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1  |  INTRODUC TION

The mucosal barrier is the first contact surface with the external en-
vironment, which forms a powerful shield to fight against pathogens. 

Many studies indicate that mucosal barrier injury underlies patho-
genesis of many mucosal diseases. Of note, in recent years, accu-
mulating evidence has shown that mucosal-resident innate lymphoid 
cells (ILCs) are essential in mucosal diseases. ILCs can respond to 
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Abstract
As the direct contacting site for pathogens and allergens, the mucosal barrier plays a 
vital role in the lungs and intestines. Innate lymphoid cells (ILCs) are particularly resi-
dent in the mucosal barrier and participate in several pathophysiological processes, 
such as maintaining or disrupting barrier integrity, preventing various pathogenic 
invasions. In the pulmonary mucosae, ILCs sometimes aggravate inflammation and 
mucus hypersecretion but restore airway epithelial integrity and maintain lung tissue 
homeostasis at other times. In the intestinal mucosae, ILCs can increase epithelial 
permeability, leading to severe intestinal inflammation on the one hand, and assist 
mucosal barrier in resisting bacterial invasion on the other hand. In this review, we will 
illustrate the positive and negative roles of ILCs in mucosal barrier immunity.
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damaged mucosal-derived ‘risk signals’ sensitively and quickly due 
to the close proximity of the damaged site, triggering ILC-mediated 
subsequent inflammatory response and tissue repair. Significant at-
tention is paid to the role of ILCs that may also be of great ther-
apeutic potential in mucosal diseases. In this review, we focus on 
the physiological and pathological functions of ILCs in the mucosal 
barrier. Meanwhile, we summarize the positive and negative roles 
of ILCs in mucosal barrier immunity. When external irritations stim-
ulate mucosae, ILCs play a positive role to maintain mucosal ho-
meostasis by alleviating inflammation and promoting tissue repair. 
However, excessive ILCs can also play a negative role by recruiting 
inflammatory cells and pro-inflammatory cytokines, leading to dam-
age the integrity of mucosae and accelerate the pathological process 
of chronic mucosal diseases.

2  |  MUCOSAL BARRIER AC TS MORE 
THAN A PHYSIC AL BARRIER

The mucosal barrier is the first site to contact with the environmen-
tal antigens and pathogens, such as viruses, fungi, parasites and 
bacteria. The intact epithelia, cilia and mucus together constitute 
a strong physical barrier against external stimulus. A variety of al-
lergens and stimuli, except probiotics, are detrimental to the host. 
After prolonged and/or extensive exposure to ozone, house dust 
mite (HDM), bacteria and viruses, etc., epithelial structural proteins 
such as E-cadherin and zonula occludens-1 (ZO-1) were destructed, 
resulting in decreased epithelial tightness and barrier damage.1-4 The 
dysfunction of epithelia is a common pathological characteristic of 
mucosal diseases. Various degrees of epithelial damage are the key 
determinant of mucosal diseases such as asthma, chronic obstructive 
pulmonary disease (COPD) and inflammatory bowel diseases (IBD) 
and the degree of epithelial damage is positively correlated with the 
severity of diseases.5-7 Once the mucosal system is too vulnerable to 
identify and/or eliminate noxious stimuli in time, pathogen-induced 
inflammation may damage the mucosal barrier excessively, leading 
to severe infection, cytokine storm or even death eventually.8-11

The mucosal system can be involved in many mucosal diseases 
in addition to its physical barrier function. More importantly, it also 
has a powerful immune function. When the structure and function 
of the mucosal barrier are damaged, mucosal epithelia would secret 

cytokines and inflammatory mediators to trigger systemic immune 
response and eliminate pathogens, which in turn restore the homeo-
stasis of the mucosal barrier.12,13 In the process of mucosal immune 
response, ILCs have attracted a substantial amount of attention due 
to special distribution and function. A large number of studies have 
demonstrated that the activation and differentiation of ILCs have 
great biological significance in regulating local inflammation and 
promoting tissue repair in the mucosal barrier. The distribution and 
function of ILCs in the mucosal barrier and the involvement of ILCs 
in mucosal diseases deserve further study.

