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Abstract
Automated	analysis	and	quantification	of	physiological	signals	in	clinical	prac-
tice	 and	 medical	 research	 can	 reduce	 manual	 labor,	 increase	 efficiency,	 and	
provide	more	objective,	 reproducible	 results.	To	build	a	novel	platform	for	 the	
analysis	of	muscle	sympathetic	nerve	activity	(MSNA),	we	employed	state-	of-	the-	
art	data	processing	and	machine	learning	applications.	Data	processing	methods	
for	integrated	MSNA	recordings	were	developed	to	evaluate	signals	regarding	the	
overall	quality	of	the	signal,	the	validity	of	individual	signal	peaks	regarding	the	
potential	to	be	MSNA	bursts	and	the	timing	of	their	occurrence.	An	overall	prob-
ability	score	was	derived	from	this	flexible	platform	to	evaluate	each	individual	
signal	 peak	 automatically.	 Overall,	 three	 deep	 neural	 networks	 were	 designed	
and	trained	to	validate	individual	signal	peaks	randomly	sampled	from	record-
ings	representing	only	electrical	noise	and	valid	microneurography	recordings.	A	
novel	data	processing	method	for	the	whole	signal	was	developed	to	differentiate	
between	periods	of	valid	MSNA	signal	recordings	and	periods	in	which	the	signal	
was	not	available	or	lost	due	to	involuntary	movement	of	the	recording	electrode.	
A	 probabilistic	 model	 for	 timing	 of	 the	 signal	 bursts	 was	 implemented	 as	 part	
of	the	system.	Machine	Learning	algorithms	and	data	processing	tools	were	im-
plemented	to	replicate	the	complex	decision-	making	process	of	manual	MSNA	
analysis.	 Validation	 of	 manual	 MSNA	 analysis	 including	 intra-		 and	 inter-	rater	
validity	and	a	comparison	with	automated	MSNA	tools	 is	required.	The	devel-
oped	toolbox	for	automated	MSNA	analysis	can	be	extended	in	a	flexible	way	to	
include	algorithms	based	on	other	datasets.
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1 	 | 	 INTRODUCTION

More	than	half	a	century	ago	the	introduction	of	micro-
neurography	led	to	the	realization	that	the	activity	of	dis-
tinct	parts	of	the	nervous	system	can	be	directly	recorded	
and	 quantified	 (Carter,	 2019).	 This	 technique	 granted	
direct	 access	 to	 the	 activity	 of	 the	 sympathetic	 nervous	
system,	an	important	controller	of	cardiovascular	regula-
tion.	Microneurography	enables	 the	direct	measurement	
of	 postganglionic	 efferent	 sympathetic	 nerve	 activity	 di-
rected	 to	 the	 skeletal	 muscle	 vasculature	 (MSNA).	 The	
sympathetic	 nervous	 system	 –		 responsible	 for	 stress	 re-
sponses	and	maintenance	of	a	wide	variety	of	autonomic	
physiological	 functions	–		 from	blood	pressure	and	heart	
rate	to	visual	acuity	to	digestion	–		has	also	been	found	to	be	
of	significant	pathophysiological	relevance	in	many	med-
ical	 conditions	 (McCorry,	 2007).	 including	 hypertension	
(Grassi,	 1998;	 Hering	 et	 al.,	 2014;	 Schlaich	 et	 al.,	 2004),	
congestive	 heart	 failure	 (Azevedo	 et	 al.,	 2020;	 Schlaich	
et	al.,	2005),	left	ventricular	hypertrophy	(Schlaich	et	al.,	
2003),	ischemic	heart	disease	(Badrov	et	al.,	2016;	Malliani	
&	 Montano,	 2004),	 Takutsubo	 cardiomyopathy	 (Vaccaro	
et	 al.,	 2014),	 atrial	 fibrillation	and	 sudden	cardiac	death	
(Kiuchi	et	al.,	2019),	 sleep	apnea	 (Floras,	2009),	 chronic	
kidney	disease	(Kaur	et	al.,	2017;	Schlaich	et	al.,	2009),	and	
obesity	(Lambert	et	al.,	2014).	Importantly,	increased	SNS	
activity	has	been	shown	to	predict	CV	outcomes	indepen-
dent	of	other	risk	factors	and	its	inhibition	is	considered	
a	key	therapeutic	approach	in	many	of	these	conditions.

MSNA	is	recorded	by	insertion	of	a	fine-	insulated	elec-
trode	into	a	peripheral	nerve,	most	commonly	the	peroneal	
nerve,	which	is	quite	superficial	and	located	just	below	the	
head	of	the	fibula	which	serves	as	an	anatomic	landmark.	
If	 the	 tip	 of	 the	 electrode	 is	 appropriately	 placed	 within	
the	efferent	sympathetic	nerve	fiber,	the	degree	of	central	
sympathetic	 outflow	 directed	 to	 the	 post-	ganglionic	 skel-
etal	muscle	vasculature	can	be	recorded	as	an	integration	
of	 fiber	 activity	 (bursts)	 or	 even	 single	 nerve	 recordings	
(spikes).	These	signals	commonly	undergo	pre-	processing	
before	analysis,	 including	amplification,	 filtering,	and	 in-
tegration	(White	et	al.,	2015).	This	results	in	signals	featur-
ing	characteristically	shaped	bursts	of	sympathetic	activity,	
which	can	be	identified	and	quantified	in	terms	of	their	fre-
quency	(burst	frequency	expressed	as	bursts/min)	and	burst	
incidence	(expressed	as	bursts	per	100 heartbeats)	and	total	
MSNA.	(White	et	al.,	2015).	These	parameters	have	proven	
to	be	of	high	scientific	value	in	scientific	physiological	and	
pathophysiological	considerations	as	indicated	by	the	wide	
range	of	research	efforts	mentioned	above.

However,	 the	 process	 of	 MSNA	 signal	 analysis	 has	
some	substantial	caveats	 that	need	to	be	taken	into	con-
sideration.	 The	 processed	 signals	 tend	 to	 be	 noisy	 even	
after	 integration,	 with	 considerable	 inter-	measurement	

differences	of	signal	quality.	Some	appear	very	clean	with	
stable	baseline	tracings	and	distinct	typically	shaped	sig-
nal	peaks	representing	sympathetic	bursts.	Others	feature	
very	unclear	baselines	and	heterogeneously	shaped	elec-
trical	activity	in	which	typical	signals	are	still	identifiable,	
but	 a	 clear	 differentiation	 between	 valid	 representations	
of	 MSNA	 and	 noise	 remains	 highly	 subjective	 (White	
et	al.,	2015).	An	excellent	technical	review	by	White	et	al.	
revisits	 possibilities	 for	 standardization	 of	 this	 process	
such	as	establishing	a	height	offset	of	valid	signals	 from	
the	baseline	by	a	relation	of	3:1–	without	negating	poten-
tial	disadvantages	of	these	approaches.	Of	importance,	the	
analysis	of	these	signals	is	subject	to	a	potentially	strong	
individual	 bias	 of	 the	 interpretation	 of	 the	 signals	 espe-
cially	when	the	signal	is	very	noisy.	White	et	al.	point	out	
that	there	are	no	data	investigating	the	potential	impact	of	
differing	methods	and	approaches	for	the	identification	of	
MSNA	bursts.

Additionally,	scientists	can	make	use	of	multiple	mark-
ers	while	analyzing	MSNA	recordings	to	identify	valid	sig-
nal	bursts	and	their	timing.	The	initiation	of	sympathetic	
bursts	 occurs	 in	 the	 brainstem	 usually	 when	 the	 blood	
pressure	 is	at	 its	 lowest	point–	during	 the	diastole	of	 the	
cardiac	cycle.	Taking	these	physiological	 insights	consis-
tently	into	account	may	help	to	improve	the	appropriate	
and	accurate	analysis	of	MSNA	and	reduce	the	potential	
of	error.

