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Abstract
Automated analysis and quantification of physiological signals in clinical prac-
tice and medical research can reduce manual labor, increase efficiency, and 
provide more objective, reproducible results. To build a novel platform for the 
analysis of muscle sympathetic nerve activity (MSNA), we employed state-of-the-
art data processing and machine learning applications. Data processing methods 
for integrated MSNA recordings were developed to evaluate signals regarding the 
overall quality of the signal, the validity of individual signal peaks regarding the 
potential to be MSNA bursts and the timing of their occurrence. An overall prob-
ability score was derived from this flexible platform to evaluate each individual 
signal peak automatically. Overall, three deep neural networks were designed 
and trained to validate individual signal peaks randomly sampled from record-
ings representing only electrical noise and valid microneurography recordings. A 
novel data processing method for the whole signal was developed to differentiate 
between periods of valid MSNA signal recordings and periods in which the signal 
was not available or lost due to involuntary movement of the recording electrode. 
A probabilistic model for timing of the signal bursts was implemented as part 
of the system. Machine Learning algorithms and data processing tools were im-
plemented to replicate the complex decision-making process of manual MSNA 
analysis. Validation of manual MSNA analysis including intra-  and inter-rater 
validity and a comparison with automated MSNA tools is required. The devel-
oped toolbox for automated MSNA analysis can be extended in a flexible way to 
include algorithms based on other datasets.
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1   |   INTRODUCTION

More than half a century ago the introduction of micro-
neurography led to the realization that the activity of dis-
tinct parts of the nervous system can be directly recorded 
and quantified (Carter, 2019). This technique granted 
direct access to the activity of the sympathetic nervous 
system, an important controller of cardiovascular regula-
tion. Microneurography enables the direct measurement 
of postganglionic efferent sympathetic nerve activity di-
rected to the skeletal muscle vasculature (MSNA). The 
sympathetic nervous system –  responsible for stress re-
sponses and maintenance of a wide variety of autonomic 
physiological functions –  from blood pressure and heart 
rate to visual acuity to digestion – has also been found to be 
of significant pathophysiological relevance in many med-
ical conditions (McCorry, 2007). including hypertension 
(Grassi, 1998; Hering et al., 2014; Schlaich et al., 2004), 
congestive heart failure (Azevedo et al., 2020; Schlaich 
et al., 2005), left ventricular hypertrophy (Schlaich et al., 
2003), ischemic heart disease (Badrov et al., 2016; Malliani 
& Montano, 2004), Takutsubo cardiomyopathy (Vaccaro 
et al., 2014), atrial fibrillation and sudden cardiac death 
(Kiuchi et al., 2019), sleep apnea (Floras, 2009), chronic 
kidney disease (Kaur et al., 2017; Schlaich et al., 2009), and 
obesity (Lambert et al., 2014). Importantly, increased SNS 
activity has been shown to predict CV outcomes indepen-
dent of other risk factors and its inhibition is considered 
a key therapeutic approach in many of these conditions.

MSNA is recorded by insertion of a fine-insulated elec-
trode into a peripheral nerve, most commonly the peroneal 
nerve, which is quite superficial and located just below the 
head of the fibula which serves as an anatomic landmark. 
If the tip of the electrode is appropriately placed within 
the efferent sympathetic nerve fiber, the degree of central 
sympathetic outflow directed to the post-ganglionic skel-
etal muscle vasculature can be recorded as an integration 
of fiber activity (bursts) or even single nerve recordings 
(spikes). These signals commonly undergo pre-processing 
before analysis, including amplification, filtering, and in-
tegration (White et al., 2015). This results in signals featur-
ing characteristically shaped bursts of sympathetic activity, 
which can be identified and quantified in terms of their fre-
quency (burst frequency expressed as bursts/min) and burst 
incidence (expressed as bursts per 100 heartbeats) and total 
MSNA. (White et al., 2015). These parameters have proven 
to be of high scientific value in scientific physiological and 
pathophysiological considerations as indicated by the wide 
range of research efforts mentioned above.

However, the process of MSNA signal analysis has 
some substantial caveats that need to be taken into con-
sideration. The processed signals tend to be noisy even 
after integration, with considerable inter-measurement 

differences of signal quality. Some appear very clean with 
stable baseline tracings and distinct typically shaped sig-
nal peaks representing sympathetic bursts. Others feature 
very unclear baselines and heterogeneously shaped elec-
trical activity in which typical signals are still identifiable, 
but a clear differentiation between valid representations 
of MSNA and noise remains highly subjective (White 
et al., 2015). An excellent technical review by White et al. 
revisits possibilities for standardization of this process 
such as establishing a height offset of valid signals from 
the baseline by a relation of 3:1–without negating poten-
tial disadvantages of these approaches. Of importance, the 
analysis of these signals is subject to a potentially strong 
individual bias of the interpretation of the signals espe-
cially when the signal is very noisy. White et al. point out 
that there are no data investigating the potential impact of 
differing methods and approaches for the identification of 
MSNA bursts.

Additionally, scientists can make use of multiple mark-
ers while analyzing MSNA recordings to identify valid sig-
nal bursts and their timing. The initiation of sympathetic 
bursts occurs in the brainstem usually when the blood 
pressure is at its lowest point–during the diastole of the 
cardiac cycle. Taking these physiological insights consis-
tently into account may help to improve the appropriate 
and accurate analysis of MSNA and reduce the potential 
of error.