3  |  PROFILE OF ILC S

In recent years, ILCs have aroused broad attention in the mucosal 
immunity and the homeostasis of mucosal barrier. ILCs are renewed 
from progenitors, and recent studies have identified that CD117+ ILC 
precursors derived from CD34+ hematopoietic stem cells can gener-
ate almost all mature ILC subsets (except for interleukin-17A+ ILC3s) 
under appropriate environmental signals.14,15 Interestingly, CD117+ 
ILC precursors can circulate in the peripheral blood or reside in the 
tissues, but lineage-specified progenitors of ILC3s can be detected 
in tonsil and intestinal lamina propria but not in peripheral blood.16 
Of note, ILCs are sentinel cells distributed widely in the mucosal bar-
rier, while most mature ILCs are resident in intestine lamina propria, 
lung and liver.17 As ILCs are similar to T cells in terms of transcrip-
tion and function, there are ILC subsets such as ILC1, ILC2, ILC3 and 
ILCreg by reference to the subsets of T cells (Table 1).18-20

ILCs are developed and expanded within peripheral organs, and 
then acute infections or tissue damage rapidly triggers ILC precur-
sors to differentiate into mature ILCs following cytokine-driven 
expansion.21,22 ILCs do not express antigen-specific receptors, and 
cytokines are considered as powerful activators of ILCs. ILCs can 
directly respond to epithelial cytokines in the absence of T cells and 
even respond to ‘risk signal’ faster than T cells.23-25 Furthermore, 
ILC2s activated by IL-33 may produce 10 times more type 2 cyto-
kines than Th2 cells do.26

ILCs are involved in the first-line immune defence by secret-
ing a range of effect cytokines and interacting with other cells. 
Some evidence shows that the inflammatory response induced by 
epithelial cytokines is mediated by ILCs but not T cells, B cells or 

TA B L E  1  Features of innate lymphoid cell (ILC) subsets

Nomenclature
Lineage-defining transcription 
factors Stimulation Effector molecules

Group 1 ILCs (ILC1) T-bet IL−12, IL−15, IL−18 IFN-γ, TNF-α

Group 2 ILCs (ILC2) GATA3 IL−25, IL−33, TSLP IL−4, IL−5, IL−9, IL−13

ILC2(10) GATA3 IL−33, papain IL−10

Group 3 ILCs (ILC3) RORγt IL−1, IL−23 IL−17, IL−22, IFN-γ, GM-CSF

Regulatory ILCs (ILCreg)

ILCreg (lung) GATA3 RA, IL−2, IL−13 IL−10

ILCreg (intestine) Id3, Sox4 TGF-β IL−10
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NK cells.27 Besides, IL-25 can induce ILC2s to produce IL-5 and IL-
13 even in RAG-deficient mice.28 Intriguingly, there are a series of 
IL-10-secreting ILCs, generated in severe inflammatory environ-
ment, which in turn alleviate inflammation in different ways.29-31 It 
is revealed that the interaction between inflammatory factors and 
IL-10-secreting ILCs may initiate tissue damage repair, which may 
constitute a negative feedback system to guard the mucosal immune 
system and the homeostasis of mucosae.

The interaction between cytokines and ILCs is intricate and 
complex. The differentiation and function of ILCs can also be reg-
ulated by cytokines in local microenvironment.32-34 In the complex 
mucosal environment, ILCs are heterogeneous and highly plastic. 
The plasticity of ILCs benefits the adaptability to various inflam-
matory conditions. For example, lung tissue-specific ILCregs are 
converted from ILC2s by epithelial-derived retinoic acid under the 
induction of intense inflammatory signals in local tissues.30 What's 
more, chronic inflammation can also induce the conversion of ILCs 
among different subtypes in mucosal diseases. For example, ILC2s 
can be converted to ILC1s under the stimulation of IL-β and IL-12 
in COPD, and the ratio of ILC1s to ILC2s is positively correlated to 
the severity of COPD.35,36 ILC1s increased while IL-22+ ILC3s de-
creased in Crohn's patients, leading to the exacerbation of chronic 
inflammation.37,38 Furthermore, ILC3s can be converted to ILC1s in 
the inflamed intestines by the stimulation of IL-12, which is highly 
associated with the development of IBD.39,40 Therefore, ILCs are of 
highly plasticity, which may provide new ideas for the pathogenesis 
of mucosal diseases.

