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The disruption of brain networks is characteristic of neurodegenerative dementias. However, it is controversial whether changes in

connectivity reflect only the functional anatomy of disease, with selective vulnerability of brain networks, or the specific neuro-

physiological consequences of different neuropathologies within brain networks. We proposed that the oscillatory dynamics of

cortical circuits reflect the tuning of local neural interactions, such that different pathologies are selective in their impact on the

frequency spectrum of oscillations, whereas clinical syndromes reflect the anatomical distribution of pathology and physiological

change. To test this hypothesis, we used magnetoencephalography from five patient groups, representing dissociated pathological

subtypes and distributions across frontal, parietal and temporal lobes: amnestic Alzheimer’s disease, posterior cortical atrophy, and

three syndromes associated with frontotemporal lobar degeneration. We measured effective connectivity with graph theory-based

measures of local efficiency, using partial directed coherence between sensors. As expected, each disease caused large-scale changes

of neurophysiological brain networks, with reductions in local efficiency compared to controls. Critically however, the frequency

range of altered connectivity was consistent across clinical syndromes that shared a likely underlying pathology, whilst the local-

ization of changes differed between clinical syndromes. Multivariate pattern analysis of the frequency-specific topographies of local

efficiency separated the disorders from each other and from controls (accuracy 62% to 100%, according to the groups’ differences

in likely pathology and clinical syndrome). The data indicate that magnetoencephalography has the potential to reveal specific

changes in neurophysiology resulting from neurodegenerative disease. Our findings confirm that while clinical syndromes have

characteristic anatomical patterns of abnormal connectivity that may be identified with other methods like structural brain

imaging, the different mechanisms of neurodegeneration also cause characteristic spectral signatures of physiological coupling

that are not accessible with structural imaging nor confounded by the neurovascular signalling of functional MRI. We suggest

that these spectral characteristics of altered connectivity are the result of differential disruption of neuronal microstructure and

synaptic physiology by Alzheimer’s disease versus frontotemporal lobar degeneration.
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Introduction
The impact of neurodegeneration can be understood in

terms of its effect on the structure and function of brain

networks. For example, there are structural anatomical fin-

gerprints for Alzheimer’s disease and frontotemporal de-

mentia, and disease-specific changes in their functional

connectivity with ‘epicentres’ of disease (Seeley et al.,

2009; Zhou et al., 2010; Crossley et al., 2014).

Moreover, the distribution of abnormal connectivity mir-

rors the anatomical and functional networks in health, sug-

gesting selective vulnerability of brain networks to

neuropathology (Pievani et al., 2011).

The evidence for network-specific changes in major

human dementia syndromes comes largely from functional

MRI. However, MRI indirectly examines the physiological

consequences of neuropathology. For example, in

Alzheimer’s disease misfolding and aggregation of amyl-

oid-b and microtubule-associated protein tau (MAPT),

occur in a cascade that ultimately impacts on synaptic func-

tion and cell survival (Spires-Jones and Hyman, 2014).

Functional MRI can detect the late consequences of this

cascade on connectivity (Bullmore and Sporns, 2009;

Fornito et al., 2015), but it is limited by slow and indirect

neurovascular signalling (Hillman, 2014; Tsvetanov et al.,

2015). In contrast, magnetoencephalography (MEG) and

EEG offer a temporal resolution that can resolve changes

in neural dynamics that are indistinguishable by functional

MRI, and that are independent of effects of age or medi-

cation on the neurovascular response (de Haan et al.,

2012a; Hughes et al., 2013; Tsvetanov et al., 2015).

Clinical research applications of EEG have reported fea-

tures that distinguish Alzheimer’s disease from controls

(Triggiani et al., 2017); predict the conversion from mild

cognitive impairment to dementia (Poil et al., 2013); and

provide pre-symptomatic markers of autosomal dominant

disease (Quiroz et al., 2011). In contrast, clinical EEGs of

frontotemporal dementia are often regarded as normal, al-

though abnormalities at the group level have been shown

(Chan et al., 2004). Beyond clinical applications, the spec-

tral and spatial resolution of MEG and EEG enables one to

test key hypotheses of human neurodegeneration; identify-

ing the reorganization of networks in dementia; and pro-

viding potential biomarkers for diagnosis, prognosis or

drug response (Hughes and Rowe, 2013; Hughes et al.,

2013, 2015; Maestu et al., 2015).