Furthermore, accessing the nerve and positioning the 
recording electrode within the nerve fiber often takes 
a considerable amount of time, whereas the smallest of 
movements by the subject can lead to the loss of a valid 
MSNA signal. Manually marking digital recordings as 
well as retrospective review of the signal quality are 
needed to identify valid MSNA recording periods that can 
be used for analysis. Since MSNA recordings can last up 
to hours, their interpretation and analysis takes time and 
concentration. Some authors use peak detection software 
to simplify and speed up this process. These types of soft-
ware however, often cannot correctly differentiate noisy 
from valid signals nor identify high quality recording win-
dows to focus the subsequent analysis on such windows. 
Therefore, the development of tools to further standard-
ize, digitalize, and automate this process is a logical step to 
move the technique of MSNA analysis forward.

To achieve this goal, appropriate analysis tools would 
need to take our domain knowledge about valid MSNA sig-
nals into account, in the first instance this might include:

1.	 Shape and form of signal peaks and immediate sur-
rounding that are regularly regarded as valid MSNA 
bursts

2.	 Timing of the signals in regards to other physiological 
markers of the cardiac cycle
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3.	 Overall signal quality and detection of relevant and ir-
relevant time periods (i.e., stable high quality signal vs. 
signal during electrode positioning/adjustment associ-
ated with noise and artifacts)

Technological advances mostly in hardware and soft-
ware have prompted the usage and further development of 
fast automated data processing tools that make these tasks 
achievable (Donoho, 2017). The possibility for machine 
learning algorithms to differentiate patterns, shapes and 
forms makes it one of the most promising methods to fa-
cilitate interpretation of complex physiological signals. We 
hypothesize that neural networks which have shown to be 
particularly powerful at pattern recognition can be trained 
with labeled datasets to learn to differentiate valid MSNA 
signals (bursts) from signal peaks that are more likely to 
represent noise or other activity (Bermejo et al., 2019). Since 
this is the first study to our knowledge exploring the poten-
tial of AI applications for MSNA recordings, we furthermore 
wanted to explore different approaches to the problem of 
identifying valid MSNA signal bursts. This included differ-
ent machine learning training approaches, different label-
ing strategies of the data and evaluation of supplementary 
features such as burst timing and overall signal-quality.

MSNA burst timing is associated with some uncer-
tainty, however, typically occurs at a specific time of the 
cardiac cycle which is often taken into account when in-
terpreting microneurography results. Probabilistic models 
marking areas of higher likelihood for valid MSNA burst 
based on the cardiac cycle (measured by ECG and con-
tinuous blood pressure measurement) might prove to be 
helpful in modeling the overall likelihood of a signal peak 
to represent a valid MSNA burst. We set out to explore the 
quantitative temporal relationship between measures of 
the cardiac cycle and use the continuous data indicating 
the stages of the cardiac cycle for a computational model 
that assigns varying likelihood densities to certain time 
points during the microneurography recording based on 
values found for this relationship in the literature.

Automated quality parameters for MSNA signals have 
not been described in the existing scientific literature 
to the best of our knowledge. The goal was to develop a 
quantitative marker that would differentiate, as clearly 
as possible, between a generally valid signal and a non-
valid signal. That means in a best-case scenario that this 
marker would reliably identify a change in signal quality 
after appropriate positioning of the electrode in the nerve 
fiber. This would distinguish valid recordings from time 
points at which the electrode is manipulated to obtain an 
adequate signal.

The overarching goal was to implement the necessary 
algorithms and models in one program that took raw files 
of the signal data as input and produced markers for all 

detected signal peaks that represent the aforementioned 
quality parameters. As a consequence, the data can be 
easily analyzed based on the likelihood assigned to the in-
dividual signal peaks and recording periods to represent 
valid MSNA signals.

2   |   MATERIALS AND METHODS

2.1  |  MSNA, ECG, and Blood pressure 
recordings

The data used for the analysis and development of algo-
rithms described here was based on data recorded in ei-
ther young (18–30 years old, n = 24) or older age healthy 
male individuals (60–75 years old, n = 10). When only a 
part of the data was used for certain aspects of analysis or 
algorithm development, this is indicated in the individual 
sections. In such cases, the selected recordings were cho-
sen randomly.

In all subjects multiunit postganglionic MSNA 
was recorded with tungsten microelectrodes (FHC, 
Bowdoinham, ME) that were inserted directly into the 
right peroneal nerve below the fibular head. Blood pres-
sure was continuously measured with the Finometer 
system (Finapress Medical System BV, Amsterdam, The 
Netherlands). An ECG was recorded with a 5 lead sys-
tem with all other described parameters at a sampling 
rate of 1000 data points per second (PowerLab record-
ing system, model ML 785/8SP, ADI Instruments, Bella 
Vista, NSW, Australia). Before recording, the data was 
integrated by an analog transistor with data processing 
capacity in 100 ms intervals. Data were recorded after 
finding a valid signal for a prolonged period of usu-
ally 90 min. Data were exported as text files for further 
processing.

The study was approved by the Ethics Committee of 
the University of Western Australia and abides by the dec-
laration of Helsinki.