Furthermore,	accessing	the	nerve	and	positioning	the	
recording	 electrode	 within	 the	 nerve	 fiber	 often	 takes	
a	 considerable	 amount	 of	 time,	 whereas	 the	 smallest	 of	
movements	by	the	subject	can	lead	to	the	loss	of	a	valid	
MSNA	 signal.	 Manually	 marking	 digital	 recordings	 as	
well	 as	 retrospective	 review	 of	 the	 signal	 quality	 are	
needed	to	identify	valid	MSNA	recording	periods	that	can	
be	used	for	analysis.	Since	MSNA	recordings	can	last	up	
to	hours,	their	interpretation	and	analysis	takes	time	and	
concentration.	Some	authors	use	peak	detection	software	
to	simplify	and	speed	up	this	process.	These	types	of	soft-
ware	 however,	 often	 cannot	 correctly	 differentiate	 noisy	
from	valid	signals	nor	identify	high	quality	recording	win-
dows	to	focus	the	subsequent	analysis	on	such	windows.	
Therefore,	 the	development	of	 tools	 to	 further	standard-
ize,	digitalize,	and	automate	this	process	is	a	logical	step	to	
move	the	technique	of	MSNA	analysis	forward.

To	achieve	this	goal,	appropriate	analysis	tools	would	
need	to	take	our	domain	knowledge	about	valid	MSNA	sig-
nals	into	account,	in	the	first	instance	this	might	include:

1.	 Shape	 and	 form	 of	 signal	 peaks	 and	 immediate	 sur-
rounding	 that	 are	 regularly	 regarded	 as	 valid	 MSNA	
bursts

2.	 Timing	of	the	signals	in	regards	to	other	physiological	
markers	of	the	cardiac	cycle
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3.	 Overall	signal	quality	and	detection	of	relevant	and	ir-
relevant	time	periods	(i.e.,	stable	high	quality	signal	vs.	
signal	during	electrode	positioning/adjustment	associ-
ated	with	noise	and	artifacts)

Technological	 advances	 mostly	 in	 hardware	 and	 soft-
ware	have	prompted	the	usage	and	further	development	of	
fast	automated	data	processing	tools	that	make	these	tasks	
achievable	 (Donoho,	 2017).	 The	 possibility	 for	 machine	
learning	 algorithms	 to	 differentiate	 patterns,	 shapes	 and	
forms	makes	 it	one	of	 the	most	promising	methods	to	 fa-
cilitate	interpretation	of	complex	physiological	signals.	We	
hypothesize	that	neural	networks	which	have	shown	to	be	
particularly	powerful	at	pattern	recognition	can	be	trained	
with	labeled	datasets	 to	 learn	to	differentiate	valid	MSNA	
signals	 (bursts)	 from	 signal	 peaks	 that	 are	 more	 likely	 to	
represent	noise	or	other	activity	(Bermejo	et	al.,	2019).	Since	
this	is	the	first	study	to	our	knowledge	exploring	the	poten-
tial	of	AI	applications	for	MSNA	recordings,	we	furthermore	
wanted	 to	explore	different	approaches	 to	 the	problem	of	
identifying	valid	MSNA	signal	bursts.	This	included	differ-
ent	machine	learning	training	approaches,	different	label-
ing	strategies	of	the	data	and	evaluation	of	supplementary	
features	such	as	burst	timing	and	overall	signal-	quality.

MSNA	 burst	 timing	 is	 associated	 with	 some	 uncer-
tainty,	however,	typically	occurs	at	a	specific	time	of	the	
cardiac	cycle	which	is	often	taken	into	account	when	in-
terpreting	microneurography	results.	Probabilistic	models	
marking	areas	of	higher	likelihood	for	valid	MSNA	burst	
based	 on	 the	 cardiac	 cycle	 (measured	 by	 ECG	 and	 con-
tinuous	blood	pressure	measurement)	might	prove	to	be	
helpful	in	modeling	the	overall	likelihood	of	a	signal	peak	
to	represent	a	valid	MSNA	burst.	We	set	out	to	explore	the	
quantitative	 temporal	 relationship	 between	 measures	 of	
the	cardiac	cycle	and	use	the	continuous	data	indicating	
the	stages	of	the	cardiac	cycle	for	a	computational	model	
that	 assigns	 varying	 likelihood	 densities	 to	 certain	 time	
points	during	 the	microneurography	recording	based	on	
values	found	for	this	relationship	in	the	literature.

Automated	quality	parameters	for	MSNA	signals	have	
not	 been	 described	 in	 the	 existing	 scientific	 literature	
to	the	best	of	our	knowledge.	The	goal	was	to	develop	a	
quantitative	 marker	 that	 would	 differentiate,	 as	 clearly	
as	 possible,	 between	 a	 generally	 valid	 signal	 and	 a	 non-	
valid	signal.	That	means	in	a	best-	case	scenario	that	this	
marker	would	reliably	identify	a	change	in	signal	quality	
after	appropriate	positioning	of	the	electrode	in	the	nerve	
fiber.	This	 would	 distinguish	 valid	 recordings	 from	 time	
points	at	which	the	electrode	is	manipulated	to	obtain	an	
adequate	signal.

The	overarching	goal	was	to	implement	the	necessary	
algorithms	and	models	in	one	program	that	took	raw	files	
of	 the	signal	data	as	 input	and	produced	markers	for	all	

detected	 signal	peaks	 that	 represent	 the	aforementioned	
quality	 parameters.	 As	 a	 consequence,	 the	 data	 can	 be	
easily	analyzed	based	on	the	likelihood	assigned	to	the	in-
dividual	signal	peaks	and	recording	periods	 to	represent	
valid	MSNA	signals.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 MSNA, ECG, and Blood pressure 
recordings

The	data	used	for	the	analysis	and	development	of	algo-
rithms	described	here	was	based	on	data	recorded	in	ei-
ther	young	(18–	30 years	old,	n = 24)	or	older	age	healthy	
male	individuals	(60–	75 years	old,	n = 10).	When	only	a	
part	of	the	data	was	used	for	certain	aspects	of	analysis	or	
algorithm	development,	this	is	indicated	in	the	individual	
sections.	In	such	cases,	the	selected	recordings	were	cho-
sen	randomly.

In	 all	 subjects	 multiunit	 postganglionic	 MSNA	
was	 recorded	 with	 tungsten	 microelectrodes	 (FHC,	
Bowdoinham,	ME)	that	were	inserted	directly	 into	the	
right	peroneal	nerve	below	the	fibular	head.	Blood	pres-
sure	 was	 continuously	 measured	 with	 the	 Finometer	
system	(Finapress	Medical	System	BV,	Amsterdam,	The	
Netherlands).	An	ECG	was	recorded	with	a	5 lead	sys-
tem	with	all	other	described	parameters	at	a	sampling	
rate	of	1000	data	points	per	second	(PowerLab	record-
ing	system,	model	ML	785/8SP,	ADI	Instruments,	Bella	
Vista,	NSW,	Australia).	Before	 recording,	 the	data	was	
integrated	by	an	analog	transistor	with	data	processing	
capacity	 in	100 ms	 intervals.	Data	were	 recorded	after	
finding	 a	 valid	 signal	 for	 a	 prolonged	 period	 of	 usu-
ally	90 min.	Data	were	exported	as	text	files	for	further	
processing.

The	 study	 was	 approved	 by	 the	 Ethics	 Committee	 of	
the	University	of	Western	Australia	and	abides	by	the	dec-
laration	of	Helsinki.

