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Abstract: In order to evaluate the pollution characterization of PM2.5 (particles with aerodynamic
diameters less than or equal to 2.5 µm) and secondary aerosol formation under the different photo-
chemical activity levels, CO was used as a tracer for primary aerosol, and hourly maximum of O3

(O3,max) was used as an index for photochemical activity. Results showed that under the different
photochemical activity levels of L, M, LH and H, the mass concentration of PM2.5 were 29.8 ± 17.4,
32.9 ± 20.4, 39.4 ± 19.1 and 42.2 ± 18.9 µg/m3, respectively. The diurnal patterns of PM2.5 were
similar under the photochemical activity and they increased along with the strengthening of photo-
chemical activity. Especially, the ratios of estimated secondary aerosol to the observed PM2.5 were
more than 58.6% at any hour under the photochemical activity levels of LH and H. The measured
chemical composition included water soluble inorganic ions, organic carbon (OC), and element
carbon (EC), which accounted for 73.5 ± 14.9%, 70.3 ± 24.9%, 72.0 ± 21.9%, and 65.8 ± 21.2% in
PM2.5 under the photochemical activities of L, M, LH, and H, respectively. Furthermore, the sulfate
(SO4

2−) and nitrate (NO3
−) were nearly neutralized by ammonium (NH4

+) with the regression slope
of 0.71, 0.77, 0.77, and 0.75 between [NH4

+] and 2[SO4
2−] + [NO3

−]. The chemical composition of
PM2.5 was mainly composed of SO4

2−, NO3
−, NH4

+ and secondary organic carbon (SOC), indicating
that the formation of secondary aerosols significantly contributed to the increase in PM2.5. The forma-
tion mechanism of sulfate in PM2.5 was the gas-phase oxidation of SO2 to H2SO4. Photochemical
production of nitric acid was intense during daytime, but particulate nitrate concentration was low
in the afternoon due to high temperature.

Keywords: atmospheric fine particles; secondary aerosol; photochemical reaction

1. Introduction

Since the serious haze incidents in 2013 in China, the regional atmospheric environ-
ment pollution, characterized by fine particulate matter (PM2.5; particles with aerodynamic
diameters less than or equal to 2.5 micrometers (µm)), has attracted widespread attention,
and serious haze pollution has endangered the public health [1–4]. In order to alleviate the
severe situation of atmospheric environment pollution and effectively improve air quality,
a series of control policies have been formulated, such as the Air Pollution Prevention
and Control Action Plan in China [5]. Through the cooperative prevention and strict im-
plementation of control policies in cities or regions, the mass concentration of PM2.5 has
decreased on average in some representative regions, for example the annual mean mass
concentration of PM2.5 is less than 35 µg/m3 in the Pearl River Delta (PRD) region, but the
mass concentration of PM2.5 is still high in the Beijing–Tianjin–Hebei (BTH) and Yangtze
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River Delta (YRD) regions [5–7]. Furthermore, the mass concentration of ozone (O3) has
greatly increased and the compound pollution caused by the interaction between O3 and
PM2.5 has become the main problem of atmospheric pollution [8–11].

Many studies have been conducted on the spatio-temporal distribution characteristic
of PM2.5 and O3 in China. In general, the atmospheric pollution of PM2.5 is heavier in
autumn and winter [7,12,13], while the atmospheric pollution of O3 is more prominent in
summer [14]. Although the serious pollution events owing to the PM2.5 or O3 usually occur
in the different seasons, the mutual influence between the PM2.5 and O3 is always present,
and is especially important in summer. As a photochemical oxidizer, the O3 oxidation is
stronger with the higher mass concentration [15–17]. The secondary components of PM2.5
are formed by the oxidation of gasous precursors, which increase the oxidation charac-
ter and promote the oxidation of the secondary components in atmospheric particulate
matter [18,19]. Based on the analysis of the air quality observation data of Taipei, the
estimation method of secondary aerosols in PM10 (the particle size less than or equal to
10 µm) is established under the different photochemical activities [20]. This method to
estimate secondary aerosol has also been used in Pudong District of Shanghai in China,
and shows that it is an effective method for estimating secondary aerosol using observation
data of pollutants [19]. Due to the combined effect of emission source structure or intensity,
geographical location and meteorological conditions, the complex relationship between
PM2.5 and O3 is very different in different regions or cities. For example, the relationship
between the meteorological conditions and PM2.5 and O3 concentrations has been studied
in the BTH region [21]. The relationship between particulate matter and O3 is found in
the North China Plain [9,11]. However, the information and relevant actions are still not
sufficient to fully control the related pollution of O3 and PM2.5 because of the lack of the
interaction analysis under different photochemical activities.