Here, we exploit the spatiotemporal precision of MEG to

build on preclinical models of dementia, and determine the

specificity of pathophysiological signatures of Alzheimer’s

disease pathology versus frontotemporal lobar degeneration

(FTLD). For example, transgenic rodent models of

Alzheimer’s disease have indicated specific alterations in

fast network dynamics, resulting in loss of gamma power

(30+ Hz) in cortical and hippocampal local networks

(Kurudenkandy et al., 2014). Analogous changes in net-

work dynamics can be identified in humans, noting that

the distribution of disease can vary between early medial-

temporal lobe changes in typical Alzheimer’s disease, versus

an occipito-parietal focus in the posterior cortical atrophy

(PCA) variant (Selkoe, 2002; Crutch et al., 2012; Pena-

Ortega et al., 2012). The behavioural variant of frontotem-

poral dementia (bvFTD), on the other hand, is often asso-

ciated with tauopathy in the absence of amyloid-b, for

which electrophysiological recordings in rodent tauopathy

models indicate power reductions in the lower frequency

bands; alpha (8–13 Hz) and beta (14–30 Hz) (Koss et al.,

2016). FTLD also encompasses the non-fluent agrammatic

variant of primary progressive aphasia (navPPA) and pro-

gressive supranuclear palsy (PSP, Richardson’s syndrome),

which are both most commonly caused by primary tauo-

pathy but which differ in the severity and location of atro-

phy (Ghosh et al., 2012; Mandelli et al., 2016).

Our overarching hypothesis was that different neuro-

pathologies have characteristic physiological signatures,

which reflect both the anatomical distribution of pathology

and their impact on the oscillatory dynamics of cortical

circuits. We predicted that typical Alzheimer’s disease and

PCA would differ in the localization of their functional

effects, but that the changes in oscillatory dynamics

within affected regions would be similar. In contrast, we

predicted that three subtypes of FTLD would have different

spectral and spatial properties compared to Alzheimer’s dis-

ease, while their spectral properties may be similar to each

other albeit in different spatial distributions and with dis-

tinct clinical phenotypes. The significance of MEG-based

differentiation of these five syndromes is not primarily for

utility as a diagnostic biomarker, in competition with other

biomarkers. Rather, it lies in establishing their pathophysio-

logical signatures in humans in vivo, extending the network

paradigm of neurodegeneration to the spectral domain, and

validating translational models of disease.

Our principle measure of network function was local ef-

ficiency, which indicates a network’s local information

transfer and resilience (Bullmore and Sporns, 2009; Stam,

2014). This measure is therefore ideally suited to examine

the effect of degenerative syndromes associated with re-

gional variations in pathology. Note that locality here

refers to topological locality, and not Euclidean locality

or physical proximity. The reorganization of brain net-

works can also be measured in terms of global properties
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(e.g. small worldness), or the changes in the properties of

hub regions that are critical for effective long-range inte-

gration (Crossley et al., 2014). However, we focus on local

efficiency as although neurodegeneration is diffuse, it is not

uniformly distributed: both frontotemporal dementia and

Alzheimer’s disease variants like PCA manifest clear re-

gional specificity, in keeping with their nomenclature.

Moreover, a potential advantage of the neurophysiological

approach is greater sensitivity to network reorganization

before extensive cell death leads to atrophy (Knight and

Verkhratsky, 2010; Palop and Mucke, 2010; Hughes

et al., 2013).

Materials and methods

Participants

Patients were enrolled from tertiary clinics at Cambridge
University Hospitals NHS Trust. Patients with Alzheimer’s dis-
ease included 13 with typical Alzheimer’s disease (McKhann
et al., 2011) and 11 with PCA (Crutch et al., 2012). Patients
with clinical syndromes associated with FTLD comprised 13
patients with bvFTD (Rascovsky et al., 2011), all with abnor-
mal structural MRI and evidence of progression; 15 with PSP
(Litvan et al., 1996) and 11 with navPPA (Gorno-Tempini
et al., 2011). The PSP cases meet the definition for probable
or definite PSP-Richardson’s syndrome under the revised diag-
nostic criteria (Höglinger et al., 2017). Fifteen healthy adult
participants were recruited (11 males; age 59–85 years) with
no history of neurological or psychiatric illness. The study was
approved by the local Research Ethics Committee and written
informed consent was obtained in accordance with the stand-
ards of the Declaration of Helsinki. Patients undertook the
Mini-Mental State Examination (MMSE) and the revised
Addenbrooke’s cognitive examination (ACE-R). The clinical
and cognitive features of the patients are summarized in
Table 1.

