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Disease diagnosis and management often require specialized 
equipment and trained medical professionals to interpret 
findings. For example, diabetic retinopathy (DR) screen-

ing programmes use either a fundoscope or a fundus camera to 
examine the posterior part of the eye (that is, the retinal fundus; 
Fig. 1a). Such examinations can reveal diabetes-related blood 
vessel compromise, such as microaneurysms. More recently, 
machine-learning-based assessments of retinal fundus photographs 
have been shown to detect signs of cardiovascular risk1,2, anaemia3, 
chronic kidney disease4 and other systemic parameters5. Despite the 
expanding diagnostic information that can be obtained from fun-
dus photographs, the burden of costly specialized cameras, skilled 
imaging technicians and, oftentimes, mydriatic eye drops to dilate 
the patients’ pupils limits the use of these diagnostic techniques to 
eye clinics or primary care facilities with specialized equipment.

By contrast, the anterior part of the eye can be readily imaged 
to produce external eye photographs (Fig. 1a) without specialized 
equipment or mydriatic eye drops. Indeed, external eye photo-
graphs have an associated Current Procedural Terminology code 
(92285) and are sometimes used to document progression of ante-
rior eye conditions, such as eyelid abnormalities, corneal ulcers and 
cataracts. Interestingly, the anterior part of the eye is also known 
to manifest signs of disease beyond those affecting the front of the 
eye. For example, hypertension can cause recurrent subconjunctival 
haemorrhages (from broken blood vessels in the white part of the 
eye)6, and diabetes can affect pupil size7,8, conjunctival vessel cali-
bre9 and tortuosity10.

Here we hypothesized that deep learning can more precisely 
detect disease presence from external eye photographs and poten-
tially extract information that can help in identifying high-risk 
individuals for further testing or follow-up. To test this hypothesis, 

we leveraged de-identified data from tele-ophthalmology screening 
programmes where important parameters of systemic health and 
diabetic eye care were available, including glycated haemoglobin 
(HbA1c, a marker of glucose control), total cholesterol, triglycer-
ides and diabetic retinal disease diagnoses (DR, diabetic macular 
oedema (edema) (DME) and vision-threatening DR (VTDR, a 
combination of DR and DME)). Our results indicate that external 
eye photographs can indeed reveal signs of systemic and retinal dis-
ease and merit further study.