As the BTH region is one of the representative regions of economic development in
China, its atmospheric quality has been receiving more and more attention. Tianjin is in
the north-central part of the BTH region. As the BTH is the economic center of the Bohai
region, its industry is developed. The main industries include petrochemical, electronics,
machinery manufacturing and iron and steel metallurgy, among others. Tianjin is one of the
cities with the most serious pollution of PM2.5. Air pollution prevention and control action
plans have been implemented in Tianjin since 2013, and the PM2.5 mass concentrations
decrease year by year [22]. However, PM2.5 pollution is still serious [23]. In this study,
based on the continuous observation, the hourly maximum of O3 (O3,max) was used as an
index to measure the levels of photochemical activity. CO was used as a tracer for primary
emissions from natural origin sources such as sea salt and dust. Using the secondary
aerosol estimation methods based on PM2.5/CO, the formation of secondary aerosols was
estimated under different photochemical activities in summer 2020 in Tianjin, China. The
main objective of the present work was to chemically characterize PM2.5 and to investigate
the relationships between O3 and PM2.5 as well as their association with gaseous pollutants
(NO2 and SO2) under the different photochemical activities.

2. Data and Methods
2.1. Sources of Monitoring Data

The air quality monitoring data are downloaded from the data center website of the
China National Environmental Monitoring Center (http://www.cnemc.cn/sssj/) (accessed
on 1 June 2021). The dataset contains the ambient mass concentrations of PM2.5, O3, NO2,
CO and SO2, which are measured following the required equipment and method principles
described in the technical specifications of the China National Environmental Monitoring
Center (http://www.cnemc.cn/jcgf/) (accessed on 1 June 2021). PM2.5 is measured using a
tapered element oscillating microbalance (TEOM) PM2.5 analyzer (Model RP1400a, Sunset
Laboratory Inc., Tigard, OR, USA). NO2 is measured using a chemiluminescence NOx
analyzer (Model 42C/I, Thermo-Fisher Scientific, Waltham, MA, USA), SO2 is measured
using a pulsed fluorescence SO2 analyzer (Model 43C/I, Thermo-Fisher Scientific, Waltham,
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MA, USA), O3 is measured using a UV photometric O3 analyzer (Model 49C/I, Thermo-
Fisher Scientific, Waltham, MA, USA), and CO is measured with a nondispersive infrared
analyzer (Model 48i, TE). The data observed by the Tianjin monitoring site (39.08◦ N,
117.21◦ E) in the network is used from 1 June to 31 August 2020.

The continuous water-soluble inorganic ions and organic carbon (OC) and elemental
carbon (EC) are measured on the top of the fourth floor (39◦6′ N, 117◦6′ E) in Tianjin
Chengjian University, about 15 m from the ground. The main traffic line of Jinjing Road is
the south and about 200 m away the sampling point, and the other surrounding areas are
mainly residential communities. The water-soluble inorganic ions (i.e., SO4

2−, NO3
−, Cl−,

NH4
+, Na+, K+, Ca2+, and Mg2+) in PM2.5 are determined during the same observation pe-

riod by the ambient ion monitor instrument (AIM, URG Corporation, Chapel Hill, NC, USA,
CarURG9000B). OC and EC are measured Semi-Continuous OCEC instrument (Model 4,
Sunset Laboratory Inc., Tigard, OR, USA). An automatic meteorological monitoring in-
strument (Milos520, Vaisala, Vantaa, Finland) is used to record the main meteorological
parameters, including temperature, humidity, wind speed, and wind direction.

The PM2.5 data are initially available based on 5 min averages. The hourly means are
calculated using a minimum of nine 5 min averages, and the daily means are calculated
using a minimum of 18 1 h averages; otherwise, the hourly and daily value is considered
missing. The other daily data (gaseous pollutants, water-soluble inorganic ions, OC, EC
and meteorological parameters) are averaged over 24 h periods when at least 75% of hourly
data are available for each day; the missing values are excluded from the analysis.