Experimental design and data
acquisition

Figure 1 illustrates the flow of the processes involved in the
data acquisition, preprocessing and analysis. All participants
rested with their eyes closed while MEG was continuously re-
corded at 1 kHz sampling rate from 204 planar gradiometers
using a Vectorview system (Elekta Neuromag) within a mag-
netically shielded room. The first 30–40 s of data were dis-
carded to allow the participant to settle, resulting in 4 min of
data per participant. Horizontal and vertical electrooculograms
(EOG) were recorded and the participants’ head position was
tracked with five head position indicator coils, localized in 3D
together with �100 head points for anatomical registration
using a 3D digitizer (Fastrak Polhemus, Inc.). The removal
of environmental artefacts and head position alignment used
the temporal extension of Signal Space Separation (tSSS) with
Elekta-Neuromag MaxFilter v.2.2. Oculomotor artefacts were
removed by independent component analysis, followed by pro-
jection out of the data of those independent components that
correlated highly with either of the two EOG signals (typically

1–3 independent components per participant) (Gonzalez-
Moreno et al., 2014).

To examine the effect of neurodegeneration on network con-
nectivity, we applied multivariate autoregressive modelling
(MVAR) to the root mean square of the two planar gradiom-
eters at each of the 102 locations around the head. One ad-
vantage of MVAR is that it ignores zero-lag correlations,
which include those arising from volume conduction of a
single brain source to multiple sensors. This reduces the need
for source reconstruction of the MEG data; an inverse problem
that cannot be solved without additional assumptions.

To reduce dimensionality and zero-lag co-linearity, and in-
crease Gaussianity, we performed principal components ana-
lysis on the root mean square data and retained the first 60
principal components (which accounted for over 99% of the
total variance). The MVAR was fitted to the lagged covariance
matrices using the Vieira-Morf method. For MVAR modelling,
an important step is to specify the model order, p (i.e. the
number of past samples needed to predict the current
sample). To find the optimal balance between model fit and
complexity, we used the Bayesian information criterion, which
resulted in an optimal model order of p = 8 for all groups. To
test whether the data were stationary we used the stability
index: data are stationary if and only if stability index50.
This confirmed that the MVAR modelling did not significantly
deviate from stationarity in any participant.

After projecting the fitted MVAR parameters back into sensor
space, we estimated partial directed coherence (PDC) (Baccalá
and Sameshima, 2001; Schelter et al., 2006; Williams et al.,
2014) between all 102 sensor locations. PDC is a frequency-
specific measure of connectivity that preserves the directionality
of interactions, and has been shown to provide good reliability
for group studies (Colclough et al., 2016). PDC was estimated
every 0.1 Hz from 1 to 80 Hz to create a 102 � 102 matrix for
each of 800 frequencies, using the significance for which the P-
values threshold was then binarized by taking the top 15% of
significant connections for each frequency bin (i.e. a threshold of
85%, based on simulations below). The binary connectivity
matrices were then used to estimate local efficiency for each
node (location) and frequency.

Simulations

To validate the ability of MVAR modelling to detect local
network difference in functional segregation, we created 20
source-level networks with low mean local efficiency and 20
with high mean local efficiency. Each of the networks had six
sources that differed in which six of the possible 30 connec-
tions existed. The sources corresponded to dipoles positioned
on the cortical surface of a single-subject brain that was
warped to MNI space. The dipoles were those closest to
points in left and right prefrontal cortex (MNI coordinates
of [�60 +10 +20]), left and right parietal cortex (MNI coord-
inates of [�50 � 70 +30]) and left and right ventral temporal
cortex (MNI coordinates of [�30 � 70 0]). Multivariate time
series of samples, with a sampling frequency of 1 kHz, were
generated from an MVAR process with a zero-mean, unit vari-
ance independent Gaussian innovation for each source. These
time series were then projected through a forward model that
was based on a deformed sphere approximation to the indi-
vidual’s inner skull surface, which had been co-registered with
the MEG sensors from a real recording from the Elekta
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VectorView system. We added independent Gaussian noise to
each of the simulated gradiometer time series, with a variable
signal-to-noise ratio (SNR) based on the standard deviation
(SD) of signal to noise, with SNR values of [0.1, 1, 3, 10,
Inf] (where Inf means no added sensor noise). We then fitted
the sensor-level data with an MVAR model, and generated
PDC matrices to assess whether sensor-level networks pre-
served differences in mean local efficiency of the underlying
source-level networks. These assessments were performed
with PDC matrices binarized with thresholds of 85%, 95%,
and 99%, respectively.

