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A large body of data has established the hypothalamic kisspeptin (KP) and its receptor, 
KISS1R, as major players in the activation of the neuroendocrine reproductive axis at the 
time of puberty and maintenance of reproductive capacity in the adult. Due to its strategic 
location, this ligand-receptor pair acts as an integrator of cues from gonadal steroids as 
well as of circadian and seasonal variation-related information on the reproductive axis. 
Besides these cues, the activity of the hypothalamic KP signaling is very sensitive to the 
current metabolic status of the body. In conditions of energy imbalance, either positive 
or negative, a number of alterations in the hypothalamic KP signaling pathway have been 
documented in different mammalian models including nonhuman primates and human. 
Deficiency of metabolic fuels during fasting causes a marked reduction of Kiss1 gene 
transcript levels in the hypothalamus and, hence, decreases the output of KP-containing 
neurons. Food intake or exogenous supply of metabolic cues, such as leptin, reverses 
metabolic insufficiency-related changes in the hypothalamic KP signaling. Likewise, 
alterations in Kiss1 expression have also been reported in other situations of energy 
imbalance like diabetes and obesity. Information related to the body’s current metabolic 
status reaches to KP neurons both directly as well as indirectly via a complex network of 
other neurons. In this review article, we have provided an updated summary of the avail-
able literature on the regulation of the hypothalamic KP-Kiss1r signaling by metabolic 
cues. In particular, the potential mechanisms of metabolic impact on the hypothalamic 
KP-Kiss1r signaling, in light of available evidence, are discussed.
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iNTRODUCTiON

Kisspeptin (KP), a hypothalamic neuropeptide, and KISS1R/Kiss1r, the KP receptor, are the main 
components of an important hypothalamic signaling pathway (1, 2). KP and KISS1R are encoded by 
KISS1 and KISS1R genes, respectively (3, 4). A large body of data has established an important role 
for the KP-Kiss1r signaling in the initiation of puberty in both non-primate and primate vertebrates 

Abbreviations: KP, kisspeptin; GnRH, gonadotropin-releasing hormone; ARC, arcuate nucleus; AVPV, anteroventral perive-
ntricular nucleus; NPY, neuropeptide Y; AgRP, agouti-related protein; POMC, proopiomelanocortin; CART, cocaine- and 
amphetamine-related transcript; LepR, leptin receptor; IR, insulin receptor; GHSR, growth hormone secretagogue receptor.
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FigURe 1 | Schematic representation of impact of various external and 
internal signals on the hypothalamic Kisspeptin (KP) system. KP neurons are 
targeted by gonadal steroids, metabolic, circadian, seasonal, immune, and 
stress signals. Some of gonadal steroids, metabolic, circadian, and seasonal 
signals result in upregulation (+) of KP expressions while others in 
downregulation. Immune and stress signals cause down regulation (−) of KP 
expression. KP neurons then on the basis of this information modulate 
pulsatile discharge of gonadotropin-releasing hormone (GnRH) from GnRH 
neurons.

TAble 1 | Effect of different metabolic hormones and neuropeptides on the 
hypothalamic Kisspeptin (KP) system under different experimental setup in 
rodents and primates.

Hormone/
neuropeptide

effect on 
KP

experimental 
setup

experimental 
model

Reference

Adiponectin ↓ In vivo and 
in vitro

Mouse (58)

Leptin ↑ In vivo Mouse and rat (30, 31, 33)
Ghrelin ↓ In vivo Mouse and rat (80, 81)
Insulin ↑ =  In vivo and 

in vitro
Mouse and 
sheep

(30, 89)

Melanocortin ↑ In vivo Mouse (126)
Glucagon-like 
peptide 1

↑ =  In vitro and 
in vivo

Mouse (128)

Increase (↑), Decrease (↓), no effect (=).
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(5–8). Loss of function mutations in human KISS1 or KISS1R 
genes causes absence of or delayed puberty (8–11), whereas a gain 
of function mutation in KISS1R gene results in precocious puberty 
(12). Likewise, administration of KP in immature rats elicits an 
early onset of puberty, whereas KP antagonist infusion leads to a 
delay in the achievement of pubertal hallmarks (5, 13, 14).

Kisspeptin signaling also plays an important role in the 
maintenance of the reproductive capacity in the adult (1, 15–17). 
Administration of KP, peripherally as well as centrally, has been 
reported to markedly increase systemic levels of reproductive 
hormones both in normal as well as subjects with reproductive 
insufficiency phenotype (7, 15, 18, 19). Due to their strategic 
position in the hypothalamus, the KP-containing neurons also 
act as a conduit for transferring information related to a number 
of different intrinsic and extrinsic cues to the gonadotropin-
releasing hormone (GnRH) neurons (Figure 1). These neurons 
are involved in circadian and seasonal regulation of reproduction 
(20, 21). Moreover, this ligand-receptor pair acts as an integra-
tor of the action of gonadal steroids and metabolic cues on the 
reproductive axis (22–26).

