigated in aluminum, which is a prototypical soft material
with numerous structural applications. Employing density
functional theory (DFT) calculations [17, 18], six Al binary
systems (Al-X, X =Ca, Sr, Ir, Cu, Li and Zn) have been
studied. It was recently shown by Leyson et al [6, 19] that the
volumetric mismatch can be correlated with the strengthening
capability in Al solid solutions via the volumetric mismatch
parameter (|5,]). We extend this analysis to express the
equilibrium solute concentration in terms of &,. The impurity
concentration in thermodynamic equilibrium is determined by
the solubility enthalpy per solute (AHyy). Following [20], this
quantity is expressed as

Aiisol = AI:ISS - Aficomp» (1)
where
~ 1
AH =~ (Efs x —(I1—c)EXf —cEY), Q)
7 q eq D fec q eq
AH =—E ——ES— Ey ). 3
TP ptg ( MXe parg TN pig X) @)

A Hy is the formation enthalpy per solute of the solid solution;
AI:Icomp is the formation enthalpy per solute of the nearest
intermetallic compound located in the Al-X phase diagrams
next to the AI-X solid solutions, i.e. above the solubility limit.
To calculate A Hy, the energies of the intermetallic phases
in the vicinity of the Al-X solid solution on the Al-X phase
diagrams have been determined (see details below).

Our DFT calculations were performed employing 32- and
108-atom fcc-based 2 x 2 x 2 and 3 x 3 x 3 supercells with
the compositions of Aljp;X;, AljgsX3, Al3 X, AljpaX4 and
Al3pX,. For these low solute concentrations the calculated
compositional trends in the formation enthalpy and lattice
parameters of the solid solutions may be linearized, i.e.
they depend linearly on the concentration. A full geometry
optimization was performed in all cases. We used the
generalized gradient approximation of Perdew et al [21]
for the exchange-correlation functional and the projector
augmented wave method [22], as implemented in the VASP
code [23, 24]. The electronic wave functions were expanded
in terms of a plane-wave basis set with an energy cut-off
of 420eV, and the reciprocal-space Brillouin zone was
sampled using a 24 x 24 x 24 Monkhorst—Pack [25] k-point
mesh/conventional fcc unit cell, namely 12 x 12 x 12 for
32-atom supercells and 8 x 8 x 8 for 108-atom supercells.
The Methfessel-Paxton smearing method of first order was
used to smear the Fermi surface with the smearing parameter
o =0.4eV [26]. The energy—volume curves were analyzed
using the Birch—-Murnaghan equation of state [27, 28]. After
the equilibrium lattice parameters are obtained, the volumetric
mismatch parameter, §,, can be calculated as

1 da
S=(-=—) . 4
b (a dc)c—() ( )

This parameter, proposed by Cottrell [29], is based solely
on the geometrical arguments. There is another parameter
which characterizes the volumetric mismatch. It was proposed
by Eshelby [30] and is usually referred to as ‘the strength
of the point defect’. This parameter essentially characterizes
the stress/strain response of a crystal containing a single
point defect to external strain/stress fields. Since most of
the interaction energy between the dislocation and the solute
comes from the excess volume introduced by the solute
against the pressure field produced by the dislocations, ‘the
strength of the point defect’ is more pertinent in the context
of the solid-solution strengthening. On the other hand, by
using atomistic simulation, it has been shown that in fcc
substitutional solid solutions, the volume mismatch parameter
proposed by Cottrell can be used to accurately predict the
interaction energy between the dislocation and solute [31],
mostly because the dilatation center caused by a substitutional
atom in fcc lattice is spherical [32].

To calculate the ground state total energy of the
ordered compounds, we used the same cut-off energy and
exchange-correlation functional. Different k-point meshes
were chosen according to the symmetry of the corresponding
lattice structures: (i) a 16 x 16 x 12 k-point mesh for Al,Ca
and AlySr (five-atom cell with the 714/mmm space group,
D1j3 structure of AlyBa), (ii) a 16 x 16 x 16 mesh for Al,Cu
(six-atom cell 14/mcm, C16 structure, Al,Cu prototype) and
(iii) a 16 x 16 x 24 mesh in the case of AlLi (four-atom
Fd3m, B32 structure of NaTl) and Allr (two-atom Pm3m,
D8;, CoyAly prototype). In the Al-Zn binary system, there
are no intermetallic compounds and, therefore, the solubility
enthalpy is equivalent to the enthalpy of mixing.