2.2. Classification of Photochemical Activity Levels

Because the formation of secondary aerosol is closely related to the photochemical
activity, O3 is often used as an index of photochemical reactions [15–17,20,24]. To differen-
tiate the effect of the different photochemical activity levels, in this study, photochemical
activity is categorized into four groups (L, M, LH and H) based on hourly maximum of
O3 mass concentration: L denotes O3,max < 100 µg/m3 (8 h O3 standard in the National
Ambient Air Quality Standard (NAAQS, GB3095-2012) of China; M denotes 100 µg/m3 ≤
O3,max < 160 µg/m3 (8 h O3 standard in GB3095-2012); LH denotes 160 µg/m3 ≤ O3,max
< 200 µg/m3 (1 h O3 standard in GB3095-2012); H denotes O3,max ≥ 200 µg/m3 (1 h O3
standard in GB3095-2012).

As the Kruskal–Wallis test does not assume normality in the data, it is much less
sensitive to outliers than the one-way Analysis of Variance (ANOVA). The Kruskal–Wallis
test is used to determine the statistically significant difference in PM2.5 and its chemical
components under the different photochemical levels in this study.

2.3. Estimating the Photochemical Secondary Aerosols

In order to understand the formation of secondary aerosol in PM2.5, the secondary
aerosol in PM2.5 is estimated occurring with the intense levels of photochemical activity.
CO and O3 are used as indicating species for primary sources of motor vehicle emissions
and secondary sources due to photochemical activity levels. When the level of photochem-
ical activity is L, the observed PM2.5 mass concentration is mainly from primary source
emissions (including sea salt). Using the hourly ratio of PM2.5/CO to represent the primary
aerosol emission, the proportion of secondary components in PM2.5 is greater when the
ratio of PM2.5/CO is greater and has been already clarified this hypothesis in [20,21]. The
regression analysis between PM2.5 and CO is conducted and the correlation coefficients
are 0.70, 0.55, 0.62, and 0.63 under the photochemical activity level of L, M, LH and H,
respectively. This illustrates that photochemical activities are low when O3,max is less than
100 µg/m3. The ratio of PM2.5/CO is a useful tracer for estimating primary aerosol when
photochemical activity is high [20].

When the photochemical activity levels are M, LH, and H, the photochemical activity
is relatively high, and the primary aerosol in PM2.5 is estimated by multiplying the ratio of
PM2.5/CO by the CO. In this study, the primary aerosols are estimated using the hourly
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CO mass concentration under the different photochemical activity levels of M, LH and H.
The equations used for calculation of the primary aerosol are as follows [16,25].

(PM 2.5)P,M,t= COM,t × (PM 2.5 /CO)P,L (1)

(PM 2.5)P,LH,t= COLH,t × (PM 2.5 /CO)P,L (2)

(PM 2.5)P,H,t= COH,t × (PM 2.5 /CO)P,L (3)

In the aforementioned formula, P denotes primary pollutant; t denotes any hour of the
day; L, M, LH, and H denots the different Photochemical activity levels; and (PM2.5/CO)p,L
is the 25th percentile (0.014) of the hourly ratio for PM2.5/CO at L photochemical activity.

The estimated secondary aerosol mass concentration is calculated by the observed
PM2.5 mass concentration deducting the primary PM2.5 mass concentration, according to
the following equations:

(PM 2.5)sec,M,t = (PM2.5)obs,M,t − (PM 2.5)P,M,t (4)

(PM 2.5)sec,LH,t = (PM2.5)obs,LH,t − (PM 2.5)P,LH,t (5)

(PM 2.5)sec,H,t = (PM2.5)obs,H,t − (PM 2.5)P,H,t (6)

In the aforementioned formula, sec denotes secondary pollutant; obs denotes ob-
served value; t denotes any hour of the day; and L, M, LH, and H denote the different
photochemical activity levels.

The secondary organic aerosol (SOA) has been an important component of PM2.5 [26–30]
and can be formed from the photochemical oxidation reactions of VOCs. In this study, the
primary organic aerosol (POA) and secondary organic aerosol (SOA) are estimated by the
previously reported ratios, POA/POC (=1.2 µg/µgC) and SOA/SOC (=2.2 µg/µgC) [31,32].
The mass concentrations of POC and SOC are estimated using the method of the minimal
ratio of OC/EC [33]:

(POC)t= (EC)t × (OC/EC)pri,min (7)

(SOC)t= (OC)obs,t − (POC)t (8)

In the aforementioned formula, OC and EC are the measured hourly mass concen-
trations; t denotes any hour of the day; and (OC/EC)pri,min is the minimum of OC/EC in
primary emissions. At urban locations and in this study, the minimum OC/EC observed
in ambient air is the absolute minimum of all the data in the time series and is used to
represent (OC/EC)pri.