Proper functioning of the hypothalamic KP signaling is very 
sensitive to the current metabolic status of the body (23, 25) 
(Table  1). Conditions of energy imbalance, either positive or 
negative, induce a number of alterations in the hypothalamic KP 
signaling pathway in different mammalian experimental animal 
models (22, 26, 27). Deficiency of metabolic fuels during fasting 
causes a clear reduction of the Kiss1 gene transcript levels in the 
hypothalamus and hence decreases the output of KP-containing 
neurons (5, 28). Food intake or exogenous supply of metabolic 
cues, such as leptin, overcomes metabolic insufficiency-related 
changes in the hypothalamic KP signaling (29, 30). Likewise, 
alterations in Kiss1 expression have also been reported in other 
situations of energy imbalance like diabetes and obesity (30, 31). 
All these findings indicate a high sensitivity of KP signaling to 
alterations in the body’s energy homeostasis. In this review, we 
summarize and discuss the presently available pieces of evidence 
indicating an impact of metabolic status-related cues on the 
hypothalamic KP-Kiss1r signaling in conditions of energy imbal-
ance. We also discuss potential mechanisms of the transmission 
of the metabolic information on the hypothalamic KP system and 
ultimately reproduction.

SeNSiTiviTY OF THe HYPOTHAlAMiC 
KP-Kiss1r SigNAliNg PATHwAY TO 
MeTAbOliC AlTeRATiONS iN 
CONDiTiONS OF AlTeReD eNeRgY 
HOMeOSTASiS

The hypothalamic KP-Kiss1r system is highly sensitive to altera-
tions in the metabolic cues levels in the systemic circulation. All 
sorts of metabolic perturbances exert negative impact on the 
Kiss1 expressing neurons (Figure 2) (22, 23, 26, 27, 32). It is well 
established that reduction of metabolic fuels in food-deprived 
conditions causes a decrease in Kiss1 transcript levels in the 
arcuate nucleus (ARC) (5, 28). In some conditions of energy 
imbalance, such as diabetes and obesity, very high energy reserves 
are present in the body, but due to the body’s inability to properly 
utilize them, an attenuation of Kiss1 mRNA expression was 
observed (30, 31, 33).

Both direct and indirect evidence suggests that deficiency 
in metabolic fuels severely affects the KP neuronal network in 
the hypothalamus. Short-term fasting-associated metabolic cues 
alterations lead to a marked reduction of hypothalamic Kiss1 
expression in prepubertal as well as adult rats (5, 29, 34–36). 
Castellano et  al. (5) carried out a first comprehensive analysis 
of the short-term fasting impact on the hypothalamic Kiss1 
system in prepubertal rats. In fasted rats, delayed puberty, as 
monitored by vaginal opening, was associated with a reduction 
of whole hypothalamic Kiss1 gene transcript levels. However, 
Kiss1r mRNA expression was increased in these rats as com-
pared to normally fed control animals. A possible explanation, 
as provided by authors (5), for this opposite change in Kiss1 and 
Kiss1r is that a major reduction in ligand (KP encoding gene) 
expression might cause a compensatory increase in the expres-
sion of its receptor gene, leading to a situation of sensitization to 
the effects of KP. Importantly, exogenous administration of KP 
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FigURe 2 | Schematic representation of the interaction of systemic metabolic cues with Kisspeptin (KP), orexigenic, and anorexigenic neurons: metabolic cues are 
secreted by metabolic organs in responses to alterations in metabolic status. Metabolic cues include insulin and glucagon from pancreas, leptin, adiponectin and 
leptin from adipose tissues, ghrelin from stomach, glucose, fatty acid, cholecystokinin, glucocorticoids, and thyroid hormones, among many others. Alterations in 
metabolic cues, either directly or indirectly via anorexigenic and orexigenic neurons, modulate KP neuronal activities. KP neurons in turn transfer this information to 
the HPG axis via gonadotropin-releasing hormone (GnRH) neuronal network. Likewise, orexigenic and anorexigenic neurons can also directly convey current 
metabolic status related information to GnRH neurons.
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not only rescues the suppression of the reproductive axis in these 
rats but also overcomes the negative energy balance-induced 
pubertal delay (5). This finding indicates that a proper reserve 
of energy is critical for the achievement of reproductive capacity 
at the time of puberty. The energy reserve related cues, in turn, 
communicate with the neuroendocrine center for the regulation 
of reproduction through the hypothalamic neural circuitry of KP 
neurons (37). Subsequent studies analyzed the impact of food 
restriction on the distinct hypothalamic KP neuron subpopula-
tions in ARC and anteroventral periventricular nucleus (AVPV). 
In adult ovariectomized female rats, fasting decreased AVPV 
Kiss1 mRNA levels, but not Kiss1 mRNA expression in the ARC 
(34). In the intact adult female rats, food deprivation resulted in 
a prolongation of the reproductive cycle via a reduction in ARC 
Kiss1 mRNA expression (34). However, these researchers did not 
observe any changes in AVPV Kiss1 mRNA expression. Likewise, 
chronic food deprivation in pubertal female rats diminished 
expression of Kiss1 in ARC, but not in the AVPV (38). In mice 
and rhesus macaques, in contrast to rats, the hypothalamic 
transcript levels of both Kiss1 and Kiss1r are reduced by a 48-h 
fast (28, 30).