2.2  |  Neural networks for MSNA signal 
shape detection

For training and testing of neural networks, three datasets 
(Dataset 1, Dataset 2, and Dataset 3) consisting of images 
of MSNA signals were labeled in terms of their likeli-
hood of one central, marked, signal representing a valid 
MSNA signal. The datasets consisted of 1000, 1100, and 
1900 signals. In each dataset, 100 images represented data 
from one individual participant in whom microneurogra-
phy was performed. In other words, for the first dataset 
with 1000 images, 100 images per participant of a total of 
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10 participants were used. Images were created for each 
peak detected with an ordinary peak detection algorithm 
calibrated such that it included a broad peak detection 
(width: 100 ms, distance; 250 ms, height minimum: 0.05, 
maximum: 0.8, prominence = 0.05 V). Of these images, 
100 were randomly selected per participant and included 
in the Dataset 1. Datasets 2 and 3 were arranged in a 
similar manner, with the data of 11 and 19 participants 
randomly selected from the entire dataset and both age 
groups, respectively. Furthermore, datasets 2 and 3 were 
prescreened by the neural network created from dataset 1 
for likelihood to represent valid MSNA signals. The ran-
dom selection of data from patients for datasets 2 and 3 
was calibrated based on this to include 60% of peaks that 
were found to likely be valid MSNA signals by the first 
neural network and the remaining 40% likely to be non-
MSNA signals. All signal peaks were sampled randomly 
from the whole recording, including substantial periods 
of preparation and needle manipulation to find the signal. 
The sampled signals were therefore highly heterogeneous 
and noisy.

Labeling was performed for each dataset with slightly 
different premises to diversify the information available 
to the labeling procedure in each dataset. Dataset 1 was 
labeled with showing 20 s excerpts of MSNA, blood pres-
sure and ECG recording and marking the relevant peak 
in the signal in terms of the rating. The marked peak was 
then rated on a binary scale as either a valid or invalid 
signal in all datasets. Dataset 2 was labeled showing the 
rater only a 1-s window of the signal peak of the MSNA 
recording. Dataset 3 was labeled based on a 1-s and a 
4-s window of the MSNA recording available for each 
signal peak. For all visualizations, the peak that was 
to be rated was clearly marked and positioned in the 
exact center of the image. Ratings were carried out by 
a medical doctor with regular training in interpretation 

of microneurography signals. Table 1  summarizes the 
datasets used to train the neural networks. The manual 
labeling of the data followed as many standard criteria 
for microneurography analysis as feasible, a process that 
was partially limited by the fact that only individual sig-
nal bursts were rated and only parts of the data were 
deliberately selected for labeling of the three different 
datasets. Where applicable, a 3:1 signal to noise ratio was 
employed and timing in relation to the cardiac cycle was 
utilized when this was available for rating as described 
previously (White et al., 2015).

Neural networks were trained using the one-
dimensional vectors of the MSNA signal windows as 
input data and the binary rating as output variables. 
For the first network, 4  s excerpts were chosen around 
the central point of the signal (center minus and plus 
2000  ms at a sample rate of 1 per ms), resulting in an 
input vector of 4001 data points. For neural Network 2 
and 3, only 1s excerpts were used, resulting in one di-
mensional input vectors with a length of 1000  ms. See 
Figure 1 for detailed visualizations of the individual al-
gorithms. Algorithms were built on Ubuntu 18.04 server 
environment in python with Keras using the Tensorflow 
deep learning library.

The datasets were separated into training (80%) and 
testing (20%) splits. In the training partition of Dataset 2, 
positively rated signals were triplicated to account for the 
low numbers of positive samples (which led to an over-
all training dataset size of 1492 and testing dataset size 
of (220). All algorithms were trained from initiation 100 
times after random reshuffling of the data into train and 
testing sets. The models were reset after each iteration and 
completely retrained with the newly split and reshuffled 
data. For the first algorithm (DTCT 1) a batch size of 32 
and 6 epochs were used, for the second (DTCT 2) the batch 
size was set to 32 with 20 epochs and the third algorithm 

T A B L E  1   Dataset characteristics

DTCT 1 DTCT 2 DTCT 3

Signal samples 1000 1100 1900

Participants 10 11 19

Signal choice Random Based on DTCT 1 predictions to 
include 60% valid signals

Based on DTCT 1 predictions 
to include 60% valid signals

Signal information 
presented to rater

20-s windows of microneurography 
recording, blood pressure, and 
ECG

1-s window of 
microneurography

1-s and 4-s window of 
microneurography 
recording

Marking of signal to be 
rated

Central position in window and 
visual marking

Central position in window and 
visual marking

Central position in window 
and visual marking

Rated signal One per excerpt One per excerpt One per excerpt

Signal used for neural 
network training

4 s around maximum of rated signal 4 s around maximum of rated 
signal

4 s around maximum of rated 
signal
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(DTCT 3) was trained in batches of 16 over 35 epochs. All 
algorithms were trained using Tensorflow “adamax” op-
timizer and “sparse categorical crossentropy” as the loss 
function. A dropout layer was added the neural networks, 
which had consisted of five hidden layers each. A graphi-
cal illustration of the detailed neural network architecture 
is provided in Figure 1. No substantial model finding or 
tuning process was employed. The described models were 
essentially identical with our initial attempts. The amount 
of epochs were varied between the different approaches to 
explore whether training performance would further in-
crease, but models appeared to reach optimal performance 
within a limited amount of training epochs. Performance 
values such as accuracy and area under the receiver oper-
ating curve (ROC AUC) were recorded for each iteration 
and average learning curves and loss curves created based 
on the test dataset unseen by the algorithm until then. The 
last version of the algorithm that was trained was used for 
all further applications.