3. Results and discussion

Figure 1(a) shows the computed relation between the
solubility enthalpy per solute and the volumetric mismatch
parameter. The calculated values are summarized in table 1.
The data points approximately follow a power law, namely

AHg = A |5]" S

with the exponent n > 0. The fitted values of the A and n
parameters are 1.92 and 0.69, respectively. The corresponding
R? parameter, which allows to quantify the numerical quality
of the fit, is equal to 0.9928, suggesting that the power
law provides a good description of the underlying physical
phenomenon. It is important to note that the value of the
predicted exponent n is in excellent agreement with that
proposed in the semi-empirical model of Miedema et al [33],
who suggested that the enthalpy of formation of binary alloys
scales with the volume 2z of solute atoms B in a matrix A as
Q.

The observed functional dependence of the heat of
the solution on the volumetric mismatch of the solute
atom allows us to identify a few fundamental materials
design limits. In particular, the strengthening potential of a
specific solute will tend to be proportional to its solubility
enthalpy and therefore inversely related to its solubility.
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Figure 1. (a) A log—log plot of the solubility enthalpy per solute
atom (A fisol) as a function of the volumetric mismatch parameter
|8, | together with the fitting function (dashed line). In panel (b) the
maximum solubility, ¢, at T = 800 K is shown as a function of
(|851)- Solid symbols: theory (this study); open symbols:
experiments. Experimental data are included for Al-Cu [34],
Al-Si [35], Al-Li [36] and Al-Zn [37]. Additionally, 1.9 at.% Ca
were found at 888 K in Al-Ca [38] and 0.1 at.% Ir were found after
quenching at 873 K in Al-Ir [39], but no solubility of Sr in Al has
been reported so far.

This relationship reveals competition between elasto-plastic
effects related to the mechanical properties, on the one
hand, and the thermodynamic limits on the solubility, on
the other. Specifically, according to classical solid-solution
theories, the maximum strengthening effect is expected from
solutes with maximum volumetric mismatch. In exactly the
opposite manner, from the thermodynamic point of view, the
incorporation of solutes with large volume mismatches into
a lattice is energetically so costly that the solubility of these
solutes will be extremely low. Therefore, the strengthening
effect of such an incorporation will be very limited. It is thus
the thermodynamics of the system that sets clear upper bounds
on the achievable strengthening effects due to the reduced
solubility with increasing volumetric mismatch.

The inverse dependence of the strengthening potential
and the solubility of a solute allows substitution of an
element of a high strengthening capability by an alternative
element of lower strengthening potential but higher solubility.
Importantly, our analysis provides guidance on the selection
of such alternative solutes (via their volumetric mismatch).

Table 1. Computed values of the volumetric mismatch parameter
(|8, where &, = (i %)U:O) and the solubility enthalpy per solute

atom (A Hyo (€V per solute)).
Al- Ca Sr Ir Cu Si Zn Li

16,] 0364 0.540 0.183 0.106 0.0534 0.017 0.007
AHy 122 235 1.16 036 04236 0.11 0.065

In particular, employing the power law identified above,
which relates the solution enthalpy per solute AI:IS(,l and
the volumetric mismatch parameter |§,|, we can estimate the
solubility limits (cp,) on the basis of |§,| using the Boltzmann
statistics

AI:Isol A |8b|0.69
cm=¢exp|— T = exp Tl ) ©6)

The value of ¢, at 800K was calculated with equation (6)
and compared with available experimental values shown in
figure 1(b), and very good agreement was achieved. The
elevated temperature of 7 = 800K was chosen because (i)
it is common practice to quench the Al solid solutions from
high temperatures to room temperature in order to maintain
the solid solution and (ii) the formation processes are often
performed at elevated temperatures.