3. Results and Discussion
3.1. Mass Concentration of PM2.5 and O3

The mass concentrations of PM2.5 and O3 are shown in Figure 1 during the summer-
time 2020 in Tianjin, China. As shown in Figure 1a, the PM2.5 daily mean mass concentration
was from 10.8 to 81.4 µg/m3, and the quarterly mean mass concentration 37.7± 19.8 µg/m3.
Compared to the NAAQS of GB3095-2012, the PM2.5 daily mass concentration exceeded
the class I (35 µg/m3) and class II (75 µg/m3) in 46 days and 1 day, respectively, accounting
for 50% and 1% of the 92 days during the summertime 2020 in Tianjin, China. Compared to
air quality guidelines (15 µg/m3) of the World Health Organization (WHO), during the
observation period, the PM2.5 daily concentration exceeded 90 days and accounted for
97.8%. As shown in Figure 1b, the O3 seasonal mean concentration was 37.7 ± 19.8 µg/m3.
The O3 daily 8 h average maximum (O3,8h max) mass concentration was between 58.6 and
274.3 µg/m3 during the summertime. According to the class I of O3,8h max (100 µg/m3)
and the class II of O3,8h max (160 µg/m3), the O3,8h max mass concentration, respectively,
exceeded 46 and 34 days, accounting for 50% and 37% of the 92 days in the summertime
2020 in Tianjin, China. These indicated that the combined pollution of PM2.5 and O3 has
been shown during the observation period in Tianjin, China.
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Figure 1. The mass concentrations of PM2.5 and O3 during summertime in Tianjin, China. (a) denotes
PM2.5 mass concentration. (b) denotes O3 mass concentration.

The COVID-19 pandemic unexpectedly broke out at the end of 2019. Due to the
highly contagious, widespread, and risky nature of this disease, pandemic prevention and
control measures were adopted in China, such as the public staying at home and some
industries shutting down, which had an impact on the structure of pollution sources and
air quality. Therefore, it must be clarified that the results of this study were based on
exceptional circumstances.

In order to access the significance differences in the PM2.5 under the different photo-
chemical activity levels of L, M, LH and H. The Kruskal–Wallis test was performed and
the p value was equal to 0.000 and was significantly smaller than 0.05, which proved the
significant difference in the PM2.5 under the different photochemical activity levels of L, M,
LH and H. In order to define the quantify of PM2.5 levels, under the different photochemical
activities indexed by O3, the PM2.5 and O3 mass concentrations are shown in Figure 2.
The PM2.5 mass concentration varied from 6 to 64 µg/m3, from 5 to 102 µg/m3, from 5 to
110 µg/m3, and from 10 to 130 µg/m3, and the mean values were 29.8 ± 17.4, 32.9 ± 20.4,
39.4 ± 19.1 and 42.2 ± 18.9 µg/m3 under the photochemical activity levels of L, M, LH
and H, respectively, which indicated that the PM2.5 mass concentration increased with the
strength of the photochemical activity as ascertained by O3 levels, and serious pollution of
PM2.5 typically occurred in association with active photochemical processes or reactions.
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represent the median values.

3.2. Diurnal Variations in PM2.5

Based on the classification of photochemical activity, the diurnal profiles of hourly
mean concentrations of PM2.5 and O3 are shown in Figure 3. The mass concentrations of
PM2.5 and O3 presented a distinct diurnal pattern. The diurnal profile of PM2.5 showed
a bimodal distribution. In contrast, the diurnal profile of O3 showed a unimodal distri-
bution with peak value in the afternoon. When the photochemical activity level was L,
both PM2.5 and O3 mass concentrations were relatively low and with small fluctuation
amplitude, the maximum mass concentrations were 36.6 µg/m3 and 74.4 µg/m3 occurring
at around 4:00 and 15:00, respectively. When the photochemical activity level was M, the
mass concentrations of O3 were higher but the fluctuation amplitude was still low and
the maximum value (121.5 µg/m3) was observed at 14:00. The fluctuation amplitude of
PM2.5 was very significant. The maximum value (43.0 µg/m3) was observed at 7:00 and
the minimum value (20.6 µg/m3) was observed at 18:00. When the photochemical activity
level was LH, the mass concentrations of PM2.5 and O3 were obviously increasing during
the daytime and the maximum values were 46.6 µg/m3 and 171.0 µg/m3 and observed
at 7:00 and 16:00, respectively. When the photochemical activity level was H, the mass
concentration of O3 further increased with a very significant fluctuation amplitude in the
daytime and the maximum (211.0 µg/m3) was observed at 16:00. The PM2.5 mass concen-
trations also increased with small fluctuation amplitude in the daytime. The maximum
mass concentration of PM2.5 increased to 49.3 µg/m3 and lagged until 9:00. In summary,
under the different levels of photochemical activity, PM2.5 showed similar diurnal variation
profile affected by the morning rush hours, the maximum appeared at around 5:00–9:00,
after which the PM2.5 mass concentration gradually decreased and its minimum mass
concentration occurred around 16:00–18:00 and then gradually increased affected by the
night rush hours until 23:00. The mass concentration of O3 showed single peak pattern
with lower mass concentration at night and rising rapidly around 7:00 accompanied by
the enhancement of solar radiation, reaching the maximum values around 14:00–16:00 and
then gradually decreasing until 23:00.
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Figure 3. Diurnal variations in mean hourly concentrations of PM2.5 and O3 under different photo-
chemical activities during the summertime 2020 in Tianjin, China.