2.3  |  Signal timing–association of MSNA-
Signals, Blood pressure and ECG

For development of a probability estimate for the tim-
ing of the MSNA signal, associations with continuous 
blood pressure measurements and ECG were exam-
ined. Since continuous blood-pressure recordings tend 
to have artifacts and interruptions, we used the regular 
relation between blood pressure and ECG signal–given 
that the patients are healthy and have no arrhythmias–
for this estimate. We sampled 98,208 heartbeats as ECG 
and blood pressure recordings from continuous record-
ings over multiple hours taken from 34 patients. The 
data were selected by marking the local blood pressure 
minima (diastolic BP–orange dots and lines in Figure 
1) and matching them with the closest ECG local maxi-
mum (QRS signal in ECG–red crosses and interrupted 
lines in Figure 2). To exclude artifacts in the continuous 
blood pressure measurements, local BP minimal were 

F I G U R E  1   Architecture of neural 
networks. The first line in each box 
refers to the type of layer, the second 
specifies further properties and the 
activation settings of the individual layer 
(Tensorflow activations relu, sigmoid, and 
softmax were employed), and the last line 
specifies the dimensions of the layer if 
applicable
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excluded if they were not followed by a local BP maxi-
mum within 150 ms (distance between orange dot/line 
and green dot in Figure 2). Data that were unlikely to 
represent valid relations between ECG and blood pres-
sure data of the same heart beat (due to artifacts or gaps 
in the recording) were excluded. Such data were identi-
fied by calculating a z-score for each data point based 
on the given distribution (see Figure 9b for an excerpt of 
this first distribution with a long tail of few, very large 
differences–overall 109,719 data points were included 
in this distribution). Data points with a higher z-score 
than 0.12 were excluded. The data were furthermore 
clipped at −250  ms, discarding the values lower than 
that to focus on the dominant distribution (long nega-
tive tail). This led to focusing the centered, dominant 
distribution see in Figure 9a of 98,208 differences be-
tween local ECG maxima and blood pressure minima.

The resulting median of this distribution was used as 
the offset of the time point for the lowest blood pressure 
(diastole) from the ECG signal (ECG signal local maximum 
+median of ECG and blood pressure difference). This 
relation made it possible to connect the physiologically 

interlinked lowest point of blood pressure and likelihood 
of occurrence for MSNA signal to the timing of the ECG 
signal and use it even if the blood pressure signal is not 
available due to artifacts. The delay of MSNA signals and 
the cardiac cycle (ECG in this case) has been measured to 
be within the range of 1160 and 1490 ms with a strong de-
pendence of body length (Sundlöf & Wallin, 1978). Later 
studies confirmed this temporal offset also for blood pres-
sure measurements, for which they found an average off-
set of 1240 ms (Hissen et al., 2015). Other studies applied 
intervals for the offset of usually 1200–1400 ms (Kienbaum 
et al., 2001). For our application, a body height adjusted 
approach based on the method reported by Sundlöf et al. 
appeared to be the most precise approach. A regression 
model based on the line of best fit shown by Sundlöf et al. 
in 1978 was used to calculate the most likely offset to the 
ECG R-peak, a default value of 175 cm was used in case 
no height data were available. This time was subtracted 
from the time point of the individual MSNA signal-peaks 
and a normally distributed probability distribution with a 
standard deviation of 200 ms centered around the corre-
sponding time point that resulted from this subtraction. 

F I G U R E  2   Visualization of the quanitfication process between ECG and BP offset. ECG R-waves are marked with red crosses and 
interrupted lines in the upper panel and interrupted lines in the lower panel. The lowest point of the BP cycle is marked in the lower panel 
with an orange dot and line, the highest with a green dot. Temporal difference between red and orange line was assessed in over 100,000 
instances
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The next ECG R-wave to the center of this distribution 
was assessed with its position in this probability distribu-
tion and the corresponding MSNA signal labeled with the 
probability density at the point of the ECG signal within 
this distribution. The resulting probability densities for 
each MSNA signal-peak were normalized to a scale of 0 to 
1 for the final output.

2.4  |  Markers for signal quality 
quantification

For quantification of different levels of signal quality, simple 
one-dimensional discrete Fourier transformation of the raw 
data was performed. This rendered distinct distributions in 
the frequency of values in the absolute (negative values were 
changed into positive ones) transformed data depending on 
the overall signal quality. In general, noisy signals in which 
valid MSNA signals were absent led to broader distribu-
tions with a stable median of roughly ≥1.5 (see Figure 3c 
and d), while cleaner signals with valid MSNA signal candi-
dates rendered narrow distributions with typically distinctly 
lower medians (see Figure 3a and b).

This method was applied to a dataset of 1000 excerpts of 
60 s, of which the central 30 s had been rated to be either 
noisy signal without valid MSNA signal candidates (Figure 
3c) or to signals with little noise and valid MSNA signal 

candidates (Figure 3a). In between group differences were vi-
sualized and tested for statistical significance. For visualiza-
tion purposes, boxplots were used with a centered horizontal 
line representing the median. Borders of the boxes represent 
the interquartile ranges (25% and 75%), notches represent 
bootstrapped 95% confidence intervals (10,000 resamples), 
whiskers and circles represent outlier data Figure 11. Only 
990 of 1000 excerpts could be analyzed as 10 samples were 
too close to the end or beginning of the recording to extend 
them from the displayed 30 s excerpt to the analyzed 60 s. 
The median of the samples representing valid MSNAs signal 
excerpts was used as the center of a normal-likelihood distri-
bution with a standard deviation of 0.3.