Results
We developed a deep-learning system (DLS) using external eye 
images taken with fundus cameras (Fig. 1a) from 145,832 patients 
with diabetes screened for DR at 301 sites in California, USA  
(Fig. 1b). To evaluate the DLS, we used four validation datasets 
(Table 1). The first validation set (‘A’) included 27,415 patients who 
underwent DR screening at 186 sites across 18 US states without 
pupillary dilation (that is, without use of mydriatic eye drops); the 
second validation set (‘B’) included 5,058 patients at 59 sites across 
14 US states with pupillary dilation. The third validation set (‘C’) 
included 10,402 patients who underwent mydriatic DR screening at 
the Atlanta Veterans Affairs (VA) hospital in Georgia, USA as part 
of the diabetic teleretinal screening programme. The final valida-
tion set (‘D’) included 6,266 patients from the Technology-based 
Eye Care Services (TECS) programme in Georgia, USA. In this pro-
gramme, screening was mydriatic and located in primary care clinics 
surrounding the Atlanta VA hospital, and the screened population 
included patients both with and without diabetes. The pre-specified 
primary analyses included four predictions: poor blood glucose con-
trol (defined as HbA1c ≥9% by the Healthcare Effectiveness Data 
and Information Set (HEDIS11)), moderate-or-worse (‘moderate+’)  
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Fig. 1 | Extracting insights from external photographs of the front of the eye. a, Diabetes-related complications can be diagnosed by using specialized 
cameras to take fundus photographs, which visualize the posterior segment of the eye. By contrast, anterior imaging using a standard consumer-grade 
camera can reveal conditions affecting the eyelids, conjunctiva, cornea and lens. In this work, we show that external photographs of the eye can offer 
insights into diabetic retinal disease and detect poor blood sugar control. These images are shown for illustrative purposes only and do not necessarily 
belong to the same subject. b, Our external eye DLS was developed on data from California (CA, yellow) and evaluated on data from 18 other US states 
(light blue). c, AUCs for the four validation datasets. The prediction tasks shown are poor sugar control (HbA1c ≥9%), elevated lipids (total cholesterol 
(Tch) ≥240 mg dl−1, triglycerides (Tg) ≥200 mg dl−1), moderate+ DR, DME, VTDR and a positive control: cataract. Some targets were not available in 
validation sets C and D. Error bars are 95% CIs computed using the DeLong method. A graphic visualization of receiver operating characteristic (ROC) 
curves is shown in Extended Data Fig. 3, and Supplementary Table 1 contains numerical values of AUCs along P values for improvement. d, Similar to c but 
for PPV. The thresholds used for the PPV are based on the 5% of patients with the highest predicted likelihood. Error bars are 95% bootstrap CIs. A graphic 
visualization of the PPV over multiple thresholds is in Extended Data Fig. 1. aBaseline characteristics models for validation sets A and B include self-reported 
age, sex, race/ethnicity and years with diabetes and were trained on the training dataset. bThe baseline characteristics models for validation sets C and 
D include self-reported age and sex and were trained directly on the respective sets due to large differences in patient population compared with the 
development set. Thus, these overestimate baseline performance. cPre-specified primary prediction tasks.
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DR, DME and VTDR. Cataract detection was a fifth prediction task 
used as a positive control. In addition, we present exploratory anal-
yses for predictions of elevated total cholesterol and triglycerides 
relative to several clinical cut-offs.

We first evaluated the DLS for its ability to detect HbA1c ≥9%. 
Across the four validation sets A to D, the DLS achieved an area 
under the receiver operating characteristic curve (AUC) of 70.0%, 
73.4%, 69.3% and 67.6%, respectively (Fig. 1c and Supplementary 
Table 1; full ROC curves shown in Extended Data Fig. 3). For com-
parison, logistic regression models using baseline characteristics 
(age, sex, race/ethnicity, years with diabetes on validation sets A and 
B, age and sex on validation sets C and D) achieved AUCs of 64.8%, 
66.5%, 65.2% and 59.8%, respectively (P < 0.001 for comparing the 
DLS with baseline characteristics alone in all three validation sets). 
The AUC trends for predicting other thresholds (HbA1c ≥7% and 
≥8%) were similar and are presented in Supplementary Table 1. The 
positive predictive values (PPVs) for HbA1c ≥9% exceeded 69% for 
the 5% of patients with the highest risk predicted by the DLS, and the 
negative predictive values (NPVs) exceeded 88% for the lowest-risk 
5% in validation set A (Fig. 1d and Extended Data Figs. 1a and 2a).

Next, we evaluated the DLS for detecting diabetic retinal diseases 
(as graded by certified teleretinal experts using fundus photographs; 
see ‘Labels’ section in Methods). The AUCs for the three conditions 
(moderate+ DR, DME and VTDR) were 75.0%, 77.9% and 79.2%, 
respectively, in validation set A. On dilated pupils, the AUCs were 
consistently 5–10% higher, at 84.0%, 84.7% and 86.7% in valida-
tion set B, and more similar to validation set A, at 76.8%, 79.5% 
and 81.1%, in validation set C (which was from a different patient 
population). Using only baseline characteristics resulted in AUCs 

that were 4–10% lower in validation sets A and B and 13–24% lower 
in validation set C (P < 0.001 for comparing the DLS with baseline 
characteristics alone for all comparisons). The trends for other DR 
thresholds (‘mild+’ and ‘severe+’) were similar and are presented in 
Supplementary Table 1. The PPV and NPV for the various diabetic 
retinal diseases similarly indicated the ability to identify patients at 
either very high or very low likelihood of these conditions (Fig. 1d 
and Extended Data Figs. 1d–f and 2d–f).