3.3. The Effect of Meteorological Parameters in PM2.5

Under the different photochemical activity levels, the bivariate polar plot (Figure 4)
showed the PM2.5 as a function of wind speed and direction, which was used to identify
sources responsible for the significant concentrations [32]. Under the L photochemical activ-
ity level, the mass concentrations of PM2.5 were high and associated with low wind speeds
(<1.5 m/s) indicating the dominance of local pollutants. Under the photochemical activity
levels of M, LH and H, the high mass concentrations of PM2.5 were associated with low
wind speeds (<1.5 m/s) and high wind speeds (>1.5 m/s) attributed from locally produced
and long-range-transported pollutants. The high concentrations of PM2.5 were observed in
multiple directions, except for the north, when the wind speeds were low, indicating large
heterogeneity in the emission sources. Additionally, the high mass concentrations of PM2.5
with high wind speeds over the photochemical activities of LH and H was associated with
the breeze from the southwest and northeast directions.
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Figure 4. Bivariate polar plot of PM2.5 mass concentration (µg/m3) as a function of wind speed
and direction under the different photochemical activity levels. The center of each plot represents a
wind speed of zero, which increases radially outward. The concentration of PM2.5 is shown by the
color scale. NWR represents non-parametric wind regression statistical approach. (a–d) denotes the
different photochemical activity levels of L, M, LH and H.

The other meteorological parameters, including temperature and relative humidity
(RH), were also shown in Figure 5. Under the different photochemical activity levels of
L, M, LH and H, the diurnal patterns of ambient temperature were typical unimodal and
ranged from 23.0 to 27.2 ◦C, 24.6 to 29.3 ◦C, 24.0 to 32.7 ◦C, and 24.7 to 35.3 ◦C, respectively.
The diurnal patterns of RH anti-correlated with temperature. RH ranged from 60.7% to
77.0%, 51.7% to 68.2%, 39.4% to 70.0%, and 31.1% to 64.8%, respectively. This indicated
that the photochemical activity level increased along with temperature and conversely
decreased with the increase in RH.
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Figure 5. Diurnal variations in ambient temperature and relative humidity under the different
photochemical activity levels.

3.4. Secondary Aerosols Estimation

Equations (1)–(3) were used to estimate the primary mass concentrations of PM2.5
for the three O3,max intervals of M, LH, and H. As shown in Figure 6, at the different
photochemical activity levels, the diurnal patterns of estimated primary PM2.5 mass con-
centration were similar with a small fluctuation amplitude. The maximum values appeared
at about 8:00 corresponding to the morning rush hours and the minimum values appeared
around 15:00–16:00 owing to the joint effect of increasing of the mixing layer height (MLH)
and atmospheric temperature. The primary PM2.5 concentrations then increased after
18:00, corresponding to the night rush hours, and then they were relatively steady during
the night. Under the photochemical activity level of M, the ratio of estimated primary
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concentration to the observed mass concentration of PM2.5 (PM2.5,pri/PM2.5,obs) was about
0.30 from 0:00 to 5:00, then it gradually increased and reached a secondary peak value (0.38)
at 11:00, lagging the morning rush hours by 2–3 h, then after a slight decrease it rapidly
increased and reached the primary peak value (0.49) corresponding to the night rush hours.
This indicated that diurnal variation in the primary PM2.5 mass concentration was mainly
affected by traffic emission sources under the photochemical activity level M. Under the
photochemical activity levels of LH and H, the ratio of PM2.5,pri/PM2.5,obs presented a
small variation (between 0.29 and 0.33), with no peaks related to the morning or night rush
hours. It could be seen that the proportion trend under the M photochemical level was
significantly different from under the photochemical levels of LH and H. Analyzing the
reasons for this, it was possible that the secondary aerosol concentrations were lower at the
photochemical level of M than that at the photochemical levels of LH and H (see Figure 7).
Furthermore, the primary aerosol concentrations also varied at the different photochemical
levels. The joint effect led to the different proportion trend.
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Figure 6. Diurnal variations in estimated primary PM2.5 mass concentrations and ratio of primary to
observed PM2.5 mass concentrations at different photochemical activity levels in the summertime
2020 in Tianjin, China.