2.5  |  Implementation

Raw data from MSNA recordings with a sample rate of 
1000 data points per second was saved as text files and 
imported into a python3 environment. A simple peak de-
tection algorithm (Taskesen, 2020) was used to find all 
local prominences of more than 0.05  Volts prominence 
and 100  ms width (furthermore the height was set to a 
minimum of 0.05 and maximum of 0.8 Volts, the distance 
function of the algorithm was set to 250  ms). For each 
detected peak distance to the closest ECG signal was cal-
culated and used to assign a likelihood according to the 

F I G U R E  3   Two excerpts of the microneurography recording in one participant. The upper panels show the recording after finding a 
valid MSNA signal (a, only the first 30 s of the 60 s excerpt on which Fourier transformation was carried out is displayed) and the histogram 
of the one dimensional discrete Fourier transformation of a 60 s except with the x-axis just showing the absolute frequency of individual 
values (b). Panels (c) and (d) show the same analysis for an excerpt at the very beginning of the recording when no valid signal had been 
acquired yet
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likelihood distribution (normally distributed) created for 
the ECG–BP relation centered around 180  ms after the 
ECG peak (R-wave) with a standard deviation of 200 ms. 
This likelihood was scaled from 0 to 1. For each peak an 
excerpt corresponding to the input layer size of the trained 
network was selected as input for each of the three neu-
ral network algorithms to assess the likelihood of a valid 
MSNA peak. This likelihood was given as a likelihood 
for a negative outcome and a positive outcome each on 
the scale from 0 to 1 and one categorical value that was 
selected based on which likelihood was higher as either 
negative or positive for each algorithm. One-dimensional 
discrete Fourier transformation was then performed on 
a 60 s window around each detected peak of the MSNA 
signal and the median of this distribution was calculated. 
This median was associated with the individual signal as 
its main signal quality marker. This quality index value of 
the individual signal peaks and their 60 s surrounding was 
assessed with the likelihood distribution created for this 
quality index and the corresponding probability density 
was assigned to the particular signal-peak. All assigned 
probability densities for each signal around a detected 
peak were scaled from 0 to 1.

Each of these variables for individual signal validity 
(neural networks), timing (MSNA-ECG-BP association), 
and signal Quality (likelihood of one-dimensional discrete 
Fourier transformation) could now be associated with an 
individual detected peak, and all variables were scaled 
between 0 and 1, some of them continuously and some 
as a (binary) categorical variables. All variables were then 
plotted as a line plot, the continuous likelihoods from the 
neural networks for a positive outcome were plotted left 
and right of their categorical outcome, 0 to 1 scaled qual-
ity and timing likelihood indexes were plotted thereafter. 
The line plots were transformed into an axially orientated, 
round plots, and arranged in a way that each dimension of 
assessment was represented in a different area of the circle 
so that the shape of the circle could immediately confer 
after some training a representation of the quantified vari-
ables of each individual signal peak (see Figure 12, Figure 
13, and Figure 14. For the default form of this circular rep-
resentation, the quality index was set to occupy the larg-
est proportion of the circle and timing and the individual 
neural network outputs the other half. Integration of this 
curve and scaling of the area under the curve (AUC) led 
to an overall composite of all quantified markers from 0 
to 1 representing an overall likelihood for the validity of 
each individual peak in the MSNA signal. The scaling was 
applied to ensure that the entire surface of the plot would 
exactly add up to be equivalent to the numerical value of 
one (so that the maximal AUC would be one). This was 
achieved by dividing the actual AUC below this line by the 
overall surface of the plot.

3   |   RESULTS

3.1  |  Neural networks for MSNA signal 
shape detection

3.1.1  |  First neural Network DTCT 1

In 100 independent training sessions, the first neu-
ral network achieved on average 80.54% accuracy on 
the testing dataset and a mean ROC AUC of 75.0%. 
Visualizations of the training and performance parame-
ters can be found in Figure 4, with average learning and 
loss curve over the epochs and histograms for accuracy 
and AUC ROC over 100 independent training sessions 
with each reshuffled data.

3.1.2  |  Second neural network DTCT 2

Examples of the labeled dataset that was used for train-
ing of the algorithm are shown in Figure 5. Over 100 
training runs of the algorithm resulted in a mean ac-
curacy of 87.4% and a mean AUC of the ROC of 86%. 
Summarizing graphs of the trained algorithms are dis-
played in Figure 6–with the average learning curves and 
histograms for the distribution of the testing parameters 
accuracy and AUC of the ROC.

3.1.3  |  Third neural network DTCT 3

Examples of the labeled dataset used to train the third 
neural network are visualized in Figure 7 separated for 
positively rated signals and negatively rated signals–each 
representing likely valid and non-valid signal peaks, re-
spectively. The 100 iterations of training for the DTCT 
3 resulted in an average accuracy of 85.8% and an aver-
age AUC of the ROC of 86%. Performance parameters for 
DTCT 3 are visualized in Figure 8.