To sum up, ILCs are abundant in mucosal barrier, close to the 
damaged site, and can respond to inflammatory signal sensitively. 

Particularly, ILCs are of typical plasticity, which indicates that ILCs 
may function as a double-edged sword in mucosal barrier. The vari-
ous characteristics of ILCs indicate that they have great potential in 
mucosal diseases. We will elucidate how ILCs regulate the immune 
responses and maintain the homeostasis of mucosal barriers involv-
ing lungs and intestines.

4  |  ILC S IN THE LUNGS

As a tissue directly contacting the external environment, lung mu-
cosae need to cope with airborne dust, pollen, ozone, microbes, etc. 
Submucosal ILCs are essential for the integrity and homeostasis of 
the lung mucosal barrier. Upon sensing the ‘risk signal’ from dam-
aged mucosal epithelia, ILCs will proliferate, activate and release 
various cytokines to respond to harmful environmental components 
promptly and appropriately. Non-recirculating ILCs in the lungs con-
stitute a complex network, and ILCs clear irritants and promote tis-
sue repair when viral infection and parasites attack. However, over 
recruitments and dysfunction of ILCs in the lungs also lead to the 
aggravation of chronic pulmonary diseases. Thus, we will elaborate 
on the function of ILCs in two aspects: the positive and negative ef-
fects of the ILCs in lung mucosae (Figure 1).

ILCs are indispensable to prevent lung from respiratory infec-
tion and maintain the pulmonary homeostasis. ILCs contribute to 
the defence against viral invasion, preventing secondary bacterial 
infection and expulsing parasites. During H1N1 PR8 infection, 
GITR-expressing ILC1s contribute to preventing viral invasion 
through interferon (IFN)-γ and tumour necrosis factor (TNF)-α.41 

F I G U R E  1  ILCs in the lungs. Different ILC subtypes play distinct roles in the lung mucosae. On the one hand, ILCs protect against various 
infections. On the other hand, ILCs exacerbate airway inflammation. ILC1s resist viral invasion by secreting IFN-γ and TGF-α. ILC2s can 
also contribute to helminth expulsion and tissue repair after viral invasion by amphiregulin, IL-5 and IL-13. However, under the stimulation 
of various viruses and allergen, ILC2s secret a large amount of IL-5 and IL-13, which induce eosinophilia infiltration, mucus hyperplasia and 
smooth muscle cell contraction. In addition, ILC3s effectively resist bacterial invasion and prevent lung epithelia from secondary bacterial 
infection after viral attack
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Moreover, IL-22-producing ILC3s can help clear influenza viruses 
such as H3N2, alleviate inflammation and repair pulmonary epi-
thelial integrity, which in turn prevents secondary bacterial infec-
tion.42-44 Strikingly, IL-22+ ILC3s alleviate inflammation in allergic 
airway disease.45 Under the stimulation of chitin and helminth, IL-
9+-autocrine ILC2s facilitate worm expulsion by IL-5 and IL-13.46 
Of note, according to genome-wide transcriptional profiling, lung 
ILCs express a series of genes related to wound healing and tissue 
repair, including extracellular matrix proteins decorin, asporin and 
dermatopontin as well as epidermal growth factor family members 
such as amphiregulin (AREG).47 ILC2-derived AREG contributes to 
epithelial defence, tissue repair and restore lung function effec-
tively.48,49 Therefore, ILCs can not only clear irritants, but also re-
pair damaged tissues.