The secondary PM2.5 concentrations were estimated using Equations (4)–(6) by sub-
tracting the estimated primary PM2.5 from the observed PM2.5, as shown in Figure 7. At
the M, LH and H photochemical activity levels, the daily variation trend of the generated
secondary aerosols was nearly similar and between 26.0 and 32.2 µg·m−3 from 0:00 to 5:00,
after which the mass concentration of the secondary aerosol significantly decreased at the
M photochemical activity and reached the lowest value (10.6 µg/m3) at 18:00, after which
there was an increase. Under the LH photochemical activity, the secondary aerosol reached
the first peak (33.4 µg/m3) at 7:00, then gradually decreased and reached the lowest value
(23.2 µg/m3) at 17:00, and no significant variations were registered after that. Under the
H photochemical activity level, the secondary aerosol reached the first peak (34.7 µg/m3)
at 9:00, then gradually decreased and reached the lowest value (25.9 µg/m3) at 17:00, and
after that then slightly increased and reached the second peak value (32.0 µg/m3). This
showed that the mass concentration of secondary PM2.5 aerosol increased with the increase
in photochemical activity. The contribution ratio of the secondary PM2.5 to the observed
PM2.5 was more than 58.6% at any hour under the photochemical activities of LH and H.
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Figure 7. Diurnal variations in estimated secondary PM2.5 mass concentrations and ratio of secondary
to observed PM2.5 mass concentrations at different photochemical activity levels in the summertime
2020 in Tianjin, China.

Because the national standards used by different countries are different, there were cer-
tain differences in the specific values selected when defining the photochemical activity level
of O3, so there will be differences in the estimated primary aerosol and secondary aerosol.
Therefore, there are certain limitations when comparing and analyzing different literatures.

The diurnal patterns of primary organic aerosol (POA) and secondary organic aerosol
(SOA) are shown in Figure 8. This indicates that the daily variation in the POA mass
concentration was from 0.76 to 1.42 µg/m3 under different photochemical activity levels,
with the maximum value occurring at around 7:00 according to the traffic morning rush
hour, implying that large amounts of hydrocarbons were emitted from vehicles and were
beneficial to the formation of POA. The first and second peaks of the SOA mass concen-
tration appeared at about 11:00–13:00 and 19:00–21:00, lagging about 4 h after morning
and night rush hours, respectively. Since the secondary organic aerosol was formed from
gaseous organic precursors, SOA was thus an important source of PM2.5 in Tianjin during
this measurement period. This phenomenon was observed in the late summer 2002 in
Pittsburgh [29] and in Mexico City Metropolitan Area in 2006 [33].

3.5. PM2.5 Chemical Characterization

The main chemical components, including water-soluble inorganic ions, OC, and
EC in PM2.5, are shown in Table 1 under the different photochemical activity levels. The
total mass concentration of the detected 10 components were 21.4 ± 12.4, 22.5 ± 15.9,
27.6 ± 14.6 and 26.4 ± 13.2 µg/m3, respectively accounted for 73.5 ± 14.9%, 70.3 ± 24.9%,
72.0± 21.9%, and 65.8± 21.2% in PM2.5 under the photochemical activity levels of L, M, LH,
and H. The missed mass could be mainly non-soluble crustal materials and metal species.
The statistical analysis of main chemical components was performed by the Kruskal–Wallis
test and the p values were smaller than 0.05, indicating the significant difference under the
different photochemical activity levels.
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Figure 8. Diurnal variations in primary organic aerosol (POA) and secondary organic aerosol (SOA)
at different photochemical activity levels in the summertime 2020 in Tianjin, China.

Table 1. The chemical component concentrations in PM2.5 under the different photochemical activity
levels (mean ± SD, µg/m3).