Based on the theoretical findings recently published
by Leyson et al [6, 19], the yield strength (oy) of the
polycrystalline solid solutions with random texture at its
solubility limit c,, at temperature 7 can be calculated as

oy(cm, T) = My e (AV) c2?

T . N2/3
x 1—(3—1/31112) G
AE, (AV) e ¢

Here M7 is the Taylor factor, which is equal to approximately
3 for polycrystals with random texture; €(AV) is the
strengthening capability, which depends on the excess volume
(AV) introduced by the solute atom; AE,(AV) is the energy
barrier that a flexible dislocation needs to overcome when
passing through an array of solute atoms. Following Leyson
et al [6, 19], the strain rates &, and ¢ were chosen to be 10*
and 107>, respectively. To evaluate equation (7), we again rely
on the results summarized by Leyson et al [6]:

e=(31.1£63 MPaA HAV*3, (8)

AE, = (131+0.03eVA )AV3 9)

and we also consider the fact that AV is related to §, as
follows. Let V and a be the atomic volume and the lattice
parameter of the fcc unit cell, respectively; then

v 13=>dV 3 ,da dvV. 3 ;1da
= —d _— = - — _— = = _——
4 dc 4 dc dc 4 adc
(10)
N dv 3( ;1da (11
_ — — a ——
de /.., 4 adc /.
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and therefore

3 5
AV = ZaA] Sp, (12)
where
1da
8y = P . (13)
adc/,._,

ap, is the lattice parameter of Al (4.04 A at T = 0K calculated
by DFT in this study). We insert equations (6), (8), (9)
and (12) into equation (7) and also substitute the constants
M, ky, €o, and & by their actual values. Then we can express
oy (equation (7)) solely by |8, | and the temperature

a

3 8 0.69
x <1 —0.0022 x 8, *° x exp (4951.3 (BT 77,
T,

by 0.69
oy (8, To, T) = 16937 x 8, x exp (—14854.4 x %

a

(14)

where T, is the annealing temperature and 7 is the testing
temperature. Equation (14) can be applied to evaluate the
yield strength when an Al solid solution is subjected to the
following thermal treatment: annealed at 7, and reaches its
solubility at T,, then quenched down to 7; and tested at T;.

Having expressed oy in terms of &, and temperature
exclusively, it is possible to predict the optimum size
mismatch to maximize the strengthening effect at a given
temperature. It should be noted that two temperatures have
to be taken into account: (i) the annealing temperature, which
determines the equilibrium solute concentration, and (ii) the
temperature in the experimental setup, which provides the
thermal activation energy for the migration of dislocations
in the field of solute atoms. In our analysis, we assume
that 7; = 78 K and evaluate the yield strength as a function
of the annealing temperature and d;, as shown in figure 2.
The optimum volumetric mismatch slightly increases with
increasing annealing temperature and tends to be rather
small, suggesting that the increased solubility outweighs the
increased strengthening potential associated with a larger
volumetric mismatch.

The theoretical prediction in this study may be indirectly
validated by the experiments reported in [40]. In that study, the
solid-solution strengthening effect was investigated at room
temperature in five Al binary systems, and the solute elements
included Mn, Cu, Mg, Si and Zn (in descending order of
their |§5]). It was observed that although the strengthening
capabilities of Mn and Cu in Al are higher than Mg, Mg has
the advantage of being more soluble in Al; therefore, a higher
solid-solution strengthening effect can be achieved in AI-Mg.
Zn has a higher solubility in Al than Mg, but its strengthening
effect is limited. Our results for Si indicate that this element
provides maximum strengthening effects. This finding is in
accord with the fact that commercially used 5XXX and 6XXX
Al-alloys contain significant amounts of Si (next to Mg and
Cu, which are also quite close to the maximum).