In addition to the aforementioned expression data, KP 
administration data also indirectly pinpointed a high sensitiv-
ity of the hypothalamic KP system to fasting-induced negative 
energy balance (5, 39). Administration of exogenous KP has been 
documented to overcome the negative energy balance-induced 
suppression of the reproductive axis, further advocating the idea 
that the endogenous KP system is negatively affected by fasting 
(5, 39).

Besides the condition of fasting, experimental data from 
other paradigms of energy imbalance such as diabetes, obesity, 
and lactation also indicate an impact of metabolic perturba-
tions on the KP neurons output (30, 31, 40). The hypothalamic 
expression of Kiss1 gene is significantly reduced not only in 
the rat model of diabetes but also in obesity rodent models 
(30, 31, 40). In both congenital leptin deficiency and high-
fat-diet-induced models of obesity, Kiss1-expressing neurons 
output is greatly reduced (33, 40). Likewise, a reduction in 
Kiss1 expression has also been reported in lactating female 
rats (41, 42). Moreover, exogenous administration of KP has 
been noted to rescue the energy imbalance impact on the 
reproductive axis (41, 42).
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Taken together, the evidence summarized above strongly 
suggests a very high sensitivity of KP-containing neurons to 
metabolic alterations in the body.

MeCHANiSM OF MeTAbOliC iMPACT ON 
THe HYPOTHAlAMiC KP SYSTeM

The exact mechanism by which changes in metabolic cues alter 
the hypothalamic KP system is still not fully clear. Available data 
suggests both direct and indirect mechanisms. Hypothalamic 
KPergic neurons can most likely sense metabolic cues directly 
because receptors for a number of peripheral metabolic hormones 
have been shown to be expressed by these neurons (22, 23, 25, 26, 
32). Indirect sensing of metabolic status-related information is 
also possible because KP neurons receive information from vari-
ous neuronal networks by direct cell-cell-communication, and 
neurons capable of sensing systemic metabolic cues are part of 
these networks (23, 25, 32, 43, 44). In this section, we summarize 
available data on both direct and indirect impact of metabolic 
cues on the hypothalamic KPergic neurons.

Direct impact of Peripheral Metabolic 
Factors on KP Secreting Neurons in the 
Hypothalamus
Adiponectin
Adiponectin, a white adipocyte-secreted adipocytokine, was first 
documented in 1995 independently by various groups (45–48). It 
is a 244 amino acid protein hormone encoded by the APMI gene. 
It is secreted in very large amount into the systemic circulation. 
It has been noted to be about 0.01–0.05% of the total systemically 
circulating proteins (45–49). Systemic concentration of adi-
ponectin is ranged from 3 to 30 µg/mL (45). Adiponectin levels 
are sexually dimorphic as its concentration is higher in females 
than in males (45). In various metabolic disorders, such as obesity 
and diabetes, a marked reduction in plasma adiponectin levels 
has been reported (49, 50). Nevertheless, its levels are markedly 
elevated during fasting and are positively associated with severe 
weight reduction although in these situations the body has a 
greatly reduced adipose tissue mass (51, 52). This elevation in 
plasma adiponectin levels during food restriction condition is 
caused by adipose tissue in bone marrow. In contrast to other 
parts of the body, a prominent increase in the mass of adipose 
tissue in bone marrow has been noted in food restriction condi-
tions (53).

Adiponectin exerts its biological action via two 7-trans-
membrane receptors, AdipoR1 and AdipoR2 (45, 51), which are 
structurally as well as functionally different from 7-transmem-
brane G protein-coupled receptors. These receptors constitute a 
subgroup of 7-transmembrane receptors together with 11 pro-
gestin AdipoQ receptors (45). Besides peripheral organs, studies 
have demonstrated expression of both AdipoR1 and AdipoR2 
in various brain regions, including the hypothalamus, although 
evidence for the transport of adiponectin across the blood-brain 
barrier is still lacking (54–56).