Statistical analysis

To correct for multiple tests across sensors and frequencies in the
MEG analysis, we projected the 102 sensor locations onto a 2D
plane, and interpolated their local efficiency values onto a
64 � 64 grid using SPM8 (http://www.fil.ion.ucl.ac.uk/spm), re-
sulting in a 3D scalp � frequency image (64 � 64 � 800), which
was smoothed with a Gaussian kernel (8 mm � 8 mm � 8 Hz).
Pairwise differences between groups were then assessed with
Statistical non-Parametric Mapping (SnPM, http://warwick.ac.
uk/snpm), which used 5000 permutations to generate pseudo-T
distributions that are robust to small sample sizes and do not
assume Gaussian error. A cluster-based extension was imple-
mented to detect statistically significant clusters on t-maps
(Hayasaka and Nichols, 2004). The cluster value was set to con-
form to the 95th percentile of the data-driven distribution, and
significant clusters were set to P50.05. For interpretation, the
frequencies were subdivided into delta (54 Hz), theta (4–7 Hz),
alpha (8–13 Hz), beta (14–30 Hz), gamma (30–50 Hz), and high-
gamma activity (450 Hz) bands.

Classification of participants

In the final analyses, we used multivariate pattern classification
to identify the distinctions between two or more groups,
enabling subject-specific group assignment based on the
spatio-spectral characteristics of the networks’ local efficiency.
Pattern recognition was implemented in MATLAB (R2012b;
Mathworks, Natick, MA) using the Mania toolbox (https://
bitbucket.org/grotegerd/mania), which incorporates the
LIBSVM software library for the kernel-based support vector
classification used (https://www.csie.ntu.edu.tw/�cjlin/libsvm/).
Support vector machines automatically calculate decision
boundaries (hyperplanes) in a high-dimensional feature
space based on training data with known outcome; new data

are then placed into this space and outcome (prediction accur-
acy) determined according to its position relative to the

hyperplane.
We used linear kernels for the support vector machine clas-

sification with parameters bounded between (0,1).
Before classification, we extracted low dimensional data fea-

tures to improve performance, by using (i) a Z-statistic that
was calculated over every voxel; and (ii) principal components

analysis of the 3D frequency � scalp image of local efficiency.
We applied leave-one-out cross-validation, iteratively dividing
the data into separate training and testing sets with balanced

groups and re-ran this iteration 10-fold to ensure stability.
Finally, the classification performance from the support

vector machine is described in terms of the area under the
curve (AUC) of a receiver operating characteristic (ROC).

Figure 1 Data analysis pipeline. Clockwise from top:

Preprocessing, to remove biological artefacts using MaxFilter and

independent component analysis denoising; estimation of effective

connectivity using MVAR; compiling the association matrix between

sensors by PDC; applying a statistical threshold to create a binarized

graph, represented by the connectivity matrix; graph network ana-

lysis to estimate local efficiency; and group classification using a

support vector machine (SVM).

Table 1 Clinical and neuropsychological data for patient participants

Group Controls tAD PCA BvFTD NavPPA PSP-RS

n 15 13 11 13 11 15

Age 66.3 � 5.9 71.3 � 7.4 60.5 � 4.5* 64.3 � 6.9 72 � 8.7 67.9 � 6.5

MMSE (0–30) 29.4 � 0.7 25.0 � 3.2*** 19.6 � 6.0*** 24.6 � 3.8*** 27.9 � 2.2* 27.0 � 2.8**

ACE-R (0–100) 96.5 � 4.4 71.5 � 8.2*** 53.7 � 21.3*** 71.8 � 14.8*** 84.3 � 11.6** 83.2 � 7.9***

ACE-R memory (0–26) 25.2 � 1.0 12.7 � 3.6*** 13.6 � 7.8*** 17.9 � 5.5*** 21.6 � 6.9 22.0 � 4.0**

Data are presented as mean � SD.

ACE-R = revised Addenbrooke’s Cognitive Examination, total (0–100) and its memory subscale (0–26); MMSE = Mini-Mental State Examination; RS = Richardson’s syndrome;

tAD = typical amnestic Alzheimer’s disease.

Differences between each patient group and controls: *P5 0.05; **P5 0.01; ***P5 0.001 uncorrected.
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Results
A summary of demographic and clinical measures for the

patient groups is reported in Table 1. Across the five clin-

ical groups and controls, there was a group-wise difference

in age P5 0.05. However, Tukey HSD tests and Holm

correction for multiple comparisons, confirmed that only

the PCA group were distinct in age, being younger (Table

1). All groups differed from controls in MMSE and ACE-R

scores, as expected (Table 1).

Figure 2 shows sections through the 3D scalp frequency

images of statistical differences between groups in local ef-

ficiency. Compared to healthy control subjects, patients

with typical Alzheimer’s disease reduced local efficiency

over temporal cortex (Fig. 2A). This effect was not equiva-

lent across all frequencies, but was observed in the gamma

range. The PCA variant of Alzheimer’s disease also caused

a similar reduction in gamma band local efficiency, but in a

different distribution that lay over more posterior regions

(Fig. 2B).