2.2	 |	 Neural networks for MSNA signal 
shape detection

For	training	and	testing	of	neural	networks,	three	datasets	
(Dataset	1,	Dataset	2,	and	Dataset	3)	consisting	of	images	
of	 MSNA	 signals	 were	 labeled	 in	 terms	 of	 their	 likeli-
hood	of	one	central,	marked,	signal	representing	a	valid	
MSNA	 signal.	 The	 datasets	 consisted	 of	 1000,	 1100,	 and	
1900 signals.	In	each	dataset,	100	images	represented	data	
from	one	individual	participant	in	whom	microneurogra-
phy	was	performed.	 In	other	words,	 for	 the	 first	dataset	
with	1000	images,	100	images	per	participant	of	a	total	of	
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10	participants	were	used.	Images	were	created	for	each	
peak	detected	with	an	ordinary	peak	detection	algorithm	
calibrated	 such	 that	 it	 included	 a	 broad	 peak	 detection	
(width:	100 ms,	distance;	250 ms,	height	minimum:	0.05,	
maximum:	0.8,	prominence = 0.05 V).	Of	 these	 images,	
100	were	randomly	selected	per	participant	and	included	
in	 the	 Dataset	 1.	 Datasets	 2	 and	 3	 were	 arranged	 in	 a	
similar	 manner,	 with	 the	 data	 of	 11	 and	 19	 participants	
randomly	 selected	 from	 the	 entire	 dataset	 and	 both	 age	
groups,	respectively.	Furthermore,	datasets	2	and	3	were	
prescreened	by	the	neural	network	created	from	dataset	1	
for	likelihood	to	represent	valid	MSNA	signals.	The	ran-
dom	selection	of	data	 from	patients	 for	datasets	2	and	3	
was	calibrated	based	on	this	to	include	60%	of	peaks	that	
were	 found	 to	 likely	 be	 valid	 MSNA	 signals	 by	 the	 first	
neural	network	and	the	remaining	40%	likely	to	be	non-	
MSNA	signals.	All	signal	peaks	were	sampled	randomly	
from	 the	 whole	 recording,	 including	 substantial	 periods	
of	preparation	and	needle	manipulation	to	find	the	signal.	
The	sampled	signals	were	therefore	highly	heterogeneous	
and	noisy.

Labeling	was	performed	for	each	dataset	with	slightly	
different	premises	to	diversify	the	information	available	
to	the	labeling	procedure	in	each	dataset.	Dataset	1	was	
labeled	with	showing	20 s	excerpts	of	MSNA,	blood	pres-
sure	and	ECG	recording	and	marking	the	relevant	peak	
in	the	signal	in	terms	of	the	rating.	The	marked	peak	was	
then	rated	on	a	binary	scale	as	either	a	valid	or	 invalid	
signal	in	all	datasets.	Dataset	2	was	labeled	showing	the	
rater	only	a	1-	s	window	of	the	signal	peak	of	the	MSNA	
recording.	 Dataset	 3	 was	 labeled	 based	 on	 a	 1-	s	 and	 a	
4-	s	 window	 of	 the	 MSNA	 recording	 available	 for	 each	
signal	 peak.	 For	 all	 visualizations,	 the	 peak	 that	 was	
to	 be	 rated	 was	 clearly	 marked	 and	 positioned	 in	 the	
exact	 center	 of	 the	 image.	 Ratings	 were	 carried	 out	 by	
a	medical	doctor	with	regular	training	in	interpretation	

of	 microneurography	 signals.	 Table	 1  summarizes	 the	
datasets	used	to	train	the	neural	networks.	The	manual	
labeling	of	 the	data	 followed	as	many	standard	criteria	
for	microneurography	analysis	as	feasible,	a	process	that	
was	partially	limited	by	the	fact	that	only	individual	sig-
nal	 bursts	 were	 rated	 and	 only	 parts	 of	 the	 data	 were	
deliberately	 selected	 for	 labeling	 of	 the	 three	 different	
datasets.	Where	applicable,	a	3:1 signal	to	noise	ratio	was	
employed	and	timing	in	relation	to	the	cardiac	cycle	was	
utilized	when	this	was	available	for	rating	as	described	
previously	(White	et	al.,	2015).

Neural	 networks	 were	 trained	 using	 the	 one-	
dimensional	 vectors	 of	 the	 MSNA	 signal	 windows	 as	
input	 data	 and	 the	 binary	 rating	 as	 output	 variables.	
For	 the	 first	 network,	4  s	 excerpts	 were	 chosen	 around	
the	 central	 point	 of	 the	 signal	 (center	 minus	 and	 plus	
2000  ms	 at	 a	 sample	 rate	 of	 1	 per	 ms),	 resulting	 in	 an	
input	vector	of	4001	data	points.	For	neural	Network	2	
and	 3,	 only	 1s	 excerpts	 were	 used,	 resulting	 in	 one	 di-
mensional	 input	 vectors	 with	 a	 length	 of	 1000  ms.	 See	
Figure	1	for	detailed	visualizations	of	the	individual	al-
gorithms.	Algorithms	were	built	on	Ubuntu	18.04 server	
environment	in	python	with	Keras	using	the	Tensorflow	
deep	learning	library.

The	 datasets	 were	 separated	 into	 training	 (80%)	 and	
testing	(20%)	splits.	In	the	training	partition	of	Dataset	2,	
positively	rated	signals	were	triplicated	to	account	for	the	
low	numbers	of	positive	 samples	 (which	 led	 to	an	over-
all	 training	 dataset	 size	 of	 1492	 and	 testing	 dataset	 size	
of	(220).	All	algorithms	were	trained	from	initiation	100	
times	after	random	reshuffling	of	the	data	into	train	and	
testing	sets.	The	models	were	reset	after	each	iteration	and	
completely	retrained	with	the	newly	split	and	reshuffled	
data.	For	the	first	algorithm	(DTCT	1)	a	batch	size	of	32	
and	6	epochs	were	used,	for	the	second	(DTCT	2)	the	batch	
size	was	set	to	32	with	20	epochs	and	the	third	algorithm	

T A B L E  1 	 Dataset	characteristics

DTCT 1 DTCT 2 DTCT 3

Signal	samples 1000 1100 1900

Participants 10 11 19

Signal	choice Random Based	on	DTCT	1	predictions	to	
include	60%	valid	signals

Based	on	DTCT	1	predictions	
to	include	60%	valid	signals

Signal	information	
presented	to	rater

20-	s	windows	of	microneurography	
recording,	blood	pressure,	and	
ECG

1-	s	window	of	
microneurography

1-	s	and	4-	s	window	of	
microneurography	
recording

Marking	of	signal	to	be	
rated

Central	position	in	window	and	
visual	marking

Central	position	in	window	and	
visual	marking

Central	position	in	window	
and	visual	marking

Rated	signal One	per	excerpt One	per	excerpt One	per	excerpt

Signal	used	for	neural	
network	training

4 s	around	maximum	of	rated	signal 4 s	around	maximum	of	rated	
signal

4 s	around	maximum	of	rated	
signal
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(DTCT	3)	was	trained	in	batches	of	16	over	35	epochs.	All	
algorithms	were	 trained	using	Tensorflow	“adamax”	op-
timizer	and	“sparse	categorical	crossentropy”	as	the	loss	
function.	A	dropout	layer	was	added	the	neural	networks,	
which	had	consisted	of	five	hidden	layers	each.	A	graphi-
cal	illustration	of	the	detailed	neural	network	architecture	
is	provided	 in	Figure	1.	No	substantial	model	 finding	or	
tuning	process	was	employed.	The	described	models	were	
essentially	identical	with	our	initial	attempts.	The	amount	
of	epochs	were	varied	between	the	different	approaches	to	
explore	whether	 training	performance	would	 further	 in-
crease,	but	models	appeared	to	reach	optimal	performance	
within	a	limited	amount	of	training	epochs.	Performance	
values	such	as	accuracy	and	area	under	the	receiver	oper-
ating	curve	(ROC	AUC)	were	recorded	for	each	iteration	
and	average	learning	curves	and	loss	curves	created	based	
on	the	test	dataset	unseen	by	the	algorithm	until	then.	The	
last	version	of	the	algorithm	that	was	trained	was	used	for	
all	further	applications.