Levels OC EC Ca2+ K+ NH4
+ Na+ Mg2+ Cl− NO3− SO4

2− Sum

L 2.6 ± 0.8 0.7 ± 0.4 0.24 ± 0.34 0.49 ± 0.80 5.09 ± 3.65 0.51 ± 0.15 0.10 ± 0.07 0.44 ± 0.39 6.63 ± 5.26 4.93 ± 3.29 21.4 ± 12.4
M 3.7 ± 1.7 0.7 ± 0.5 0.32 ± 0.56 0.59 ± 0.48 5.26 ± 4.10 0.68 ± 0.39 0.13 ± 0.07 0.44 ± 0.47 6.81 ± 7.56 5.01 ± 3.35 22.5 ± 15.9
LH 4.0 ± 1.5 0.8 ± 0.5 0.47 ± 0.55 0.89 ± 0.53 6.42 ± 3.74 0.87 ± 0.39 0.18 ± 0.08 0.51 ± 0.49 7.68 ± 6.90 6.40 ± 3.54 27.6 ± 14.6
H 4.3 ± 1.6 0.9 ± 0.5 0.57 ± 0.57 0.77 ± 0.54 5.78 ± 3.61 0.76 ± 0.58 0.17 ± 0.08 0.55 ± 0.69 6.59 ± 6.29 6.36 ± 3.74 26.4 ± 13.2

The diurnal profiles of the measured PM2.5 and chemical components reconstructed
PM2.5 mass concentrations correlated well in Figure 9a showed that the diurnal variations
in chemical components were steady, except for slightly elevated OC in the morning which
might be resulted from vehicle emissions according to the morning rush hour. The diurnal
variation in chemical components in Figure 9b was similar to Figure 9a. However, the
mass concentrations of components were slightly enhanced. Figure 9c shows that the mass
concentrations of chemical components were even higher and peak value of OC was shifted
to 11:00, which was closer to the occurrence time of SOC by higher O3,max (see Figure 7).
For the photochemical activity of H, Figure 9d showed that the peak value of the sum over
aerosol chemical components occurred at 11:00; however, the peak value of OC and SO4

2−

reaches the summit at 13:00. This was due to the decrease in NO3
− after 11:00 which might

result from evaporation loss of NO3
− at high ambient temperature [34–37]. The sum of

aerosol chemical components was apparently enriched under the photochemical activity
level H as shown in Figure 9d. This provided the evidence of secondary aerosol formation
under high photochemical activity in Tianjin. The peak values of OC, SO4

2−, and NO3
−

were 5.0, 11.0, and 7.3 µg/m3, respectively, under the photochemical activity level of H,
which was higher than that of 3.1, 9.4, and 5.6 µg/m3, respectively, under the photochemical
activity level L. In summary, under the different photochemical activities, the peak value
of PM2.5 was accompanied with the increase in the sum of mass concentrations of SO4

2−,
NO3

− and NH4
+ (SNA) and OC. The hourly mass concentration maximum value of SNA

in PM2.5 were 21.7, 24.9, 26.0 and 24.0 µg/m3 under the photochemical activity levels of
L, M, LH, and H, respectively. This indicated that the formation of secondary aerosols
contributed significantly to the increase in PM2.5 mass. Furthermore, as shown in Figure 10,
under the photochemical activities of L, M, LH, and H, SO4

2− and NO3
− were nearly



Int. J. Environ. Res. Public Health 2022, 19, 7956 12 of 18

neutralized by NH4
+, with a regression slope of 0.71, 0.77, 0.77, and 0.75 between 2[SO4

2−]
+ [NO3

−] and [NH4
+], respectively, where [NH4

+], [SO4
2−], [NO3

−] refers to the molar
concentration (µmol/m3), suggesting that ammonia was abundant and that the formation
of particulate nitrate and sulfate was under an ammonia-rich condition in this measurement
period. The result was observed at a rural site in eastern Yangtze River Delta of China [38].
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Figure 9. Diurnal patterns of PM2.5 and its chemical components concentrations under the different
photochemical activity levels, in summertime 2020 in Tianjin, China. (a–d) denotes the different
photochemical activity levels of L, M, LH and H.
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Figure 10. Scatter plots of 2[SO4
2−] + [NO3

−] vs. [NH4
+] (µmol/m3) under the different photochemi-

cal activity levels in the summertime 2020 in Tianjin, China. (a–d) denotes the different photochemical
activity levels of L, M, LH and H.