Binding of adiponectin to its receptor leads to the activation of 
5’ AMP-activated protein kinase (AMPK). The activated AMPK 

acts to regulate energy homeostasis of the cell via fatty acid oxida-
tion and stimulation of glucose uptake (45, 49, 51). Moreover, 
adiponectin has been shown to modulate the release of repro-
ductive hormones. Adiponectin inhibits LH, GnRH-stimulated 
LH, and GnRH secretion while no impact on follicle-stimulating 
hormone (FSH) secretion was noted (54, 56). Recently, Wen 
et al. (57). analyzed the adiponectin effect on hypothalamic Kiss1 
mRNA expression in GT1-7 cells, which are immortalized mouse 
hypothalamic neuronal cells, and in  vivo in rats. They showed 
that adiponectin, as well as a synthetic activator of AMPK, greatly 
reduced transcription of Kiss1 mRNA while inhibition of AMPK 
caused an increase in expression of Kiss1 mRNA in both in vitro 
and in  vivo studies. Taken together, these findings suggest a 
negative impact of adiponectin on the activities of KP-containing 
neurons. The negative impact of adiponectin on Kiss1 expression 
suggests that it might be involved in short-term fasting induced 
suppression of the reproductive axis. In fasting condition, an 
increase in systemic levels of adiponectin has been reported.

Leptin
Leptin is another important adipokine of white adipose tissue. 
In contrast to systemic adiponectin levels, leptin levels in the 
bloodstream are directly related to the body mass of adipose 
tissues. Leptin plays a vital role in the maintenance of energy 
balance in the body (58–60). One of the key functions of leptin 
is to communicate information on the body’s current metabolic 
status to brain centers for energy homeostasis (61, 62). Systemic 
concentrations of leptin are reduced in food restriction conditions 
while food intake augments leptin concentrations (63). Available 
experimental data show that leptin is an important regulator of 
the metabolic deficiency/sufficiency-induced alterations in the 
neuroendocrine axes. Thereby, it also affects reproductive func-
tions (37, 60, 64).

Besides peripheral reproductive organs, expression of the 
leptin receptor (LepR) has also been noted in several central 
neuronal networks in the hypothalamus, including KP-secreting 
neurons (33, 37). In situations of energy imbalance, low levels 
of leptin cause a clear reduction in Kiss1 transcripts levels in 
the hypothalamus (28, 30, 31, 33, 40) while the elevation of 
systemic leptin concentrations via exogenous administration 
greatly ameliorates expression of Kiss1 transcripts levels (30, 
33). Similarly, ablation of leptin in ob/ob mice and hypolep-
tinemia in experimental diabetic rats diminish Kiss1 mRNA 
expression while leptin infusion in both, ob/ob mice and in the 
rat model augments Kiss1 transcript levels (30, 31, 33). Leptin 
can also indirectly change activities of KP-secreting neurons 
because many studies have reported the expression of LepR in 
numerous discrete regions of the hypothalamus (58). Important 
neuronal populations that express LepR include the GABAergic, 
neuropeptide Y (NPY), proopiomelanocortin (POMC), and 
agouti-related peptide (AgRP) populations (44, 58, 65, 66). 
These neurons are known to communicate with KP neurons 
(43, 44, 67). The indirect impact of leptin on KP neurons is 
supported by the evidence that exogenous leptin injection was 
unable to induce signal transducer and activator of transcrip-
tion-3 (STAT3), a leptin action mediating intracellular signaling 
pathway, expression in KP neurons (65).
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However, Donato et al. (68) have recently shown that hypotha-
lamic KP neuronal LepR deletion did not change LH secretion. 
Likewise, re-expression of LepR on KP cells in LepR null mice 
also did not improve hypogonadotropic hypogonadism pheno-
type in these mice (69). These observations, together with above 
mentioned findings (28, 30, 31, 33, 40) of a pivotal role of leptin 
in KP secretion, suggest a potential developmental compensation 
or an indirect effect of leptin in modulating KP secretion in mice. 
Nevertheless, more studies are required in other species to further 
clarify the link between leptin and KP.