A physiologically distinct signature was observed for the

FTLD syndromes. For both PSP and bvFTD (Fig. 2C and

D), local efficiency was reduced in lower frequencies, ex-

tending from delta through alpha to low gamma. These

changes were evident over frontal cortex. While navPPA

showed a similar reduction at low frequencies particularly

in the delta/theta range, the distribution of the changes was

different to that seen in bvFTD and PSP, focused on centro-

parietal regions (Fig. 2E).

Figure 3 shows ROCs for each binary classification of

patient groups, based on the spatial and spectral

distributions of local efficiency. Across all the comparisons

of Alzheimer’s disease variants versus FTLD variants, clas-

sification performance (AUC) ranged from 0.78 to 1. AUC

for distinguishing between the two Alzheimer’s disease vari-

ants typical Alzheimer’s disease and PCA was 0.74, while

that for distinguishing the three frontotemporal dementia

variants ranged from 0.62 (bvFTD versus PSP) to 1

(bvFTD versus navPPA).

Supplementary Fig. 1 shows ROCs for classification of

each patient group versus controls, based on the spatial

and spectral distributions of local efficiency. The differ-

ence was highest for bvFTD group followed by typical

Alzheimer’s disease, with classification performance

(AUC) at 0.96 and 0.85, respectively, and above-chance

lower classification rates for PSP (0.76), navPPA (0.63)

and PCA (0.60).

From the simulations, we confirmed that differences in

mean local efficiency of the source-level networks were pre-

served in mean local efficiency of the corresponding sensor-

level networks, at least for SNR levels of 3 and above when

thresholding at 85% and 95% (Supplementary Table 1).

Supplementary Fig. 2 illustrates this graphically on an ex-

ample of a low mean local efficiency and a high mean local

efficiency network.

Data availability

Anonymized data will be shared on request from a quali-

fied investigator for purposes of replicating procedures and

results, and will be shared on request from a qualified

investigator for other non-commercial research purposes

within the limits of participants’ consent.

Figure 2 3D scalp-frequency images of local efficiency. The schematic (top left) indicates the three projections: the topography (Top) for

each frequency (1–80 Hz), an anterior-posterior (AP) projection, separating frequency but collapsing over left–right axis, and a ‘lateral’ view,

separating by frequency but collapsing over anterior-posterior axis. The five subplots (A–E) indicate the T-value for the difference in local

efficiency for each patient group versus controls (colour bar on right). The cross-hair shows the peak T-statistic, while the black outline indicates

regions surviving a cluster-corrected threshold of P5 0.05.

2504 | BRAIN 2018: 141; 2500–2510 S. Sami et al.



Discussion
We have identified distinctive neurophysiological signatures

associated with five neurodegenerative disorders resulting

from Alzheimer’s disease and FTLD. The signatures are

characterized in terms of both the spatial and frequency

profiles of local efficiency in brain networks (local in topo-

logical terms). The anatomical distribution of changes in

local efficiency across the five syndromes was predicted

by the functional anatomy of their principal cognitive def-

icits. However, the disorders were also distinguished by

their spectral pattern of connectivity, according to the

likely underlying neuropathology.

In recent years the majority of MEG-based dementia-

related studies have focused on potential diagnostic or

prognostic biomarker utility (Stam, 2014). We confirm

that the spectral dynamics and topography of local effi-

ciency enabled classification of patients using a simple ma-

chine-learning approach, with highest accuracy for

classification between disorders. However, in the following

discussion, we evaluate our results in relation to Alzheimer

pathology, FTLD and the insights into pathogenic mechan-

isms from a network-based approach.

We focus on local network efficiency as one of the stron-

gest indicators of underlying pathology in Alzheimer’s dis-

ease and frontotemporal dementia (Stam, 2014; Medaglia

et al., 2017). Other graph network metrics have been re-

ported to be sensitive to the effects of neurodegeneration,

including measures of global integration or organization.