2.3	 |	 Signal timing– association of MSNA- 
Signals, Blood pressure and ECG

For	development	of	a	probability	estimate	 for	 the	 tim-
ing	 of	 the	 MSNA	 signal,	 associations	 with	 continuous	
blood	 pressure	 measurements	 and	 ECG	 were	 exam-
ined.	Since	continuous	blood-	pressure	recordings	tend	
to	have	artifacts	and	interruptions,	we	used	the	regular	
relation	between	blood	pressure	and	ECG	signal–	given	
that	the	patients	are	healthy	and	have	no	arrhythmias–	
for	this	estimate.	We	sampled	98,208 heartbeats	as	ECG	
and	blood	pressure	recordings	from	continuous	record-
ings	 over	 multiple	 hours	 taken	 from	 34	 patients.	 The	
data	were	selected	by	marking	the	local	blood	pressure	
minima	 (diastolic	 BP–	orange	 dots	 and	 lines	 in	 Figure	
1)	and	matching	them	with	the	closest	ECG	local	maxi-
mum	(QRS	signal	 in	ECG–	red	crosses	and	interrupted	
lines	in	Figure	2).	To	exclude	artifacts	in	the	continuous	
blood	 pressure	 measurements,	 local	 BP	 minimal	 were	

F I G U R E  1  Architecture	of	neural	
networks.	The	first	line	in	each	box	
refers	to	the	type	of	layer,	the	second	
specifies	further	properties	and	the	
activation	settings	of	the	individual	layer	
(Tensorflow	activations	relu,	sigmoid,	and	
softmax	were	employed),	and	the	last	line	
specifies	the	dimensions	of	the	layer	if	
applicable
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excluded	if	they	were	not	followed	by	a	local	BP	maxi-
mum	within	150 ms	(distance	between	orange	dot/line	
and	green	dot	 in	Figure	2).	Data	 that	were	unlikely	 to	
represent	valid	relations	between	ECG	and	blood	pres-
sure	data	of	the	same	heart	beat	(due	to	artifacts	or	gaps	
in	the	recording)	were	excluded.	Such	data	were	identi-
fied	 by	 calculating	 a	 z-	score	 for	 each	 data	 point	 based	
on	the	given	distribution	(see	Figure	9b	for	an	excerpt	of	
this	first	distribution	with	a	long	tail	of	few,	very	large	
differences–	overall	 109,719	 data	 points	 were	 included	
in	this	distribution).	Data	points	with	a	higher	z-	score	
than	 0.12	 were	 excluded.	 The	 data	 were	 furthermore	
clipped	 at	 −250  ms,	 discarding	 the	 values	 lower	 than	
that	 to	 focus	on	the	dominant	distribution	(long	nega-
tive	 tail).	 This	 led	 to	 focusing	 the	 centered,	 dominant	
distribution	 see	 in	 Figure	 9a	 of	 98,208	 differences	 be-
tween	local	ECG	maxima	and	blood	pressure	minima.

The	resulting	median	of	this	distribution	was	used	as	
the	offset	of	the	time	point	for	the	lowest	blood	pressure	
(diastole)	from	the	ECG	signal	(ECG	signal	local	maximum	
+median	 of	 ECG	 and	 blood	 pressure	 difference).	 This	
relation	 made	 it	 possible	 to	 connect	 the	 physiologically	

interlinked	lowest	point	of	blood	pressure	and	likelihood	
of	occurrence	for	MSNA	signal	to	the	timing	of	the	ECG	
signal	and	use	 it	even	if	 the	blood	pressure	signal	 is	not	
available	due	to	artifacts.	The	delay	of	MSNA	signals	and	
the	cardiac	cycle	(ECG	in	this	case)	has	been	measured	to	
be	within	the	range	of	1160	and	1490 ms	with	a	strong	de-
pendence	of	body	length	(Sundlöf	&	Wallin,	1978).	Later	
studies	confirmed	this	temporal	offset	also	for	blood	pres-
sure	measurements,	for	which	they	found	an	average	off-
set	of	1240 ms	(Hissen	et	al.,	2015).	Other	studies	applied	
intervals	for	the	offset	of	usually	1200–	1400 ms	(Kienbaum	
et	al.,	2001).	For	our	application,	a	body	height	adjusted	
approach	based	on	the	method	reported	by	Sundlöf	et	al.	
appeared	 to	 be	 the	 most	 precise	 approach.	 A	 regression	
model	based	on	the	line	of	best	fit	shown	by	Sundlöf	et	al.	
in	1978	was	used	to	calculate	the	most	likely	offset	to	the	
ECG	R-	peak,	a	default	value	of	175 cm	was	used	in	case	
no	 height	 data	 were	 available.	This	 time	 was	 subtracted	
from	the	time	point	of	the	individual	MSNA	signal-	peaks	
and	a	normally	distributed	probability	distribution	with	a	
standard	deviation	of	200 ms	centered	around	the	corre-
sponding	 time	 point	 that	 resulted	 from	 this	 subtraction.	

F I G U R E  2  Visualization	of	the	quanitfication	process	between	ECG	and	BP	offset.	ECG	R-	waves	are	marked	with	red	crosses	and	
interrupted	lines	in	the	upper	panel	and	interrupted	lines	in	the	lower	panel.	The	lowest	point	of	the	BP	cycle	is	marked	in	the	lower	panel	
with	an	orange	dot	and	line,	the	highest	with	a	green	dot.	Temporal	difference	between	red	and	orange	line	was	assessed	in	over	100,000	
instances
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The	 next	 ECG	 R-	wave	 to	 the	 center	 of	 this	 distribution	
was	assessed	with	its	position	in	this	probability	distribu-
tion	and	the	corresponding	MSNA	signal	labeled	with	the	
probability	density	at	the	point	of	the	ECG	signal	within	
this	 distribution.	 The	 resulting	 probability	 densities	 for	
each	MSNA	signal-	peak	were	normalized	to	a	scale	of	0	to	
1	for	the	final	output.

2.4	 |	 Markers for signal quality 
quantification

For	quantification	of	different	levels	of	signal	quality,	simple	
one-	dimensional	discrete	Fourier	transformation	of	the	raw	
data	was	performed.	This	rendered	distinct	distributions	in	
the	frequency	of	values	in	the	absolute	(negative	values	were	
changed	into	positive	ones)	transformed	data	depending	on	
the	overall	signal	quality.	In	general,	noisy	signals	in	which	
valid	 MSNA	 signals	 were	 absent	 led	 to	 broader	 distribu-
tions	with	a	 stable	median	of	 roughly	≥1.5	 (see	Figure	3c	
and	d),	while	cleaner	signals	with	valid	MSNA	signal	candi-
dates	rendered	narrow	distributions	with	typically	distinctly	
lower	medians	(see	Figure	3a	and	b).

This	method	was	applied	to	a	dataset	of	1000	excerpts	of	
60 s,	of	which	the	central	30 s	had	been	rated	to	be	either	
noisy	signal	without	valid	MSNA	signal	candidates	(Figure	
3c)	 or	 to	 signals	 with	 little	 noise	 and	 valid	 MSNA	 signal	

candidates	(Figure	3a).	In	between	group	differences	were	vi-
sualized	and	tested	for	statistical	significance.	For	visualiza-
tion	purposes,	boxplots	were	used	with	a	centered	horizontal	
line	representing	the	median.	Borders	of	the	boxes	represent	
the	 interquartile	 ranges	 (25%	 and	 75%),	 notches	 represent	
bootstrapped	 95%	 confidence	 intervals	 (10,000	 resamples),	
whiskers	and	circles	represent	outlier	data	Figure	11.	Only	
990	of	1000	excerpts	could	be	analyzed	as	10 samples	were	
too	close	to	the	end	or	beginning	of	the	recording	to	extend	
them	from	the	displayed	30 s	excerpt	to	the	analyzed	60 s.	
The	median	of	the	samples	representing	valid	MSNAs	signal	
excerpts	was	used	as	the	center	of	a	normal-	likelihood	distri-
bution	with	a	standard	deviation	of	0.3.