Figure 2 shows an extrapolation of the predicted o, for
solutes for which experimental data exist in the literature

LiZn Si Mﬂg

T [K]

0,05 0.1
5,

Figure 2. Dependence of the yield stress (in MPa) of
polycrystalline Al solid solutions, oy (¢ (T), Ty = 78 K), on the
annealing temperature and |3, |. This figure is obtained assuming the
following metallurgical route: the Al solid solution with a
volumetric mismatch parameter of |3,| is annealed at a given
temperature, 7T,, to reach the equilibrium solute concentration, ¢,
(assuming a solute element reservoir) followed by quenching in
liquid nitrogen (78 K) and tested at 78 K. The corresponding
oy(cm(T), T, =78 K) is calculated using equation (7). Thus, oy in
this figure corresponds to the yield stress of polycrystalline Al solid
solutions at 78 K with ¢, obtained at 7. |§,| of five solute elements
(Li, Zn, Si, Mg and Cu) are marked by lines. Since
quantum-mechanical calculations of Mg were not performed in this
study, Mg results derived from the literature are marked by a dashed
line.

(such as Mn [6]). It indicates that our theoretical prediction
underestimates oy by a factor of 6 or more (depending
on the solute type). This quantitative disagreement with
experimental critical shear stresses in Al is tentatively
attributed to our disregarding entropic contributions when
calculating the solution enthalpy.

Some entropy contributions (such as vibrational) would
be part of the free energies of nearly all the systems involved,
i.e. Al-based solid solutions, ground-state phases of pure
elements, as well as ordered intermetallics. Others would
only affect calculations of some of the computed systems,
such as the configurational entropy term in the case of
solid solutions. In particular, vibrational contributions to
the free energy have been shown to significantly affect the
solubility of solutes in Al. When the vibrational entropy
is included, the calculated solubility grows in Al-Sc and
Al-Si solid solutions [41]. These contributions can be taken
into account following the approaches discussed in [10-13].
However, while the predicted critical shear stress may not
be quantitatively correct, the fundamental conclusions, for
example, that the optimal |§,| value tends to be small, are not
affected by this additional consideration.

4. Conclusions

We have theoretically studied the relations between the
solid-solution strengthening effect and the solubility in
six Al binary alloys using DFT. Based on the materials
parameters calculated within this supercell approach, we
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have quantitatively analyzed the solubility enthalpy per solute
AI:ISM and the volumetric mismatch parameter |§,|. We find
that these are related by a power law whose exponent matches
the scaling proposed by Miedema et al in their semi-empirical
model. Based on this relation, we link the thermodynamic
characteristics of the studied systems with their macro-scale
critical shear stress.

Using this insight we show that, at a given annealing
temperature, there exists an optimal volumetric mismatch
|65] (or equivalently an ideal solute element, if available
in nature) to achieve the maximum strengthening effect,
which is controlled by the solubility limit (cy,). The optimum
mismatch is generally relatively small, in accordance with the
classical Hume—Rothery rules, and increases with increasing
temperature. Lastly, the strengthening capabilities of the
elements with high volumetric mismatch parameters are
severely limited by their low solubility. Our analysis can also
be extended to alloys containing more than one type of solute
atom. Regarding thermodynamic aspects and solubility limits,
such an extension would, nevertheless, not be straightforward.
As the concentration of solutes may be relatively high when
reaching individual solubility limits, solute atoms are likely to
interact among themselves and these interactions can lead to
nonlinear effects. Further, equations (7) and (14) are nonlinear
functions of the solute concentration and the height of energy
barriers, and an extension to multiple solutes is also non-trivial
(see e.g. equation (32) in [6]).

We believe that these conclusions may be generalized
well beyond Al solid solutions, as the fundamental physics
underlying our analysis will hold in any solid-solution system.
Therefore, our study may be directly applied when searching
for alternative solutes for particular processing constraints,
such as joinability or corrosion resistance.

Appendix

Recently, Leyson et al [42] extended their work to the
Mg—Al system on the basal slip and found two dislocation
configurations, namely two characteristic bow-out lengths.
This finding leads to two kinds of energy barrier (AEp)
that a flexible dislocation needs to overcome when passing
through an array of solute atoms. One controls the
low-temperature /high-stress regime, and the other controls
the high-temperature/low-stress regime. If the solubility
enthalpies of the solute elements and their volume mismatch
parameters in Mg are also correlated by power laws, the above
finding does not change the present formulation (equation (7))
for incorporating the solubility effects in Mg solid solutions,
because AE}, depends not on concentration but rather on the
extra volume introduced by the solute atoms.
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