For example, previous MEG studies have shown the im-

portance of network modularity and of hub connections in

Alzheimer’s disease (de Haan et al., 2012b; Stam, 2014),

while a multi-layer frequency-band approach reveals the

disruption of hubs in Alzheimer’s disease patients (Yu

et al., 2017). Recent simulations demonstrate the link be-

tween directed functional connectivity and hubs (Moon

et al., 2015; Meier et al., 2017). This challenges the

simple dichotomy between ‘local’ or ‘global’ integration,

as hubs are themselves unevenly distributed yet influence

global connectivity (Stam, 2014). Conversely, the changes

in local efficiency we observed in Alzheimer’s disease are

widespread across the brain. Distributed changes in local

efficiency metrics may also contribute to part of the fre-

quently reported change in global efficiency and hub con-

nectivity in multiple neurological disorders (Crossley et al.,

2014). For example, closeness centrality is a characteristic

of hubs that is directly proportional to their local efficiency

(Sporns et al., 2007). Our results highlight the distributed

disruption of characteristic spectral signatures of physio-

logical coupling in neurodegenerative disorders.

Additionally, the local efficiency metric signifies tolerance

in a network to a node’s removal i.e. a subgraph or a local

network’s vulnerability is related to the reduction of the

local efficiency of its contributing regions or nodes

(Latora and Marchiori, 2001; Medaglia et al., 2017).

This is of special interest in view of the impact of

neuropathological burden as measured by PET on connect-

ivity (Cope et al., 2018).

While network degeneration can be characterized at the

microscopic level, or at the level of global brain function,

we measured network dynamics at an intermediate scale, to

reflect the regional variations in pathology in each of the

five disorders. In the context of brain network dynamics,

we confirmed the hypothesis that disorders that share a

common underlying pathology have a similar spectral sig-

nature of altered connectivity, regardless of phenotype. This

neurophysiological finding is distinct from the previously

established relationships between the structural connec-

tome, pathology and syndrome (Raj et al., 2012; Zhou

et al., 2012).

Alzheimer’s disease

Previous work in Alzheimer’s disease models and patients

has demonstrated reductions in relative spectral power in

high beta-gamma bands (Poza et al., 2007), despite meth-

odological differences between electrophysiological studies

(Dauwels et al., 2010). For example, in a network analysis

using EEG, Petersen et al. (2001) found small-worldness

of networks in the gamma band correlated with cognitive

performance in prodromal Alzheimer’s disease. Preclinical

models have investigated the aetiology of these changes,

including the analogous loss of gamma power and theta-

gamma coupling in cortical and hippocampal local net-

works in transgenic mouse models (Kurudenkandy et al.,

2014). For example, amyloid-b suppresses power in the

beta-gamma frequency range from entorhinal cortex and

induces desynchronization of pyramidal cells with a shift

of the excitatory-inhibitory equilibrium (Pena-Ortega et al.,

2012; Kurudenkandy et al., 2014). Neurodegenerative dis-

ease processes not only reduce synaptic density on pyr-

amidal cells, and their local interactions with inhibitory

interneurons, but also reduce neurotransmitters such as

GABA (Selkoe, 2002; Huey et al., 2006). Given the key

role of GABA in driving the gamma response in humans

(Muthukumaraswamy, 2014), our observations may

result from neurochemical as well as structural changes

in cortical networks, in typical Alzheimer’s disease and

PCA.

While PCA and typical Alzheimer’s disease were both

associated with similar changes in spectral density, they

had different scalp distributions of abnormality that re-

flected the known distribution of underlying pathology,

with a parietal peak for PCA and predominantly tem-

poral distribution for typical Alzheimer’s disease, in keep-

ing with our principal hypothesis. The regional

distribution of abnormal MEG-based connectivity

cannot be equated with MRI or PET findings. For ex-

ample, our planar gradiometers will be relatively insensi-

tive to bilateral precuneus pathology in Alzheimer’s

disease by virtue of depth and orientation. The abnormal

local efficiency in typical Alzheimer’s disease also appears

to be more extensive on the left, as has been noted before
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(Long et al., 2013), but such laterality effects should be

viewed with caution, without inferring unilateral path-

ology: indeed by the stage of clinically diagnosed, symp-

tomatic Alzheimer’s disease, both amyloid and tau

pathologies are likely to be bilateral and widespread

(Jagust, 2016; Ossenkoppele et al., 2016; Passamonti

et al., 2017). If spatio-temporal connectivity signatures

are to provide a framework to understand multiple neu-

rodegenerative disorders, complementary signatures are

predicted for other pathologies and syndromes, to

which we turn in the next section.