2.5	 |	 Implementation

Raw	 data	 from	 MSNA	 recordings	 with	 a	 sample	 rate	 of	
1000	 data	 points	 per	 second	 was	 saved	 as	 text	 files	 and	
imported	into	a	python3	environment.	A	simple	peak	de-
tection	 algorithm	 (Taskesen,	 2020)	 was	 used	 to	 find	 all	
local	 prominences	 of	 more	 than	 0.05  Volts	 prominence	
and	 100  ms	 width	 (furthermore	 the	 height	 was	 set	 to	 a	
minimum	of	0.05	and	maximum	of	0.8 Volts,	the	distance	
function	 of	 the	 algorithm	 was	 set	 to	 250  ms).	 For	 each	
detected	peak	distance	to	the	closest	ECG	signal	was	cal-
culated	and	used	 to	assign	a	 likelihood	according	 to	 the	

F I G U R E  3  Two	excerpts	of	the	microneurography	recording	in	one	participant.	The	upper	panels	show	the	recording	after	finding	a	
valid	MSNA	signal	(a,	only	the	first	30 s	of	the	60 s	excerpt	on	which	Fourier	transformation	was	carried	out	is	displayed)	and	the	histogram	
of	the	one	dimensional	discrete	Fourier	transformation	of	a	60 s	except	with	the	x-	axis	just	showing	the	absolute	frequency	of	individual	
values	(b).	Panels	(c)	and	(d)	show	the	same	analysis	for	an	excerpt	at	the	very	beginning	of	the	recording	when	no	valid	signal	had	been	
acquired	yet
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likelihood	distribution	(normally	distributed)	created	for	
the	 ECG–	BP	 relation	 centered	 around	 180  ms	 after	 the	
ECG	peak	(R-	wave)	with	a	standard	deviation	of	200 ms.	
This	likelihood	was	scaled	from	0	to	1.	For	each	peak	an	
excerpt	corresponding	to	the	input	layer	size	of	the	trained	
network	was	selected	as	input	for	each	of	the	three	neu-
ral	network	algorithms	to	assess	the	likelihood	of	a	valid	
MSNA	 peak.	 This	 likelihood	 was	 given	 as	 a	 likelihood	
for	 a	 negative	 outcome	 and	 a	 positive	 outcome	 each	 on	
the	scale	 from	0	 to	1	and	one	categorical	value	 that	was	
selected	based	on	which	 likelihood	was	higher	as	either	
negative	or	positive	for	each	algorithm.	One-	dimensional	
discrete	 Fourier	 transformation	 was	 then	 performed	 on	
a	60 s	window	around	each	detected	peak	of	 the	MSNA	
signal	and	the	median	of	this	distribution	was	calculated.	
This	median	was	associated	with	the	individual	signal	as	
its	main	signal	quality	marker.	This	quality	index	value	of	
the	individual	signal	peaks	and	their	60 s	surrounding	was	
assessed	with	 the	 likelihood	distribution	created	 for	 this	
quality	 index	 and	 the	 corresponding	 probability	 density	
was	 assigned	 to	 the	 particular	 signal-	peak.	 All	 assigned	
probability	 densities	 for	 each	 signal	 around	 a	 detected	
peak	were	scaled	from	0	to	1.

Each	 of	 these	 variables	 for	 individual	 signal	 validity	
(neural	 networks),	 timing	 (MSNA-	ECG-	BP	 association),	
and	signal	Quality	(likelihood	of	one-	dimensional	discrete	
Fourier	transformation)	could	now	be	associated	with	an	
individual	 detected	 peak,	 and	 all	 variables	 were	 scaled	
between	 0	 and	 1,	 some	 of	 them	 continuously	 and	 some	
as	a	(binary)	categorical	variables.	All	variables	were	then	
plotted	as	a	line	plot,	the	continuous	likelihoods	from	the	
neural	networks	for	a	positive	outcome	were	plotted	left	
and	right	of	their	categorical	outcome,	0	to	1 scaled	qual-
ity	and	timing	likelihood	indexes	were	plotted	thereafter.	
The	line	plots	were	transformed	into	an	axially	orientated,	
round	plots,	and	arranged	in	a	way	that	each	dimension	of	
assessment	was	represented	in	a	different	area	of	the	circle	
so	 that	 the	shape	of	 the	circle	could	 immediately	confer	
after	some	training	a	representation	of	the	quantified	vari-
ables	of	each	individual	signal	peak	(see	Figure	12,	Figure	
13,	and	Figure	14.	For	the	default	form	of	this	circular	rep-
resentation,	the	quality	index	was	set	to	occupy	the	larg-
est	proportion	of	the	circle	and	timing	and	the	individual	
neural	network	outputs	the	other	half.	Integration	of	this	
curve	and	scaling	of	the	area	under	the	curve	(AUC)	led	
to	an	overall	composite	of	all	quantified	markers	from	0	
to	1	representing	an	overall	 likelihood	for	the	validity	of	
each	individual	peak	in	the	MSNA	signal.	The	scaling	was	
applied	to	ensure	that	the	entire	surface	of	the	plot	would	
exactly	add	up	to	be	equivalent	to	the	numerical	value	of	
one	 (so	 that	 the	maximal	AUC	would	be	one).	This	was	
achieved	by	dividing	the	actual	AUC	below	this	line	by	the	
overall	surface	of	the	plot.

3 	 | 	 RESULTS

3.1	 |	 Neural networks for MSNA signal 
shape detection

3.1.1	 |	 First	neural	Network	DTCT	1

In	 100	 independent	 training	 sessions,	 the	 first	 neu-
ral	 network	 achieved	 on	 average	 80.54%	 accuracy	 on	
the	 testing	 dataset	 and	 a	 mean	 ROC	 AUC	 of	 75.0%.	
Visualizations	of	the	training	and	performance	parame-
ters	can	be	found	in	Figure	4,	with	average	learning	and	
loss	curve	over	the	epochs	and	histograms	for	accuracy	
and	AUC	ROC	over	100	independent	training	sessions	
with	each	reshuffled	data.

3.1.2	 |	 Second	neural	network	DTCT	2

Examples	of	the	labeled	dataset	that	was	used	for	train-
ing	 of	 the	 algorithm	 are	 shown	 in	 Figure	 5.	 Over	 100	
training	 runs	 of	 the	 algorithm	 resulted	 in	 a	 mean	 ac-
curacy	 of	 87.4%	 and	 a	 mean	 AUC	 of	 the	 ROC	 of	 86%.	
Summarizing	graphs	of	 the	 trained	algorithms	are	dis-
played	in	Figure	6–	with	the	average	learning	curves	and	
histograms	for	the	distribution	of	the	testing	parameters	
accuracy	and	AUC	of	the	ROC.

3.1.3	 |	 Third	neural	network	DTCT	3

Examples	 of	 the	 labeled	 dataset	 used	 to	 train	 the	 third	
neural	 network	 are	 visualized	 in	 Figure	 7	 separated	 for	
positively	rated	signals	and	negatively	rated	signals–	each	
representing	 likely	 valid	 and	 non-	valid	 signal	 peaks,	 re-
spectively.	 The	 100	 iterations	 of	 training	 for	 the	 DTCT	
3	 resulted	 in	an	average	accuracy	of	85.8%	and	an	aver-
age	AUC	of	the	ROC	of	86%.	Performance	parameters	for	
DTCT	3	are	visualized	in	Figure	8.