It is true that ILCs play an important role in resisting invasion 
and facilitating tissue repair, while dysregulated ILCs also take the 
blame for causing disease. At present, ILCs have been confirmed 
to be involved in lung diseases including COPD and asthma. It 
has been shown that a higher proportion of ILC1s can cause ex-
acerbations of COPD.35 This can be explained by the potential to 
transform from ILC2s to ILC1s with the help of IL-1β and IL-12 after 
exposure to cigarette smoke.50 Furthermore, given that IL-17A is 
a detrimental factor to COPD, IL-17-secreting ILC3s may also par-
ticipate in the pathology of COPD.51 The exacerbation of COPD is 
associated with ILC1s, while the lung functionality of asthma pa-
tients is closely related to ILC2s.52 The frequency of ILC2s is in-
creased in allergic asthma patients, which are sufficient to initiate 
asthma.53-56 After activated by IL-25, IL-33 and thymic stromal 
lymphopoietin (TSLP), ILC2s proliferate and produce amounts of 
IL-5, IL-9 and IL-13, which in turn enhance airway inflammation, 
airway remodelling and airway hyperresponsiveness (AHR).26,57-59 
Especially, activated ILC2s are correlated with severe asthma and 
recruitment of eosinophils.57,60,61 Recent research has found that 
the role of TSLP in steroid-resistant asthma is correlated with air-
way ILC2s.62,63 Tezepelumab (an inhibitor of TSLP) could alleviate 
uncontrolled asthma, which may take effect by inhibiting TSLP-
driven ILC2s.53,64,65 What's more, viral infection can trigger acute 
exacerbation of asthma. After infection with H3N1 influenza virus, 
rhinovirus or respiratory syncytial virus (RSV), elevated IL-25, IL-
33 and TSLP enhance the efficacy of ILC2s significantly, which in 
turn aggravate airway inflammation, mucus secretion and smooth 
muscle contraction dramatically.66-69 In addition to familiar IL-25, 
IL-33 and TSLP, TGF-β can also act as a robust activator of ILC2s, 
which boost ILC2-mediated inflammatory response dramatically 
under the stimulation of viruses and allergens.70 In addition, IL-17-
producing ILC3s promote AHR in obesity-associated asthma.71,72 
Except for COPD and asthma, several studies have revealed that 
ILC2s are involved in the pathogenesis of chronic rhinosinusitis with 
nasal polyps and idiopathic pulmonary fibrosis.73,74

There is no doubt ILC-regulated mucosal immunity is of great 
significance to lung defence and chronic diseases. A proper ILC-
mediated defence is very beneficial to the homeostasis of lung. 
However, when lung mucosae are severely damaged or in a state 

of long-term damage, ILCs will lead to the development of chronic 
pulmonary diseases. Notably, different subtypes of ILCs have dif-
ferent effects on the outcome of lung disease. How ILCs function 
in different environments and the role of ILCs plasticity in chronic 
diseases still need further study. Particularly, the investigation about 
the activation and function of ILC3s in lung mucosae is relatively 
rare. Besides, infections with extracellular bacteria and fungi are lack 
of concern in ILC-regulated lung immunity. In-depth studies on res-
ident ILCs in the lungs are expected to provide new perspective to 
the treatment of these pulmonary diseases.

5  |  ILC S IN THE INTESTINES

The intestines must process a large amount of food every day and 
maintain the balance of intestinal flora, so the external stimuli on the 
intestinal mucosal barrier are more complicated. As mentioned above, 
lineage-specified progenitors of ILC3s can be detected in intestinal 
lamina propria.16 This means the intestines become a factory for pro-
ducing ILC3s, and it is shown that ILC3s are the most abundant ILCs 
in the intestines.75 Moreover, intestinal flora plays an important role 
in maintaining the homeostasis of the intestinal tract. Due to these 
physiological characteristics of the intestines, there are a large num-
ber of relevant studies on the positive role of ILCs in the intestinal 
tract during extracellular bacterial infection and parasite invasion. In 
addition, the negative role of ILCs is verified by the engagements of 
ILCs in the pathogenesis of IBD, colitis and graft-versus-host disease 
(GVHD).76 Overall, ILCs are of great significance in intestinal mucosal 
disease, and we will also elaborate on the protective and destructive 
roles of ILCs in the intestines, respectively (Figure 2).