Frontotemporal lobar degeneration
syndromes

We studied three syndromes associated with FTLD: bvFTD,

navPPA and classical PSP (Richardson’s syndrome). The

clinicopathological correlation of PSP is very high, with

90–95% of cases due to a glioneuronal 4-repeat tauopathy

(Litvan et al., 1996; Frank et al., 2007). Eleven of our PSP

patients have since died, of whom seven donated their

brain to the Cambridge Brain Bank: all seven had patho-

logical confirmation of PSP. MRI studies reveal PSP-related

Figure 3 ROC curves illustrate the performance of the support vector machine classifier following principle component

feature extraction for binary classifications between each pair of patient groups. The classification performance between patient

groups is summarized by the area under the curve (AUC, inset). AD = Alzheimer disease.
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atrophy of medial frontal cortex (Ghosh et al., 2012) and

the loss of frontocentral local efficiency in Fig. 2 accords

with this structural change. The MEG analysis revealed a

selective loss in low frequency connectivity up to the high

beta range.

NavPPA has weaker clinicopathological correlations, but

it is also associated with tauopathy in the majority of cases,

while a minority have TDP-43 pathology (Gorno-Tempini

et al., 2011). Atrophy is typically not severe. BvFTD is the

most neuropathologically diverse form, and may arise from

3-repeat or 4-repeat tauopathy or TDP-43 pathology

(Boeve, 2007). The clinical syndrome is united by specific

and severe layer II/III atrophy of temporal poles, plus mod-

erate to severe atrophy of orbital and ventral frontal cortex

(Hughes et al., 2015). Like PSP, both navPPA and bvFTD

reduced the local efficiency in the delta and beta bands, but

the spatial and temporal characteristics of these changes

were specific, with near complete separation of bvFTD

and navPPA from the other syndromes (Fig. 3) reinforcing

the multimodal separation of Alzheimer’s disease from

navPPA (Hu et al., 2010).

During our classification procedure, bvFTD was not well

separated from PSP, which is interesting in view of the

phenotypic overlap, given that PSP can present cognitive

and behavioural change and many patients with bvFTD

later develop a supranuclear gaze palsy and/or parkinson-

ism (Burrell et al., 2014; Coyle-Gilchrist et al., 2016;

Höglinger et al, 2017). Here, both PSP and bvFTD were

associated with loss of low frequency connectivity, in keep-

ing with animal models of tau-mediated FTLD. For ex-

ample, PLB2-tau mice show absolute power reductions in

alpha band (9–14 Hz) in frontal and parietal locations

(Koss et al., 2016).

Network-based biomarkers of
neurodegeneration

The connectivity approach is ideally suited to the distribu-

ted nature of neuropathology and the impact of disease on

the axon and synapse. Covariance-based resting state net-

works identified from MEG/EEG are reliable and sensitive

to a wide range of neurodegenerative diseases (Stam, 2010;

Hughes and Rowe, 2013). However, our use of directed

graphs, or effective connectivity embodying directionality,

extends this work and accommodates potential asymme-

tries in large-scale brain networks. MEG and EEG allow

one to identify reciprocal connections across a range of

frequencies: this makes them well suited to characterize

the impact of dementia on connectivity in vivo, while main-

taining compatibility with invasive electrophysiological stu-

dies of networks (Muthukumaraswamy, 2014; Phillips

et al., 2015).

We used PDC to quantify connectivity, a method related

to Granger causality. PDC estimates directional connectiv-

ity between regions based on their functional time series.

An advantage of this method for MEG/EEG is that it is less

sensitive to the field spread that otherwise inflates instant-

aneous correlation metrics (Baccalá and Sameshima, 2001;

van Dellen et al., 2013; Colclough et al., 2016). When

combined with the focal field-of-view of planar gradiom-

eters, simulation studies confirm that multivariate autore-

gressive modelling minimizes field spread while remaining

veridical to source–space interactions (Pereira et al., 2017).

Indeed, our own simulations confirmed that this approach

can recover average local efficiency of source-level net-

works, provided signal-to-noise ratio is sufficiently high

(Supplementary Fig. 2). The use of sensor-level PDC

avoids the extra assumptions that are needed to optimize

the electromagnetic ‘inverse problem’ (Baillet et al., 2001).

However, we acknowledge that planar gradiometers are

only sensitive to relative superficial cortical activity, and

we may have missed the effects of disease in deeper brain

structures (such information might be present in magnet-

ometer data, but would require source reconstruction to

infer network properties).

PDC informed the graph theoretical measures of network

function. Graph theory reveals fundamental properties of

brain network organization in health and has shown hom-

ologous vulnerabilities across many neurological and psy-

chiatric disorders (Stam, 2014). The network-level

description supports comparisons across modalities, scales

and disorders (Fornito et al., 2015). There are many meas-

ures of global network properties, such as small-worldness

or global efficiency, but we focus here on local efficiency

for two reasons. First, many neurodegenerative diseases are

characterized by regional rather than global pathology.