3.2  |  Signal timing–association of MSNA-
Signals, Blood pressure and ECG

The median difference between the local BP minima and 
the corresponding ECG maxima (R-wave) was −179 ms 
in the final selected distribution is shown in Figure 7a. 
Before the selection process by the means of an assigned 
z-score and clipping the data at −250 ms, the distribution 
had a mean of −182  ms–an excerpt of this distribution 
is shown in Figure 7b (distribution after z-score clip-
ping, the original distribution had extreme values up to 
−30,000 ms).
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F I G U R E  4   Performance parameters 
for the training for DTCT 1. Panels (a) and 
(b) show the average accuracy and loss 
of 100 individual, completely separated 
training repetitions of the algorithm for 
training and testing dataset. Panels (c) and 
(d) show histograms of the performance 
parameters AUC ROC and accuracy for 
each individual time the algorithm was 
trained

F I G U R E  5   Examples from the labeled dataset for the second neural Network DTCT 2. A shows signal peaks that were rated to likely 
represent valid MSNA signals. b, shows examples of signal peaks rated not to represent likely valid MSNA signals. The signal is orientated in 
a way that its highest point is the center of the image and additionally marked with an orange, interrupted line
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F I G U R E  6   Performance parameters 
for the training for DTCT 2. Panel (a) and 
(b) show the average accuracy and loss of 
100 individual training iterations of the 
algorithm for training and testing dataset. 
Panels (c) and (d) show histograms of 
the performance parameters AUC ROC 
and accuracy for each individual time the 
algorithm was trained

F I G U R E  7   Examples from the labeled dataset for the third neural Network DTCT 3. Panel (a) shows signal peaks that were rated to 
likely represent valid MSNA signals. (b) shows examples of signal peaks rated not to represent likely valid MSNA signals. The signal is 
orientated in a way that its highest point is the center of the image and additionally marked with an orange, interrupted line
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F I G U R E  8   Performance parameters 
for the training for DTCT 3. Panels (a) and 
(b) show the average accuracy and loss of 
100 individual training iterations of the 
algorithm for training and testing dataset. 
Panels (c) and (d) show histograms of 
the performance parameters AUC ROC 
and accuracy for each individual time the 
algorithm was trained

F I G U R E  9   Distribution of time difference between ECG-peaks (R-wave) and lowest blood pressure signal. Panel (a) shows the final, 
focused distributions, and panel (b) (log-scale) shows the distribution with long left, negative tail after z-score based data selection and 
before clipping of extreme values below −250 ms
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3.3  |  Automated Markers for signal 
quality quantification

Of the 60 s raw data excerpts (plus and minus 30 s) around 
each MSNA signal candidate a simple one-dimensional 

discrete Fourier transformation was calculated. The 
median value of these values for each candidate MSNA 
signal was plotted during the time course of MSNA re-
cordings. For a visualization of the transformation pro-
cess see Figure 2, for a visualization of the median values 

F I G U R E  1 0   (a) shows the quality index derived from the Fourier transformed of a 3-h long microneurography recording. The 
quality index is calculated for each detected signal peak during this time for a 60-s window around the peak. The median of the Fourier 
transformation for these excerpts is associated with the individual peaks and plotted over time (a). Low, relatively constant intervals of this 
variable represent stable and valid MSNA recordings, higher and varying levels periods of positioning the needle or losing the signal for 
example after the participant moved. The excerpts at points (b, c and d) have been chosen randomly based on this quality index. Point (b) is 
located at a time point with high variance and generally high levels of the quality marker–indicating bad signal quality. The sub-panel (b) 
shows the original microneruography signal corresponding to this time point–showing a noisy, non-valid signal. At time point (c) the quality 
index suggest a stable, valid signal–as seen in the corresponding original data window in sub-panel (c). At time point (d) the quality index 
has suddenly sored upwards again, indicating a loss of valid signal, confirmed by the corresponding original data in sub-panel (d)
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of the transformed data around each candidate signal see 
Figure 10.

On careful inspection of the time course of this pa-
rameter during a microneurography recording in various 
subjects, distinct and sudden changes of this parameter 
indicated changes in signal quality, whereas stable time 
periods with values below indicated a valid acquisition 
of the MSNA signal. Examples of this are shown in 
Figure 10. A dataset of 1000 signal excerpts of 10 differ-
ent MSNA recordings of different subjects, which were 
rated in terms of validity of the signal, were assessed 
making use of this parameter. Results are shown in the 
boxplots of Figure 11. The median value of the group of 
data that was rated to represent valid signal recordings 
was 0.57 (n = 757 excerpts). In the group that was rated 
not to represent a valid MSNA recording the median 
was 1.82 (n = 233 excerpts), a Mann-Whitney U-test es-
timated for the differences between the groups a p-value 
<0.001 (U = 13723).

3.4  |  Implementation

Each step of assessment described above was carried 
out for each signal-peak detected in the MSNA record-
ing. The implemented data were visualized in panels for 
each signal-peak including an overall likelihood estimate. 
Examples of these visual representations can be seen in 
Figures 12–14 in MSNA signal of different quality.

4   |   DISCUSSION

MSNA signals are difficult to obtain, signal quality var-
ies widely and recordings tend to be noisy and contain 
many artifacts. Analysis is therefore often performed 
manually or with simplistic peak-detection algorithms 
that are customized individually and applied to selected, 
high quality windows of the recordings. Considerable 
efforts have been made to standardize approaches 
(White et al., 2015). However, manual analysis often 
remains subjective and to a certain degree difficult to 
standardize, especially with lower quality signals. Peak 
detection software approaches can often be helpful for 
good quality excerpts, which need to be selected in a 
subjective manual approach.

The longer the presented microneurography excerpt, 
the more will the rating take into account the overall signal 
quality. The shorter the presented window, the more will 
the focus shift on only the form of the individual localized 
peaks. Given that we wanted to create an additional, inde-
pendent parameter for the overall signal quality, we chose 
for this implementation short excerpts of 1 and 4 s.