ILCs can not only protect against bacterial and parasite infec-
tions, but also promote intestinal cell proliferation and mucus se-
cretion, which in turn reinforce the mucosal barrier. ILCs are very 
important for alleviating intestinal inflammation and maintaining 
intestinal homeostasis. ILC3s are activated by IL-23 and IL-1β of my-
eloid dendritic cells (mDC) and mononuclear phagocytes (MNPs), 
and then ILC3s secrete abundant IL-22 and granulocyte macrophage 
colony-stimulating factor (GM-CSF), which in turn alleviate the 
symptoms of colitis patients effectively.77,78 Besides, IL-17-secreting 
ILC3s can also recruit neutrophils to produce reactive oxygen spe-
cies and α-defensin, contributing to the resolution of inflammation 
in colitis patients.76 ILC1s are predominantly distributed within the 
intestinal lamina propria and participate in resisting bacteria by 
secreting IFN-γ.38 After exposure to pathogenic bacteria, lamina 
propria mononuclear cells (LPMC) activate ILC1s to release IFN-γ, 
which in turn resist bacterial invasion.79 Besides, IL-22-secreting 
ILC3s promote the secretion of antimicrobial peptides, lipocalin and 
mucus to prevent the invasion of bacteria.80 Furthermore, studies 
have shown that IL-22-secreting ILC3s can prevent the invasion of 
C.rodentium deep into the crypt of the colon.81,82 In addition to 
fighting against bacterial infections, the intestines can also expel 
parasites through ILCs effectively. Tuft cells, main source of IL-25, 
can sense helminth invasion sensitively and activate ILC2s promptly. 
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Then, IL-13-secreting ILC2s expel helminth effectively.83,84 
Meanwhile, ILC2-derived IL-13 can promote the proliferation and 
differentiation of mucosal tuft cells and goblet cells, to reinforce the 
mucosal barrier and prevent secondary infection.85,86 Intriguingly, 
IL-22-secreting ILC3s are also critical to the integrity and balance of 
mucosal barrier during GVHD by facilitate intestinal stem cells (ISCs) 
fitness.77,87,88 It has been proven that crypt cells and epithelial cells 
will be vulnerable after deletion of IL-22, leading to the aggravation 
of gastrointestinal GVHD.89,90 What's more, IL-33-activated ILC2s 
further upregulate the mucin production and promote the recovery 
of mucosal barrier by AREG.91

A growing number of studies have shown that excessive recruit-
ment of cytokines and inflammatory cytokines would reverse the 
protective effect of ILCs on the intestinal mucosal barrier. As men-
tioned above, when ILC3s are activated by mDC and MNPs, ILC3s can 
alleviate the symptoms of colitis patients.78 However, it has also been 
reported that NKp46+ ILC3s could also induce inflammation in the 
colitis model.92 This can be explained by the fact that ILC3s-derived 
GM-CSF can recruit neutrophils and mononuclear cells (MNCs), 
which in turn destroy the intestinal tissues and further aggravate 
inflammation.93 Although modest ILC3-derived IL-22 can protect 
ISCs, redundant IL-22 may suppress the survival of ISCs, inhibiting 
mucosal repair.94,95 IBD is a typical intestinal mucosal disease. ILC3s 
are closely related to the prevalence of IBD. ILC3s are activated by 
IL-1β and IL-23 of macrophages. The activated ILC3s secreted a great 
amount of IL-22 and IL-17 which would accelerate the pathological 
process of IBD.96 Besides, excessive IL-17 over-activates neutrophils 
and macrophages, breaking down interepithelial adhesion molecules 
and destructing the intestinal mucosal barrier.97 ILC3s are dominant 
in the intestines, while ILC3s are skewed towards ILC1s that produce 

IFN-γ and IL-13 in IBD patients.38,40 It is verified that ILC1-derived 
IFN-γ damages tight junction proteins and increases the perme-
ability of the intestinal mucosal barrier, thereby causing microbial 
translocation.98

The interaction between ILCs and other inflammatory cells in the 
intestinal mucosa and the conversion of ILCs play important roles in 
intestinal inflammatory diseases such as colitis and IBD. However, 
the roles of ILCs in intestinal inflammation are controversial. ILC3s 
even show two completely opposite effects in colitis patients.78,92 
We speculate that inflammatory factors and immune cells in differ-
ent microenvironments have a great influence on the functionality of 
ILCs. In-depth exploration of the proliferation, activation and differ-
entiation of ILCs in intestinal bacterial infections and inflammatory 
responses is of great significance to the maintenance of intestinal 
homeostasis and the treatment of intestinal diseases.