Second, it describes the local information transfer and re-

silience of a network. Third, previous studies have sug-

gested that local efficiency, and its counterpart of local

clustering, are impaired by neurodegeneration and can be

sensitive to pathology even in the absence of focal atrophy

(Stam, 2014). Recent neuroimaging-based network models

have identified local network efficiency as one of the stron-

gest indicators of underlying pathology in Alzheimer’s dis-

ease and frontotemporal dementia (Medaglia et al., 2017).

These properties make it ideal to elucidate the mechanisms

of lobar neurodegenerative disorders with differing atrophic

burdens (Seeley et al., 2009; de Haan et al., 2012a; van

Dellen et al., 2013; Stam, 2014; Hughes et al., 2015). It

should be noted that our measures of local efficiency are

derived from directed, but binarized, connections. The dir-

ection of connections is important because it affects the

local efficiency measure. It is possible that weighted

(rather than binarized) connections would further inform

graph metrics, but one cannot compare PDC values

across different sending sensors, so binarization is required

(which we implemented here by thresholding the highest

85% of PDC values).

There are limitations to our study. Severe atrophy is

characteristic of typical Alzheimer’s disease, PCA and

bvFTD (Rabinovici et al., 2007; Crutch et al., 2012;

Whitwell and Josephs, 2012), and this might influence the

sensors’ sensitivity to cortical sources and their
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connectivity. However, focal cortical atrophy in PSP and

navPPA is usually mild or absent (Cope et al., 2018),

even though it can be evident in group studies (Ghosh

et al., 2012; Mandelli et al., 2016). Moreover, a simple

loss of sensitivity due to atrophy would not be a sufficient

explanation of our results. The selective impairment of cer-

tain frequency bands suggests that our results are not

merely a result of volume loss and increased distance

from source to sensor: this is likely to affect all frequencies

and be less reduced in PSP and navPPA (Bastos and

Schoffelen, 2016). The frequency-specificity of group differ-

ences also argue against a simple model of cortical oscilla-

tory dynamics in which higher frequencies are nested in

low frequency oscillations (Lakatos et al., 2008; Lisman

and Jensen, 2013). This may be due to the selective

impact of Alzheimer’s disease and FTLD on superficial

and deep cortical layers, or to the selective breakdown of

the neurochemical modulation of brain states (Uhlhaas and

Singer, 2006; Murley and Rowe, 2018).

Our analyses focus on sensor space using planar gradi-

ometers, rather than magnetometres or attempting to re-

construct source space activity. Several methods exist that

reconstruct source space activity. However, the accuracy of

these methods in conjunction with graphical network ana-

lysis is not yet established, and the good approximation of

planar gradiometer topography to underlying cortical

sources provides sufficient resolution to test our current

hypotheses. Simulation studies confirm that multivariate

auto-regression modelling is more robust in sensor space

(Michalareas et al., 2013), while the use of lagged inter-

action measures from planar gradiometer data are less sen-

sitive to field-spread (Pereira et al., 2017). Our own

simulations provided further evidence that the analysis of

sensor space graph metrics accords with source space gen-

erators of the data.

Another limitation is that our groups are defined by

clinical diagnostic criteria, without pathological or genetic

confirmation except for PSP. However, all our patient par-

ticipants had well established disease, not peri-symptomatic

or mild cognitive impairment. With this degree of severity,

the clinicopathological correlations are high for PSP, typical

Alzheimer’s disease, and PCA. Pathology would be of inter-

est in bvFTD to differentiate those with tau versus TDP43

pathology, although consensus clinical diagnostic criteria

are reliable in separating bvFTD from Alzheimer’s disease.

There are potentially significant effects of age on MEG-

derived power spectra (Tsvetanov et al., 2015). These

might confound the PCA results, being younger than

other groups, although such age effects would not explain

the spectral ‘similarity’ between PCA and typical

Alzheimer’s disease, or the differences between typical

Alzheimer’s disease and other groups.

In conclusion, the local efficiency of cortical networks

was impaired by each of five neurodegenerative syndromes

resulting from Alzheimer’s disease and FTLD. The five dis-

orders had distinctive profiles in terms of their distribution

and frequency of oscillatory activity. Pattern classification

using the spatiotemporal map of connectivity differentiated

the five disorders. The frequency range of the loss of local

efficiency was distinguished by the likely underlying path-

ology, while the anatomical distribution related to the clin-

ical syndrome. These findings enrich preclinical models of

the physiological consequence of neuropathology, and link

clinical in vivo measures to preclinical models of degener-

ation. They also provide potential physiological biomarkers

with which to assess pre-symptomatic network dysfunction

in early stage disease and for tracking disease progression

or disease-modifying therapies in experimental medicine

studies.
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