Ghrelin
Ghrelin, an orexigenic peptide hormone of the upper gastrointes-
tinal track, is a ligand of growth hormone secretagogue receptor 
(GHSR), which is also a member of the seven transmembrane 
receptor family (70–72). Ghrelin has been implicated in the 
short-term regulation of food intake. The systemic concentra-
tions of ghrelin increase at the preprandial time, whereas they 
decrease postprandially (70, 72, 73). In food restriction condi-
tions, increased ghrelin levels in the circulation are associated 
with a decrease in reproductive hormones (74). Exogenous 
ghrelin administration rapidly induces food intake and inhibits 
the reproductive axis (70, 72, 74, 75). Besides short-term actions 
on food intake, ghrelin is also involved in the regulation of long-
term body weight. Chronic administration of ghrelin increases 
the body weight through a number of mechanisms, including 
continuous stimulation of food intake, alterations in energy 
expenditure, and induction of adiposity (75). In mice, congenital 
loss of ghrelin or of the GHSR gene causes resistance to high-
fat-diet-induced adiposity and weight gain (76, 77). Likewise, 
ablation of both ligand and receptor resulted in reduced body 
weight of mice, high energy expenditure, and increased motor 
activity on a standard chow without exposure to a high-fat diet 
(78). All in all, the available data pinpoint an important role of 
ghrelin in monitoring and transferring metabolic information to 
the brain centers implicated in the regulation of reproduction and 
intake of food intake.

Ghrelin acts centrally in the brain via GHSR in the hypothala-
mus to stimulate food intake and to alter reproduction (72, 75). 
Expression of GHSRs has been observed on a subset of Kiss1-
expressing neurons. In 2009, Forbes et al. (79) reported a reduc-
tion in the hypothalamic transcript levels of Kiss1 in response 
to an increase in circulating ghrelin levels either due to food 
deprivation or exogenous injection of ghrelin. Besides this direct 
action of ghrelin on the hypothalamic Kiss1 gene expression, an 
indirect action via interneurons like the AgRP/NPY neurons 
(75), which will be discussed below, is also possible.

An important role of estradiol has been reported in the 
modulation of KP neuronal response to ghrelin by Frazao et al. 
(80). These researchers found that elevated levels of estradiol 
augment transcript levels of GHSR in the hypothalamic ARC. 
Moreover, an increase in the number of KPergic neurons 
responding to ghrelin was noted (80). Very recently, it has been 
reported that an increase in ghrelin levels during the short-term 
fasting condition leads to a stimulatory effect of central KP on 
growth hormone secretion. This effect has not been observed in 
normal fed condition. Moreover, a ghrelin receptor antagonist 

or a block of increase in its systemic levels abolishes this effect of 
KP on growth hormone secretion. On the basis of these findings, 
it has been proposed that central KP neuronal networks might 
transfer reproductive and metabolic status related cues onto the 
somatotropic axis thus causing a change in the release of growth 
hormone (81).

Insulin
Insulin, a metabolic hormone secreted by the pancreatic β cells, is 
involved in metabolic regulation of reproduction through actions 
on both central and peripheral components of the reproductive 
axis (82, 83). Central injections of insulin cause a dose-dependent 
attenuation in feeding and body weight (84). Ablation of insu-
lin receptor (IR) from neurons results in hypogonadotropic 
hypogonadism in mice via central hypothalamic mechanism 
(85). Moreover, central injection of insulin has been reported to 
reinstate normal LH secretion in an experimental rat model of 
diabetes (86).

Besides many other neurons, expression of IRs has been noted 
on the ARC KP cells (87). It has been found that the specific dele-
tion of the IR gene from KP neurons delayed the onset of puberty 
in mice but reproductive capacity was normal in adulthood (87). 
Therefore, these observations indicate that insulin signaling in 
KP neurons is important for the normal pubertal awakening 
of the reproductive axis but not an absolutely critical signal for 
the achievement of ultimate pubertal hallmarks. Additionally, 
reproductive ability, feeding, glucose regulation, distribution 
of fat, and body weight were normal in adult mutants. Of note, 
administration of insulin in the late follicular ovarian phase 
significantly stimulated expression of the c-fos protein in sheep 
ARC KP neurons (88), although it is not clear whether this effect 
is direct or indirect.

Some indirect evidence supports a possible role of insulin in 
altering the activity of hypothalamic KP-secreting neurons. In 
rats, experimental chronic diabetes has been noted to cause a 
marked reduction of Kiss1 transcript levels in the hypothalamus 
(31, 89). Likewise, during short-term fasting, which is character-
ized by reduced levels of insulin, a reduction in Kiss1 expression 
was reported (28, 90). However, exogenous injections of insulin 
did not reverse the decreased Kiss1 gene expression, which was 
induced by fasting- and diabetes-associated metabolic perturba-
tions (30, 31). Additionally, in vitro data did not show any effect of 
insulin on KP expression in the mouse hypothalamic cell line N6 
(30). Of note, leptin and NPY applications have stimulated Kiss1 
expression in this cell line.