3.2	 |	 Signal timing– association of MSNA- 
Signals, Blood pressure and ECG

The	median	difference	between	the	local	BP	minima	and	
the	corresponding	ECG	maxima	(R-	wave)	was	−179 ms	
in	 the	 final	 selected	 distribution	 is	 shown	 in	 Figure	 7a.	
Before	the	selection	process	by	the	means	of	an	assigned	
z-	score	and	clipping	the	data	at	−250 ms,	the	distribution	
had	 a	 mean	 of	 −182  ms–	an	 excerpt	 of	 this	 distribution	
is	 shown	 in	 Figure	 7b	 (distribution	 after	 z-	score	 clip-
ping,	 the	original	distribution	had	extreme	values	up	 to	
−30,000 ms).
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F I G U R E  4  Performance	parameters	
for	the	training	for	DTCT	1.	Panels	(a)	and	
(b)	show	the	average	accuracy	and	loss	
of	100	individual,	completely	separated	
training	repetitions	of	the	algorithm	for	
training	and	testing	dataset.	Panels	(c)	and	
(d)	show	histograms	of	the	performance	
parameters	AUC	ROC	and	accuracy	for	
each	individual	time	the	algorithm	was	
trained

F I G U R E  5  Examples	from	the	labeled	dataset	for	the	second	neural	Network	DTCT	2.	A	shows	signal	peaks	that	were	rated	to	likely	
represent	valid	MSNA	signals.	b,	shows	examples	of	signal	peaks	rated	not	to	represent	likely	valid	MSNA	signals.	The	signal	is	orientated	in	
a	way	that	its	highest	point	is	the	center	of	the	image	and	additionally	marked	with	an	orange,	interrupted	line
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F I G U R E  6  Performance	parameters	
for	the	training	for	DTCT	2.	Panel	(a)	and	
(b)	show	the	average	accuracy	and	loss	of	
100	individual	training	iterations	of	the	
algorithm	for	training	and	testing	dataset.	
Panels	(c)	and	(d)	show	histograms	of	
the	performance	parameters	AUC	ROC	
and	accuracy	for	each	individual	time	the	
algorithm	was	trained

F I G U R E  7  Examples	from	the	labeled	dataset	for	the	third	neural	Network	DTCT	3.	Panel	(a)	shows	signal	peaks	that	were	rated	to	
likely	represent	valid	MSNA	signals.	(b)	shows	examples	of	signal	peaks	rated	not	to	represent	likely	valid	MSNA	signals.	The	signal	is	
orientated	in	a	way	that	its	highest	point	is	the	center	of	the	image	and	additionally	marked	with	an	orange,	interrupted	line
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F I G U R E  8  Performance	parameters	
for	the	training	for	DTCT	3.	Panels	(a)	and	
(b)	show	the	average	accuracy	and	loss	of	
100	individual	training	iterations	of	the	
algorithm	for	training	and	testing	dataset.	
Panels	(c)	and	(d)	show	histograms	of	
the	performance	parameters	AUC	ROC	
and	accuracy	for	each	individual	time	the	
algorithm	was	trained

F I G U R E  9  Distribution	of	time	difference	between	ECG-	peaks	(R-	wave)	and	lowest	blood	pressure	signal.	Panel	(a)	shows	the	final,	
focused	distributions,	and	panel	(b)	(log-	scale)	shows	the	distribution	with	long	left,	negative	tail	after	z-	score	based	data	selection	and	
before	clipping	of	extreme	values	below	−250 ms
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3.3	 |	 Automated Markers for signal 
quality quantification

Of	the	60 s	raw	data	excerpts	(plus	and	minus	30 s)	around	
each	 MSNA	 signal	 candidate	 a	 simple	 one-	dimensional	

discrete	 Fourier	 transformation	 was	 calculated.	 The	
median	value	of	 these	values	 for	each	candidate	MSNA	
signal	 was	 plotted	 during	 the	 time	 course	 of	 MSNA	 re-
cordings.	 For	 a	 visualization	 of	 the	 transformation	 pro-
cess	see	Figure	2,	for	a	visualization	of	the	median	values	

F I G U R E  1 0  (a)	shows	the	quality	index	derived	from	the	Fourier	transformed	of	a	3-	h	long	microneurography	recording.	The	
quality	index	is	calculated	for	each	detected	signal	peak	during	this	time	for	a	60-	s	window	around	the	peak.	The	median	of	the	Fourier	
transformation	for	these	excerpts	is	associated	with	the	individual	peaks	and	plotted	over	time	(a).	Low,	relatively	constant	intervals	of	this	
variable	represent	stable	and	valid	MSNA	recordings,	higher	and	varying	levels	periods	of	positioning	the	needle	or	losing	the	signal	for	
example	after	the	participant	moved.	The	excerpts	at	points	(b,	c	and	d)	have	been	chosen	randomly	based	on	this	quality	index.	Point	(b)	is	
located	at	a	time	point	with	high	variance	and	generally	high	levels	of	the	quality	marker–	indicating	bad	signal	quality.	The	sub-	panel	(b)	
shows	the	original	microneruography	signal	corresponding	to	this	time	point–	showing	a	noisy,	non-	valid	signal.	At	time	point	(c)	the	quality	
index	suggest	a	stable,	valid	signal–	as	seen	in	the	corresponding	original	data	window	in	sub-	panel	(c).	At	time	point	(d)	the	quality	index	
has	suddenly	sored	upwards	again,	indicating	a	loss	of	valid	signal,	confirmed	by	the	corresponding	original	data	in	sub-	panel	(d)
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of	the	transformed	data	around	each	candidate	signal	see	
Figure	10.

On	careful	 inspection	of	 the	 time	course	of	 this	pa-
rameter	during	a	microneurography	recording	in	various	
subjects,	distinct	and	sudden	changes	of	this	parameter	
indicated	changes	in	signal	quality,	whereas	stable	time	
periods	with	values	below	indicated	a	valid	acquisition	
of	 the	 MSNA	 signal.	 Examples	 of	 this	 are	 shown	 in	
Figure	10.	A	dataset	of	1000 signal	excerpts	of	10	differ-
ent	MSNA	recordings	of	different	subjects,	which	were	
rated	 in	 terms	 of	 validity	 of	 the	 signal,	 were	 assessed	
making	use	of	this	parameter.	Results	are	shown	in	the	
boxplots	of	Figure	11.	The	median	value	of	the	group	of	
data	 that	was	rated	to	represent	valid	signal	recordings	
was	0.57	(n = 757	excerpts).	In	the	group	that	was	rated	
not	 to	 represent	 a	 valid	 MSNA	 recording	 the	 median	
was	1.82	(n = 233	excerpts),	a	Mann-	Whitney	U-	test	es-
timated	for	the	differences	between	the	groups	a	p-	value	
<0.001	(U = 13723).

3.4	 |	 Implementation

Each	 step	 of	 assessment	 described	 above	 was	 carried	
out	 for	 each	 signal-	peak	 detected	 in	 the	 MSNA	 record-
ing.	The	implemented	data	were	visualized	in	panels	for	
each	signal-	peak	including	an	overall	likelihood	estimate.	
Examples	 of	 these	 visual	 representations	 can	 be	 seen	 in	
Figures	12–	14	in	MSNA	signal	of	different	quality.

4 	 | 	 DISCUSSION

MSNA	signals	are	difficult	to	obtain,	signal	quality	var-
ies	widely	and	recordings	tend	to	be	noisy	and	contain	
many	 artifacts.	 Analysis	 is	 therefore	 often	 performed	
manually	or	with	simplistic	peak-	detection	algorithms	
that	are	customized	individually	and	applied	to	selected,	
high	 quality	 windows	 of	 the	 recordings.	 Considerable	
efforts	 have	 been	 made	 to	 standardize	 approaches	
(White	 et	 al.,	 2015).	 However,	 manual	 analysis	 often	
remains	 subjective	 and	 to	 a	 certain	 degree	 difficult	 to	
standardize,	especially	with	lower	quality	signals.	Peak	
detection	software	approaches	can	often	be	helpful	for	
good	 quality	 excerpts,	 which	 need	 to	 be	 selected	 in	 a	
subjective	manual	approach.

The	 longer	 the	 presented	 microneurography	 excerpt,	
the	more	will	the	rating	take	into	account	the	overall	signal	
quality.	The	shorter	the	presented	window,	the	more	will	
the	focus	shift	on	only	the	form	of	the	individual	localized	
peaks.	Given	that	we	wanted	to	create	an	additional,	inde-
pendent	parameter	for	the	overall	signal	quality,	we	chose	
for	this	implementation	short	excerpts	of	1	and	4 s.

Software	capable	of	detecting	periods	of	valid	record-
ings	 automatically	 on	 longer	 recording	 excerpts	 and	
deciding	 which	 signal	 peaks	 in	 the	 shorter	 recording	
excerpts	 are	 likely	 correspond	 to	 MSNA	 may	 be	 a	 pos-
sibility	 to	 make	 the	 analysis	 of	 microneurography	 more	
efficient,	objective,	and	reproducible	and	therefore	more	
standardized.