6  |  FUTURE PERSPEC TIVES

ILCs actively fight against bacteria, fungi, parasites, viruses and other 
pathogens and play an indispensable role in maintaining mucosal ho-
meostasis and regulating the mucosal inflammation. In recent years, 
there has been a growing appreciation for the role of ILCs in mucosal 
diseases, ILC disorders will damage the integrity of the mucosae and 
exacerbate the inflammation of mucosae, leading to disease deterio-
ration. In this review, we have summarized the recent studies on the 
involvement of ILCs not only in health but also in diseases.

ILCs are indispensable mediators in the regulation of mucosal 
immunity. The expansion, activation and differentiation of ILCs 
are driven by cytokines in mucosal environment. The mucosal 

F I G U R E  2  ILCs in the intestines. Different ILC subtypes play distinct roles in the intestine mucosae. ILC1s block intracellular bacterial 
infections by secreting IFN-γ. ILC2s prevent helminth infection by goblet cells and tuft cells. In addition, ILC2s facilitate intestinal mucosae 
repair by AREG. On the one hand, ILC3s confer protection against extracellular bacterial invasion by secreting IL-17, IL-22 and GM-CSF. 
On the other hand, hyperactivated ILC3s play a detrimental role in IBD and mucosal repair by promoting inflammatory cell infiltration and 
impairing ISC-driven epithelial renewal
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microenvironment can be a vital determinant to the activation and 
differentiation of ILCs, while the functions of ILCs have a great in-
fluence on mucosae. The interaction between mucosae and ILCs is 
complex and intricate. ILCs are competent to serve as innate coun-
terparts of T cells to some extent. Moreover, ILCs can promote T-cell 
activation and cytokine secretion.87,99-102 ILCs and T cells constitute 
an entire and intact defence system against pathogen invasion and/
or tissue damage.

ILCs are heterogeneous, and ILCs are regarded as highly plastic 
cells that can switch their phenotype depending on the local micro-
environment. Intriguingly, the conversion of ILCs has been discov-
ered in mucosal diseases, especially chronic diseases such as COPD, 
Crohn's disease and IBD.35-38 This may sharpen new ideas on the 
pathogenesis of pulmonary and intestinal chronic diseases. Whether 
the conversion of ILCs in chronic diseases could serve as a signal 
for clinical diagnosis still needs further study. In addition, the fun-
damental reason why the same subtype of ILCs causes completely 
different outcomes in the same disease model remains to be deeply 
investigated.

ILCs should keep a subtle balance to achieve mucosal immune 
defence and avoid additional tissue injury. Excessive cytokines will 
cause hyperactivation of ILCs, and a large number of activated ILCs 
may cause chronic inflammation and tissue remodelling during the 
long-term inflammatory stimulation and tissue repair. An increasing 
number of monoclonal antibodies (targeting IL-33, TSLP, IL-25, etc.) 
have been utilized in clinical trials.13,52,103 A better understanding 
of how ILCs are influenced by cytokines will promote our under-
standing of therapeutic targets. The interaction between ILCs and 
cytokines will also provide a novel insight into the mechanisms of 
cytokine-targeting drugs.

In summary, ILCs are of great significance to the immune re-
sponse and mucosal homeostasis. Due to the intricate ILC category, 
single-cell analysis of ILCs is required to better understand the phe-
notype, function and development of ILCs. Given the overlapping 
functions of T cells and ILCs, Rag−/− mice are used as ideal animal 
models to clarify the relative contribution of ILCs and the ILC-T 
cross-regulation. Furthermore, the regulation of ILCs in the mucosal 
barrier may provide a new perspective for feasible therapeutic tar-
gets in the future.
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