indirect impact of Metabolic Cues on the 
Hypothalamic KPergic Neurons
Besides the per se impact of metabolic cues on the hypothalamic 
KPergic neurons, a number of other hypothalamic neuronal 
networks are also sensitive to metabolic status-related cues. 
The major hypothalamic neuronal systems, which express the 
LepR, the GHSR, and the IR, include gamma-aminobutyric acid 
(GABA), glutamate, NPY/AgRP, and POMC/CART neurons. 
Many of these neurons, in turn, can alter activities of the hypo-
thalamic KPergic neurons either directly or indirectly.
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Glutamate and GABA Expressing Neurons’ Input to 
KP Secreting Neurons in the Hypothalamus
Glutamate and GABA neurons are playing important roles in the 
regulation of reproduction (91). These neurons have been docu-
mented to contain receptors for metabolic hormones, and their 
activities are modulated by metabolic cues (44, 67, 92–94). In a 
recent study, we checked changes in the hypothalamic glutamate 
and GABA systems in fed and 48 hours fasted monkeys via check-
ing transcripts levels of Kiss1, Kiss1r, NR1 (N-methyl-d-aspartate 
receptor subunit 1) and GAD67 (glutamic acid decarboxylase67) 
in the mediobasal hypothalamus (MBH) and pre-optic area 
(POA) of the adult male rhesus macaque (Macaca mulatta) (95). 
The expression of Kiss1, Kiss1r, and NR1 mRNA was greatly 
decreased in fasted macaques as compared to ad libitum fed mon-
keys. A noteworthy reduction was also noted in the expression 
of KP and the interactions of NR1 with KPergic neurons in the 
hypothalamus of fasted monkeys. Taken together, these observa-
tions indicate that a reduction in inputs of glutamate-containing 
neurons to KPergic neurons may be responsible for the reduction 
in the hypothalamic KP signaling in the fasted monkey. However, 
no obvious change in expression of GAD67 mRNA between fed 
and fasted monkey was observed, suggesting that the fasting-
induced reduction in the hypothalamic KP signaling is not 
mediated through GABAergic neurons (95).

RFamide-Related Peptide-3 Expressing Neurons 
Input to KP-Secreting Neurons in the Hypothalamus
The hypothalamic gonadotropin-inhibitory hormone and its 
mammalian ortholog RFamide-related peptide-3 (RFRP-3) 
neurons have been implicated as the potent inhibitors of repro-
duction in a number of vertebrate species (26, 96–98). RFRP-3 
binds to a G protein-coupled receptor namely GPR147. GPR147 
is expressed in different regions of the hypothalamus including 
a subset of the hypothalamic KPergic neurons in the ARC (99). 
Moreover, a direct contact between GnIH fibers and about 35% 
of ARC KPergic neurons was also noted.

Different studies in animal models and human subjects ana-
lyzed of RFRP-3 effect on KP stimulation of GnRH (99, 100). In 
human subjects, although RFRP-3 exerts an inhibitory effect on 
LH secretion in postmenopausal women, no noteworthy effect 
of RFRP-3 was observed on KP-stimulated LH secretion in men 
during concomitant KP and RFRP-3 administration (100). In 
mouse hypothalamic explant culture, research from Tsutsui’s 
group showed that RFRP3 significantly reduced KP-induced 
GnRH release (99). Of note, no effect of RFRP-3 on KP-induced 
GnRH release was noted in the mouse hypothalamic GT1-7 
cells (101).

Leon et al. performed an analysis of the GPR147 ablation on 
the hypothalamic Kiss1 mRNA expression (102). They reported 
that GPR147 null mice showed normal pubertal awakening of 
the reproductive axis. Of note, an increase in expression of Kiss1 
mRNA was noted in the hypothalamic ARC of the adult GPR147 
null male mice. Additionally, an increase in systemic levels of 
FSH and response of LH to GnRH stimulation was observed 
in GPR147 null mice. However, ablation of GPR147 did not 
rescue hypogonadotropic hypogonadism in Kiss1r-ablated mice. 
More importantly, in the GPR147 null mouse energy imbalance 

conditions induced a lesser degree of disruption in the secre-
tion of LH (102). These findings indicate that a lack of RFRP3 
signaling may partly prevent metabolic perturbation induced 
inhibition of the reproductive axis. However, expression of Kiss1 
mRNA was not checked in GPR147 ablated mice in these condi-
tions of metabolic perturbations. Therefore, it will be important 
to check Kiss1 expression in GPR147 null mice in situations of 
metabolic insufficiency in order to know whether RFRP-3 sign-
aling mediates nutritional challenge induced suppression of the 
reproductive axis.