We	 have	 described	 novel	 software	 tools	 based	 on	 ar-
tificial	 intelligence,	 machine	 learning,	 and	 probabilistic	
models	 that	 reproduce	 manual	 decisions	 about	 MSNA	
signals.	We	believe	that	the	accuracy	is	highly	dependent	
on	coherent	labeling	and	inaccuracy	of	predictions	often	
driven	by	in-	between	cases	of	signals	that	might	be	inter-
preted	as	valid	or	invalid	given	certain	circumstance,	for	
example	signal	quality	and	timing.	Since	the	overall	model	
takes	these	factors	into	account	the	overall	analysis	of	re-
cordings	will	likely	perform	even	better.

Another	point	to	consider	is	the	missing	ground	truth	
in	 the	 labeling	 of	 these	 signal-	peaks,	 which	 remains	
manual	 and	 subjective	 and	 therefore	 a	 gold-	standard	
method	 at	 best.	 Future	 research	 will	 need	 to	 look	 into	
the	 possibility	 of	 overcoming	 this	 fallacy	 of	 reproduc-
ing	manual	decisions	and	reaching	a	more	standardize	

F I G U R E  1 1  Boxplot	showing	the	distribution	of	median	values	
of	the	one	dimensional	Discrete	Fourier	transformation	(DFT)	for	
990	excerpts	of	MSNA	recordings.	These	recordings	are	rated	into	
valid	and	invalid	recordings–	analysis	was	carried	out	according	to	
this	grouping	of	the	data.	The	middle	bar	of	the	box	represents	the	
median,	borders	of	the	boxes	represent	the	interquartile	ranges,	
notches	the	bootstrapped	95%	confidence	intervals.	Whiskers	and	
circles	are	showing	outliers	of	the	data
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approach	 in	 classifying	 these	 signals–	potentially	 based	
on	 unsupervized	 automated	 learning	 approaches.	
However,	 the	 approach	 to	 evaluate	 signals	 with	 a	
software–	even	 based	 on	 subjective	 manual	 decisions–	
makes	 the	 decisions	 from	 this	 point	 on	 coherent	 and	
reproducible,	 which	 is	 the	 clear	 advantage	 of	 using	

automated	 methods–	besides	 increasing	 efficiency.	 The	
application	can	be	 individualized	 to	 the	preferences	of	
the	user	by	building	and	adding	custom	trained	neural	
networks	based	on	data	labeled	by	the	user.	This	would	
reproduce	 the	 decisions	 and	 preferences	 of	 individual	
users.	This	does,	however,	not	mitigate	the	requirement	

F I G U R E  1 2  Signal	window	of	microneuroggraphy	recording	of	excellent	quality.	Signal	peaks	selected	by	the	software	are	marked	with	
vertical	orange	lines.	The	most	important	variables	assigned	to	each	detected	signal	peak	are	printed	on	top	of	each	individual	peak	(first	line	
consecutive	signal	number,	second	line	binarized	output	of	the	three	neural	networks	with	1	indicating	valid	signal	and	0	non-	valid	signal,	
third	line	absolute	probability	density	of	the	individual	peaks	based	on	the	timing	model,	last	line	median	of	the	Fourier	transformed	60-	s	
window	around	the	signal).	(b–	d)	are	circular	representations	of	the	most	important	determined	variables	for	each	individual	peak,	subpanel	
(c)	corresponds	to	the	central	peak	marked	in	red	in	subpanel	(a),	the	circles	right	and	left	to	the	corresponding	next	signal	peak	right	and	
left	of	the	marked	central	peak.	The	circular	graphs	visualizes	the	binary	decision	of	the	individual	DTCT	neural	network	algorithms	(which	
are	marked	as	DTCT_1,	DTCT_2,	and	DTCT_3)	surrounded	each	left	and	right	by	the	continuous	likelihood	for	a	valid	signal	given	out	by	
the	respective	algorithm.	The	overall	quality	index	(FFT	signal	Quality)	rescaled	from	0	to	1	(1	indicating	an	excellent	signal)	is	plotted	in	the	
left	bottom	corner,	the	rescaled	probability	calculated	based	on	the	timing	of	the	signal	(p-	timing,	1	indicating	high	likelihood)	is	plotted	in	
the	right	bottom	corner.	Calculation	of	the	area	under	the	curve	from	this	plot	and	rescaling	of	the	AUC	to	0	to	1	yields	an	overall	integrated	
likelihood	for	the	signal	to	be	and	valid	MSNA	signal.	Some	signals	have	been	marked	with	‡	to	indicate	that	the	first	identification	step	
of	candidate	signal	burst	with	conventional	peak	detection	algorithms	at	times	left	out	signals	that	may	be	regarded	by	some	to	be	valid	
candidate	signals.	These	signals	however,	are	in	turn	not	considered	by	our	more	advanced	signal	processing	algorithms
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for	further	research	to	employ	rigorous	validation	tech-
niques	in	this	context	to	further	define	the	relationship	
between	the	described	approaches	and	manual	analyses	
of	MSNA	signals.

The	 presented	 evidence	 of	 the	 regular	 connection	
between	 ECG	 and	 continuous	 blood	 pressure	 opens	
up	the	possibility	 to	use	either	of	 these	to	evaluate	the	

timing	of	the	signals	by	just	adjusting	the	assumed	time	
delay	by	180 ms.	Blood	pressure	is	the	more	directly	re-
lated	 marker	 physiologically,	 while	 ECG	 is	 often	 more	
stable	and	 less	prone	to	show	artifacts.	Taking	 into	ac-
count	 the	 time	 it	 takes	 for	 afferent	 sensory	 signals	 to	
reach	autonomic	centers	of	the	brain,	be	processed	and	
travel	via	slow	C-	fibers	to	the	site	where	the	MSNA	can	

F I G U R E  1 3  Signal	window	of	microneuroggraphy	recording	of	average	quality.	Signal	peaks	selected	by	the	software	are	marked	with	
vertical	orange	lines.	The	most	important	variables	assigned	to	each	detected	signal	peak	are	printed	on	top	of	each	individual	peak	(first	line	
consecutive	signal	number,	second	line	binarized	output	of	the	three	neural	networks	with	1	indicating	valid	signal	and	0	non-	valid	signal,	
third	line	absolute	probability	density	of	the	individual	peaks	based	on	the	timing	model,	last	line	median	of	the	Fourier	transformed	60-	s	
window	around	the	signal).	(b–	d)	are	circular	representations	of	the	most	important	determined	variables	for	each	individual	peak,	subpanel	
(c)	corresponds	to	the	central	peak	marked	in	red	in	subpanel	(a),	the	circles	right	and	left	to	the	corresponding	next	signal	peak	right	and	
left	of	the	marked	central	peak.	The	circular	graphs	visualizes	the	binary	decision	of	the	individual	DTCT	neural	network	algorithms	(which	
are	marked	as	DTCT_1,	DTCT_2	and	DTCT_3)	surrounded	each	left	and	right	by	the	continuous	likelihood	for	a	valid	signal	given	out	by	
the	respective	algorithm.	The	overall	quality	index	(FFT	signal	quality)	rescaled	from	0	to	1	(1	indicating	an	excellent	signal)	is	plotted	in	the	
left	bottom	corner,	the	rescaled	probability	calculated	based	on	the	timing	of	the	signal	(p-	timing,	1	indicating	high	likelihood)	is	plotted	in	
the	right	bottom	corner.	Calculation	of	the	area	under	the	curve	from	this	plot	and	rescaling	of	the	AUC	to	0	to	1	yields	an	overall	integrated	
likelihood	for	the	signal	to	be	and	valid	MSNA	signal.	Some	signals	have	been	marked	with	‡	to	indicate	that	the	first	identification	step	
of	candidate	signal	burst	with	conventional	peak	detection	algorithms	at	times	left	out	signals	that	may	be	regarded	by	some	to	be	valid	
candidate	signals.	These	signals	however	are	in	turn	not	considered	by	our	more	advanced	signal	processing	algorithms
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be	obtained	via	the	recording	electrode,	there	is	a	con-
stant	 temporal	 relationship	 between	 continuous	 blood	
pressure,	ECG,	and	likelihood	of	an	MSNA	burst	occur-
rence	during	the	cardiac	cycle	(Delius	et	al.,	1972;	White	
et	al.,	2015).	This	relationship	can	help	to	identify	valid	
MSNA	bursts	and	differentiate	 them	 for	example	 from	
skin	 nerve	 bursts–	which	 have	 a	 more	 variable	 appear-
ance	 and	 lack	 this	 cardiac	 rhythmicity	 (Gunnar,	 2007;	
Hagbarth	et	al.,	1972).