Software capable of detecting periods of valid record-
ings automatically on longer recording excerpts and 
deciding which signal peaks in the shorter recording 
excerpts are likely correspond to MSNA may be a pos-
sibility to make the analysis of microneurography more 
efficient, objective, and reproducible and therefore more 
standardized.

We have described novel software tools based on ar-
tificial intelligence, machine learning, and probabilistic 
models that reproduce manual decisions about MSNA 
signals. We believe that the accuracy is highly dependent 
on coherent labeling and inaccuracy of predictions often 
driven by in-between cases of signals that might be inter-
preted as valid or invalid given certain circumstance, for 
example signal quality and timing. Since the overall model 
takes these factors into account the overall analysis of re-
cordings will likely perform even better.

Another point to consider is the missing ground truth 
in the labeling of these signal-peaks, which remains 
manual and subjective and therefore a gold-standard 
method at best. Future research will need to look into 
the possibility of overcoming this fallacy of reproduc-
ing manual decisions and reaching a more standardize 

F I G U R E  1 1   Boxplot showing the distribution of median values 
of the one dimensional Discrete Fourier transformation (DFT) for 
990 excerpts of MSNA recordings. These recordings are rated into 
valid and invalid recordings–analysis was carried out according to 
this grouping of the data. The middle bar of the box represents the 
median, borders of the boxes represent the interquartile ranges, 
notches the bootstrapped 95% confidence intervals. Whiskers and 
circles are showing outliers of the data
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approach in classifying these signals–potentially based 
on unsupervized automated learning approaches. 
However, the approach to evaluate signals with a 
software–even based on subjective manual decisions–
makes the decisions from this point on coherent and 
reproducible, which is the clear advantage of using 

automated methods–besides increasing efficiency. The 
application can be individualized to the preferences of 
the user by building and adding custom trained neural 
networks based on data labeled by the user. This would 
reproduce the decisions and preferences of individual 
users. This does, however, not mitigate the requirement 

F I G U R E  1 2   Signal window of microneuroggraphy recording of excellent quality. Signal peaks selected by the software are marked with 
vertical orange lines. The most important variables assigned to each detected signal peak are printed on top of each individual peak (first line 
consecutive signal number, second line binarized output of the three neural networks with 1 indicating valid signal and 0 non-valid signal, 
third line absolute probability density of the individual peaks based on the timing model, last line median of the Fourier transformed 60-s 
window around the signal). (b–d) are circular representations of the most important determined variables for each individual peak, subpanel 
(c) corresponds to the central peak marked in red in subpanel (a), the circles right and left to the corresponding next signal peak right and 
left of the marked central peak. The circular graphs visualizes the binary decision of the individual DTCT neural network algorithms (which 
are marked as DTCT_1, DTCT_2, and DTCT_3) surrounded each left and right by the continuous likelihood for a valid signal given out by 
the respective algorithm. The overall quality index (FFT signal Quality) rescaled from 0 to 1 (1 indicating an excellent signal) is plotted in the 
left bottom corner, the rescaled probability calculated based on the timing of the signal (p-timing, 1 indicating high likelihood) is plotted in 
the right bottom corner. Calculation of the area under the curve from this plot and rescaling of the AUC to 0 to 1 yields an overall integrated 
likelihood for the signal to be and valid MSNA signal. Some signals have been marked with ‡ to indicate that the first identification step 
of candidate signal burst with conventional peak detection algorithms at times left out signals that may be regarded by some to be valid 
candidate signals. These signals however, are in turn not considered by our more advanced signal processing algorithms
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for further research to employ rigorous validation tech-
niques in this context to further define the relationship 
between the described approaches and manual analyses 
of MSNA signals.

The presented evidence of the regular connection 
between ECG and continuous blood pressure opens 
up the possibility to use either of these to evaluate the 

timing of the signals by just adjusting the assumed time 
delay by 180 ms. Blood pressure is the more directly re-
lated marker physiologically, while ECG is often more 
stable and less prone to show artifacts. Taking into ac-
count the time it takes for afferent sensory signals to 
reach autonomic centers of the brain, be processed and 
travel via slow C-fibers to the site where the MSNA can 

F I G U R E  1 3   Signal window of microneuroggraphy recording of average quality. Signal peaks selected by the software are marked with 
vertical orange lines. The most important variables assigned to each detected signal peak are printed on top of each individual peak (first line 
consecutive signal number, second line binarized output of the three neural networks with 1 indicating valid signal and 0 non-valid signal, 
third line absolute probability density of the individual peaks based on the timing model, last line median of the Fourier transformed 60-s 
window around the signal). (b–d) are circular representations of the most important determined variables for each individual peak, subpanel 
(c) corresponds to the central peak marked in red in subpanel (a), the circles right and left to the corresponding next signal peak right and 
left of the marked central peak. The circular graphs visualizes the binary decision of the individual DTCT neural network algorithms (which 
are marked as DTCT_1, DTCT_2 and DTCT_3) surrounded each left and right by the continuous likelihood for a valid signal given out by 
the respective algorithm. The overall quality index (FFT signal quality) rescaled from 0 to 1 (1 indicating an excellent signal) is plotted in the 
left bottom corner, the rescaled probability calculated based on the timing of the signal (p-timing, 1 indicating high likelihood) is plotted in 
the right bottom corner. Calculation of the area under the curve from this plot and rescaling of the AUC to 0 to 1 yields an overall integrated 
likelihood for the signal to be and valid MSNA signal. Some signals have been marked with ‡ to indicate that the first identification step 
of candidate signal burst with conventional peak detection algorithms at times left out signals that may be regarded by some to be valid 
candidate signals. These signals however are in turn not considered by our more advanced signal processing algorithms
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be obtained via the recording electrode, there is a con-
stant temporal relationship between continuous blood 
pressure, ECG, and likelihood of an MSNA burst occur-
rence during the cardiac cycle (Delius et al., 1972; White 
et al., 2015). This relationship can help to identify valid 
MSNA bursts and differentiate them for example from 
skin nerve bursts–which have a more variable appear-
ance and lack this cardiac rhythmicity (Gunnar, 2007; 
Hagbarth et al., 1972).