3.6. Insights into the Formation of SO4
2− and NO3

−

In order to investigate the formation mechanism of SO4
2−, the diurnal profiles of

SO4
2− and SO2 mass concentration are shown in Figure 11 under the photochemical

activity levels M, LH and H. The mean mass concentration of SO4
2− showed a rapid

increase from 5.2 µg/m3 to 6.3 µg/m3 between 6:00 and 11:00. SO2 increased sharply
from 6:00 and peaked at 10:00. The SO2 peak was thus 1 h earlier than the SO4

2− peak,
suggesting rapid formation of secondary sulfate, from the increased concentrations of SO2
probably due to traffic emissions in the morning rush hours, coupled with the propitious
photochemical conditions. It suggested that active oxidation of SO2 in the gas phase was
mainly responsible for the observed morning production of sulfate. The oxidation of SO2 to
sulfuric acid (H2SO4) could occur both in the aqueous phase and in the gas phase [39–41].
Recent studies have shown that the gas-phase oxidation of SO2 to H2SO4 had become more
and more important [42]. In this pathway, SO2 was first oxidized by OH to sulfur trioxide
(SO3) and then to H2SO4 [42,43].
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Figure 11. Diurnal variation in SO4
2− and SO2 concentrations averaged under the photochemical

activity levels M, LH, and H in the summertime 2020 in Tianjin, China.
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In order to investigate the different formation mechanisms of nitrate, the daytime was
divided into four stages, as shown in Figure 12: Stage I, 0:00–5:00; Stage II, 5:00–9:00; Stage
III, 9:00–18:00; Stage IV, 18:00–23:00. During Stage I, the mass concentration of NO2 kept on
slowly increasing while the temperature was relatively low and RH was relatively high.
Moreover, the temperature and RH stayed relatively constant during this stage, as could
be seen in Figure 5, implying that the thermal equilibrium entered a steadier state. Some
previous studies have shown that nitrate radical (NO3) and/or N2O5 were converted to
nitric acid (HNO3) by hydrolysis under high RH [44,45]. During Stage II, the mass con-
centration of NO2 rapidly increased and peaked at about 7:00, due to the traffic emissions
and relatively low mixed layer height (MLH). At the same time, the mass concentration
of O3 began to rise due to increasing solar radiation and more active photochemical reac-
tions [46,47]. These observations together indicated that elevated nitrate concentration was
primarily due to gas-phase photochemical oxidation. The result was consistent with the
observation in Hong Kong [48]. During Stage III, the mass concentrations of NO3

− sharply
decreased, probably because the NO3 radical was easily destroyed by photolysis under the
strong photochemical activity of this period in the day. Furthermore, the decrease in the
nitrate concentration could also be attributed to the evaporation of ammonium nitrate due
to the increasing temperature and the enhancement of the atmospheric diffusion capacity
as the MLH ascends [49]. During Stage IV, the temperature decreased while RH gradually
increased (Figure 5). The mass concentration of O3 gradually decreased (Figure 3) and
remained relatively high during the period. The mass concentration of NO2 rose after
sunset due to traffic emissions during the evening rush hours coupled with lower MLH.
Due to the presence of abundant NO2 and O3, as well as the absence of sunlight, the
conditions were created for the concentration of NO3 radical to increase gradually [50],
leading to a steady increase in NO3

− concentration in this period. This observation was
consistent with the measurement in August 2011 in the urban area of Shanghai [51].
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4. Conclusions

Based on the atmospheric environment monitoring data, the study has performed
the chemical characterization of PM2.5 and the estimation of the related secondary aerosol
during the summertime 2020 in Tianjin, China. Under the photochemical activities of L, M,
LH, and H, the PM2.5 mass concentration increased with the strength of the photochemical
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activity as ascertained by O3 levels and the diurnal patterns were similar to the maximum
and minimum appeared at around 7:00–9:00 and 16:00, respectively. The diurnal patterns
of estimated secondary aerosol increased with the strength increase in photochemical
activity. In particular, the ratio of estimated secondary aerosol to the observed PM2.5 was
more than 58.6% at any hour under the photochemical activity of LH and H, indicating
secondary aerosols became the key issue of PM2.5 pollution in Tianjin. The chemical com-
position, including water-soluble ions, OC and EC, respectively accounted for 73.5 ± 14.9%,
70.3 ± 24.9%, 72.0 ± 21.9%, and 65.8 ± 21.2% of the observed PM2.5 mass. In particular, the
SNA significantly contributed to the increase in PM2.5 under an ammonia-rich condition
in this observation period. The photochemical oxidation of SO2 to H2SO4 was enhanced
by the strong atmospheric photochemical reactions. Nitrate was mainly produced by the
photochemical oxidation reactions in the daytime, but high temperature and low RH shifted
the gas-to-particle partitioning of NH4NO3 to evaporation, thus led to an extremely low
particulate nitrate concentration in the afternoon.
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