Depending	on	which	data	were	recorded	and	in	which	
quality	 will	 enable	 examiners	 to	 decide	 which	 one	 to	 use	
for	 the	analysis,	 and	a	 flexible	platform	allowing	multiple	
approaches	to	determine	if	an	MSNA	burst	 is	valid	or	not	
would	enable	customization	of	approaches	and	preferred	al-
gorithms.	The	disadvantage	of	personalizing	these	systems	
would	obviously	be	that	it	diminishes	one	of	the	great	ad-
vantages	of	the	technology,	which	is	to	standardize	MSNA	
analysis	between	different	laboratories.	If	interpreters	would	

F I G U R E  1 4  Signal	window	of	microneuroggraphy	recording	of	poor	quality.	Signal	peaks	selected	by	the	software	are	marked	with	
vertical	orange	lines.	The	most	important	variables	assigned	to	each	detected	signal	peak	are	printed	on	top	of	each	individual	peak	(first	line	
consecutive	signal	number,	second	line	binarized	output	of	the	three	neural	networks	with	1	indicating	valid	signal	and	0	non-	valid	signal,	
third	line	absolute	probability	density	of	the	individual	peaks	based	on	the	timing	model,	last	line	median	of	the	Fourier	transformed	60-	s	
window	around	the	signal).	(b–	d)	are	circular	representations	of	the	most	important	determined	variables	for	each	individual	peak,	subpanel	
(c)	corresponds	to	the	central	peak	marked	in	red	in	subpanel	(a),	the	circles	right	and	left	to	the	corresponding	next	signal	peak	right	and	
left	of	the	marked	central	peak.	The	circular	graphs	visualizes	the	binary	decision	of	the	individual	DTCT	neural	network	algorithms	(which	
are	marked	as	DTCT_1,	DTCT_2,	and	DTCT_3)	surrounded	each	left	and	right	by	the	continuous	likelihood	for	a	valid	signal	given	out	by	
the	respective	algorithm.	The	overall	quality	index	(FFT	signal	quality)	rescaled	from	0	to	1	(1	indicating	an	excellent	signal)	is	plotted	in	the	
left	bottom	corner,	the	rescaled	probability	calculated	based	on	the	timing	of	the	signal	(p-	timing,	1	indicating	high	likelihood)	is	plotted	in	
the	right	bottom	corner.	Calculation	of	the	area	under	the	curve	from	this	plot	and	rescaling	of	the	AUC	to	0	to	1	yields	an	overall	integrated	
likelihood	for	the	signal	to	be	and	valid	MSNA	signal
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stick	to	a	default	version	of	the	software	analysis	of	MSNA	
data	would	henceforth	only	be	determined	by	the	raw	data	
and	the	software	version	of	the	analyzing	algorithm.

After	application	of	 the	described	methods,	 the	algo-
rithm	produces	a	dataset	with	a	large	number	of	features	
and	validity	likelihoods	for	each	signal	and	integrates	them	
in	one	value.	Signals,	from	this	point	on,	can	be	selected	
with	 a	 default	 likelihood	 of	 >0.5	 or	 with	 stricter	 or	 less	
strict	criterion	with	the	possibility	of	adjusting	the	weight-
ing	 of	 the	 factors	 determining	 the	 overall	 likelihood	 (by	
controlling	how	much	width	under	the	curve	of	the	final	
circular	summarizing	graphs	they	occupy).	Furthermore,	
the	 algorithm	 can	 be	 adjusted	 so	 that	 only	 valid	 signal	
periods	 are	 taken	 into	 account	 referring	 to	 the	 quality	
parameters	 (which	 is	 also	 by	 default	 part	 of	 the	 overall	
likelihood).	Standard	parameters	like	bursts	per	minute	or	
per	heart	beat	as	well	as	total	markers	like	product	of	burst	
frequency	and	mean	burst	height	can	be	easily	extracted	
from	 valid	 recording	 excerpts	 (White	 et	 al.,	 2015).	 New	
markers	will	be	ready	to	be	created	and	computed	as	the	
data	is	fully	digitalized	and	implemented	in	environments	
that	make	further	exploration	feasible.

Our	 approach	 has	 several	 limitations:	 Conventional	
peak	detection	software	may	not	be	set	up	to	be	sufficiently	
inclusive	in	its	choice	of	candidate	signal	bursts,	such	that	
further	 evaluated	 relevant	 signal	 burst	 may	 be	 missed	
entirely.	 We	 have	 marked	 some	 examples	 that	 could	 be	
considered	to	represent	valid	MSNA	bursts	by	some	inter-
preters	(Figures	12	and	13)	to	showcase	this	possibility.	This	
potential	limitation	can	be	ameliorated	by	choosing	a	set-
ting	for	the	conventional	peak	detection	algorithms	that	is	
sufficiently	broad.	This,	however,	may	have	to	be	balanced	
against	the	potential	he	disadvantage	of	decreasing	the	pre-	
test	probability	of	choosing	valid	signals,	which	may	have	
an	impact	on	overall	performance	of	the	methods	follow-
ing	initial	signal	candidate	selection	in	the	pipeline.

Our	 description	 of	 tools	 to	 facilitate	 automated	 ap-
proaches	for	MSNA	analysis,	while	portraying	quantifica-
tions	of	 the	performance	of	 individual	 components,	does	
not	contain	a	fully	validated	approach.	Implementation	of	
these	tools	into	an	analysis	algorithm	will	require	further	
rigorous	 validation	 of	 the	 method	 and	 comparison	 with	
current	gold-	standard	manual	analysis.	Further	limitations	
of	 this	work	include	the	 lack	of	 the	full	quantification	of	
the	 MSNA	 signals	 manually	 and	 automatically	 and	 com-
parison	thereof,	which	will	be	required	for	future	validation	
of	 the	approach,	as	well	as	 for	demonstration	of	 the	suit-
ability	of	the	data	used	for	algorithm	generation	to	repre-
sent	a	wide	range	of	baseline	sympathetic	activity	patterns.

For	 the	 current	 research,	 microneurography	 record-
ings	 from	 people	 with	 a	 diverse	 demographic	 were	 cho-
sen	to	facilitate	broader	representation.	However,	we	only	

included	 male	 participants	 at	 this	 stage	 to	 limit	 any	 po-
tential	sex	bias,	thereby	limiting	its	applicability	to	female	
sex.	This	however,	could	be	easily	overcome	by	the	addi-
tion	of	 further	prediction	algorithms	that	are	 trained	on	
mixed	sex	or	female	only	datasets.

Another	target	of	future	research	may	be	the	explo-
ration	of	more	sophisticated	models	to	capture	the	tem-
poral	association	between	valid	MSNA	signals	and	the	
cardiac	 cycle.	 While	 all	 microneurography	 recordings	
utilized	in	the	presented	work	were	derived	from	rest-
ing	 recordings,	 sympathetic	 stressors	 and	 task-	related	
MSNA	 may	 lead	 to	 more	 variability	 in	 this	 tempo-
ral	 association	 and	 require	 more	 advanced	 modelling	
approaches.

In	 summary,	 we	 have	 introduced	 a	 number	 of	 novel	
tools	with	promising	potential	to	automate	the	analysis	of	
microneurography	recordings.
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