Depending on which data were recorded and in which 
quality will enable examiners to decide which one to use 
for the analysis, and a flexible platform allowing multiple 
approaches to determine if an MSNA burst is valid or not 
would enable customization of approaches and preferred al-
gorithms. The disadvantage of personalizing these systems 
would obviously be that it diminishes one of the great ad-
vantages of the technology, which is to standardize MSNA 
analysis between different laboratories. If interpreters would 

F I G U R E  1 4   Signal window of microneuroggraphy recording of poor quality. Signal peaks selected by the software are marked with 
vertical orange lines. The most important variables assigned to each detected signal peak are printed on top of each individual peak (first line 
consecutive signal number, second line binarized output of the three neural networks with 1 indicating valid signal and 0 non-valid signal, 
third line absolute probability density of the individual peaks based on the timing model, last line median of the Fourier transformed 60-s 
window around the signal). (b–d) are circular representations of the most important determined variables for each individual peak, subpanel 
(c) corresponds to the central peak marked in red in subpanel (a), the circles right and left to the corresponding next signal peak right and 
left of the marked central peak. The circular graphs visualizes the binary decision of the individual DTCT neural network algorithms (which 
are marked as DTCT_1, DTCT_2, and DTCT_3) surrounded each left and right by the continuous likelihood for a valid signal given out by 
the respective algorithm. The overall quality index (FFT signal quality) rescaled from 0 to 1 (1 indicating an excellent signal) is plotted in the 
left bottom corner, the rescaled probability calculated based on the timing of the signal (p-timing, 1 indicating high likelihood) is plotted in 
the right bottom corner. Calculation of the area under the curve from this plot and rescaling of the AUC to 0 to 1 yields an overall integrated 
likelihood for the signal to be and valid MSNA signal
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stick to a default version of the software analysis of MSNA 
data would henceforth only be determined by the raw data 
and the software version of the analyzing algorithm.

After application of the described methods, the algo-
rithm produces a dataset with a large number of features 
and validity likelihoods for each signal and integrates them 
in one value. Signals, from this point on, can be selected 
with a default likelihood of >0.5 or with stricter or less 
strict criterion with the possibility of adjusting the weight-
ing of the factors determining the overall likelihood (by 
controlling how much width under the curve of the final 
circular summarizing graphs they occupy). Furthermore, 
the algorithm can be adjusted so that only valid signal 
periods are taken into account referring to the quality 
parameters (which is also by default part of the overall 
likelihood). Standard parameters like bursts per minute or 
per heart beat as well as total markers like product of burst 
frequency and mean burst height can be easily extracted 
from valid recording excerpts (White et al., 2015). New 
markers will be ready to be created and computed as the 
data is fully digitalized and implemented in environments 
that make further exploration feasible.

Our approach has several limitations: Conventional 
peak detection software may not be set up to be sufficiently 
inclusive in its choice of candidate signal bursts, such that 
further evaluated relevant signal burst may be missed 
entirely. We have marked some examples that could be 
considered to represent valid MSNA bursts by some inter-
preters (Figures 12 and 13) to showcase this possibility. This 
potential limitation can be ameliorated by choosing a set-
ting for the conventional peak detection algorithms that is 
sufficiently broad. This, however, may have to be balanced 
against the potential he disadvantage of decreasing the pre-
test probability of choosing valid signals, which may have 
an impact on overall performance of the methods follow-
ing initial signal candidate selection in the pipeline.

Our description of tools to facilitate automated ap-
proaches for MSNA analysis, while portraying quantifica-
tions of the performance of individual components, does 
not contain a fully validated approach. Implementation of 
these tools into an analysis algorithm will require further 
rigorous validation of the method and comparison with 
current gold-standard manual analysis. Further limitations 
of this work include the lack of the full quantification of 
the MSNA signals manually and automatically and com-
parison thereof, which will be required for future validation 
of the approach, as well as for demonstration of the suit-
ability of the data used for algorithm generation to repre-
sent a wide range of baseline sympathetic activity patterns.

For the current research, microneurography record-
ings from people with a diverse demographic were cho-
sen to facilitate broader representation. However, we only 

included male participants at this stage to limit any po-
tential sex bias, thereby limiting its applicability to female 
sex. This however, could be easily overcome by the addi-
tion of further prediction algorithms that are trained on 
mixed sex or female only datasets.

Another target of future research may be the explo-
ration of more sophisticated models to capture the tem-
poral association between valid MSNA signals and the 
cardiac cycle. While all microneurography recordings 
utilized in the presented work were derived from rest-
ing recordings, sympathetic stressors and task-related 
MSNA may lead to more variability in this tempo-
ral association and require more advanced modelling 
approaches.

In summary, we have introduced a number of novel 
tools with promising potential to automate the analysis of 
microneurography recordings.
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