Orexigenic Neuronal Input to the KP Secreting 
Neurons in Hypothalamus
Hypothalamic orexigenic neurons include NPY and AgRP 
neurons among others (103–108). AgRP is utterly secreted by a 
specific neuronal population in the ARC, which also co-expresses 
NPY. These neurons are playing a crucial role in feeding. They 
stimulate feeding when they are activated by metabolic deficiency-
associated signals (105, 109).

These neurons express receptors for several key metabolic 
hormones like leptin, insulin, and ghrelin (103, 107, 109). Hence, 
AgRP/NPY neurons are direct targets of leptin action (109, 
110) Exogenous injection of leptin induces a mark activation 
of STAT3, a prominent leptin action mediating intracellular 
signaling pathway, in AgRP/NPY neurons (109–111). Insulin has 
been noted to inhibit the electrophysiological properties of NPY/
AgRP neurons. Insulin causes inhibition of NPY/AgRP neurons 
through activation of ATP-sensitive K+ channels (112). However, 
ablation of IR from AgRP/NPY neurons does not induce promi-
nent alterations of the reproductive axis, while deletion of both, 
IR and LepR, adversely affected the reproductive axis (113, 114). 
Ghrelin stimulates the activity of ARC AgRP/NPY neurons (75, 
109, 115) via activation of GHSR present on these neurons (109, 
116). More importantly, it has been reported that ghrelin’s orexi-
genic effects are lost in Agrp and Npy knockout mice, suggesting 
that intact NPY and AgRP neurons are essential for orexigenic 
effects of ghrelin (115).

Although a large body of data established the perception of 
metabolic cues by the AgRP/NPY neurons, there is only very 
limited information on possible routes via which the effects 
are transmitted to KP neurons in the ARC. In the ovine brain, 
Backholer et al. (43) observed the occurrence of reciprocal trans-
synaptic neural connections between the hypothalamic NPY-
containing cells and the perikarya of the KP-expressing neurons. 
This anatomical evidence indicates that NPY-containing neurons 
can affect the output of KP neurons. More importantly, a normal 
NPY neuronal circuitry is essential for proper functioning of 
hypothalamic KPergic neurons, as mice with NPY deficiency 
have defective hypothalamic KP expression (30).

Recently, Foradori et  al. provided more comprehensive 
evidence for cross-talk between KP and NPY neurons (81), espe-
cially from KP to NPY neurons in presence of the fasting-induced 
alteration in metabolic cues. KP administration in fasted ewe has 
been noted to cause a significant increase in growth hormone 
level via stimulation of NPY neurons and growth hormone 
releasing-hormone in ARC and an inhibition of somatostatin 
neurons in the periventricular nucleus.
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Anorexigenic Neuronal Input to KP-Containing 
Neurons in the ARC
The hypothalamic ARC POMC (POMC)/CART (cocaine- 
and amphetamine-regulated transcript) neurons have been 
implicated as a pivotal central controller of metabolic homeo-
stasis (109, 117, 118). These neurons have been described to 
constitute a major part of the hypothalamic satiety center. The 
anorexigenic role of POMC neurons is pinpointed by the evi-
dence that ablation of the Pomc gene results in a state of severe 
hyperphagia, which ultimately leads to an enormous amount of 
weight gain (119). Moreover, food deprivation reduces mRNA 
levels of Pomc in the hypothalamic ARC, whereas transcript 
levels of hypothalamic Pomc are augmented in overfed rats 
(120). Similarly, CART mRNA expression is also at the nadir in 
fasting, while food intake restores ARC CART mRNA expres-
sion (121).

The possible metabolic cues that may be sensed by POMC 
neurons include leptin and insulin. Presence of both LepR and 
IR has been noted on POMC neurons (109, 117, 122–124). 
Recently, researchers documented via the whole-cell recording 
that both leptin and insulin excite POMC neurons and nearby 
KP cells via stimulation of TRPC5 (short transient receptor 
potential channel 5) channels (112), which are abundantly 
present in these hypothalamic neurons. Moreover, central 
administration of exogenous insulin greatly suppressed feeding 
and enhanced expression of the c-fos protein in ARC POMC 
neurons (112).

Indeed, POMC neurons are strategically located in the hypo-
thalamus. Thereby, they can integrate the information provided 
by many different metabolic cues and can link these to the KP 
neurons. A direct action of POMC neurons is supported by the 
presence of reciprocal connections between POMC and KP 
neurons in the hypothalamus (43, 125). POMC neuronal projec-
tions were observed in close apposition with a number of other 
neurons which cross-talk with KP neurons. This also suggests an 
indirect connection.

Very recently, Tena-Sempere’s group uncovered a melano-
cortin-KP-GnRH regulatory pathway (126). This pathway was 
reported to be involved in transmitting leptin actions and plays 
an important role in regulating the onset of puberty. Of important 
note, KP neurons were noted to play a vital role in relaying the 
stimulatory effects of melanocortin signaling onto the reproduc-
tive centers (126). In this regard, they reported the existence 
of a close contact between α-MSH fibers and KP-containing 
neuronal cell bodies in the ARC of pubertal female rats while the 
chronic block of the melanocortin receptor, MC3/4R, results in a 
significant reduction of Kiss1 transcript levels. Moreover, the LH 
responses to the MT-II melanocortin agonist, which stimulates 
LH release, greatly reduced in Gpr54-ablated mice and also in 
DREADD-induced inhibition of ARC Kiss1 neurons. Altogether, 
these findings suggest central role KP in mediating impact of 
POMC neurons on to GnRH neurons during development and 
metabolic cues related changes.

Very recently, True et al. have reported several differences in 
coexpression patterns of various hypothalamic neuropeptides in 
female nonhuman primates as compared to rodents (127). They 
did not observe coexpression of CART with POMC but instead 

with NPY. They also noted co-expression of the CART in a sub-
population of KP cells. These CARP + KP neurons were noted 
to show close appositions with GnRH neurons. In contrast, the 
single-labeled KP and CART fibers were in synaptic contacts with 
GnRH neurons.

Heppner et al. (128) reported that KP neurons in the hypotha-
lamic ARC receive synaptic input from glucagon-like peptide 1 
(GLP-1), which is an anorexigenic neuropeptide. Moreover, KP 
neurons also express Glp1r mRNA. More importantly, they noted 
an increase in KP neurons action potential firing after application 
of the GLP-1R agonist. GLP-1R agonist also results in a direct 
membrane depolarization of ARC KP cells. However, central 
infusions of the GLP-1R antagonist, exendin (9–39), did not exert 
any effect on expression of ARC Kiss1mRNA or plasma LH in the 
normal fed mice (128).

CONClUSiON AND FUTURe 
ReCOMMeNDATiONS

In summary, emerging and increasing evidence indicates that 
metabolic cues exert a profound impact on the hypothalamic 
Kiss1-expressing neurons, both directly and indirectly. The direct 
sensing of metabolic cues is indicated by the presence of metabolic 
hormone receptors on Kiss1-expressing neurons while indirect 
sensing of metabolic information is suggested by cross-talk of 
these neurons with other hypothalamic neuronal populations 
which also respond to metabolic cues.

Most of the current evidence for the metabolic regulation 
of the hypothalamic KP system is provided by non-primate 
studies. Therefore, in the future, further studies in nonhuman 
primates are required to get more insight into the mechanism 
by which various peripheral metabolic cues (leptin, adiponec-
tin, testosterone, estrogen, cortisol/corticosterone, ghrelin, 
insulin, glucagon, thyroid hormones, etc.) exert effects on their 
central neuronal targets (KPergic, AgRP/NPY, POMC/CART, 
GABA, corticotropin-releasing hormone, etc.). Indeed, deeper 
understanding of the metabolic impact on the hypothalamic KP 
signaling in animal models phylogenetically closer to humans 
and therefore with high clinical significance will more likely put 
Kiss1-Kiss1r signaling in the focus as a potential drug target. 
This may include improvement and management of repro-
ductive functions as well as treatment of disorders of energy 
balance. Notably, an important role of KP has been shown in 
the restoration of the reproductive axis after its quiescence in 
metabolic disorders such as diabetes and hypothalamic amen-
orrhea (129, 130).

In 2014, Tolson et al. (131) have shown that ablation of KP 
signaling leads to a reduction in the body’s metabolic activities. 
They also noted that a lack of the KP system leads to glucose 
intolerance and obesity (131). However, it is not known whether 
KP exerts an impact on metabolic activities peripherally or 
centrally or both. Therefore, it will be interesting to check the 
impact of various organ-specific knockdowns of KP signaling 
on metabolism. Very recently, De Bond et  al. (132) compared 
the expression of different metabolically important genes, such 
as Npy, Pomc, lepr, Ghsr (ghrelin receptor), Mc3r (melanocortin 

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive


8

Wahab et al. Metabolism and KP Signaling

Frontiers in Endocrinology | www.frontiersin.org March 2018 | Volume 9 | Article 123

receptors 3), and Mc4r (melanocortin receptors 4). Unexpectedly, 
they observed no clear alterations in gonadectomized kiss1r-
ablated mice compared to intact controls. These findings indicate 
that the etiology of obesity in the lack of KP-Kiss1r signaling may 
show an impairment in metabolic cues peripherally instead of 
central metabolic impairments (132).
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