Finally, we evaluated the DLS for detecting elevations in avail-
able elements of the lipid panel: total cholesterol and triglycerides. 
Across the four validation datasets, the AUCs for total cholesterol 
≥240 mg dl−1 were 59.1% (A), 57.9% (B), 62.3% (C) and 58.1% (D), 
and for triglycerides the AUCs for ≥200 mg dl−1 were 63.6% (A), 
62.7% (B), 66.3% (C) and 67.1% (D) (Supplementary Table 1), with 
similar trends for other cut-offs (total cholesterol ≥200 mg dl−1, tri-
glycerides ≥150 mg dl−1 and ≥500 mg dl−1). For this set of predictions, 
the DLS did not consistently outperform the baseline characteristics 
(see adjusted analyses in Tables 2–5 for complementary analyses).

Adjusted analyses. To verify that the DLS predictions were not solely 
mediated by baseline characteristics as confounders, we examined 
the odds ratios of the DLS predictions adjusted for baseline char-
acteristics (Tables 2–5). For all primary prediction tasks in all four 
validation datasets, DLS predictions (standardized to zero mean and 
unit variance for interpretability of coefficients) had statistically sig-
nificant adjusted odds ratios (P < 0.001). The adjusted odds ratios 
ranged from 1.5 to 2.0 among tasks for validation set A, from 2.0 to 
3.1 for validation set B, from 1.6 to 2.0 for validation set C and it was 
2.0 for validation set D. For elevated lipids, despite the fact that the 

Table 1 | Characteristics of the datasets

Datasets Development set Validation sets

Training set Tuning set  A B C D

Source EyePACS (CA) EyePACS (non-CA) VA VA

Number of US states 1 (CA) 1 (CA) 18 (non-CA) 14 (non-CA) 1 (GA) 1 (GA)

Number of sites 277a 54a 186a 59a 9 6

Number of patients 126,066 19,766 27,415 5,058 10,402 6,266

Number of visitsb 159,269 23,095 27,415 5,058 10,402 6,266

Number of imagesb 290,642 41,928 53,861 9,853 19,763 12,751

Dilation status (%) No 137,710 (47%) 21,063 (50%) 27,415 (100%) 0 (0%) 150 (1%) NA

Yes 100,929 (35%) 9,678 (23%) 0 (0%) 5,058 (100%) 9,788 (94%) NA

Unknown 52,003 (18%) 11,187 (27%) 0 (0%) 0 (0%) 464 (4%) 6,266 (100%)

Age (years, mean ± s.d.) 54 ± 11 54 ± 11 54 ± 12 53 ± 11 63 ± 10 62 ± 13

Self-reported sex (%) Female 72,880 (58%) 11,655 (59%) 14,525 (53%) 3,004 (59%) 478 (5%) 944 (15%)

Male 53,186 (42%) 8,111 (41%) 12,890 (47%) 2,054 (41%) 9,924 (95%) 5,322 (85%)

Race/ethnicity (%) Hispanic 97,300 (77%) 15,577 (79%) 11,393 (42%) 4,152 (82%) – 0 (0%)

White 11,459 (9%) 1,609 (8%) 7,621 (28%) 374 (7%) 45%c 2,577 (43%)

Black 4,991 (4%) 1,074 (5%) 4,140 (15%) 398 (8%) 49%c 3,317 (56%)

Asian/Pacific islander 7,954 (6%) 1,091 (6%) 2,949 (11%) 62 (1%) <1% 38 (1%)

Native American 1,669 (1%) 83 (0%) 411 (1%) 37 (1%) <1% 36 (1%)

Other 2,693 (2%) 332 (2%) 901 (3%) 35 (1%) – 0 (0%)

Years with diabetes (years, median 
(interquartile range))

5 (2–13) 8 (2–13) 5 (2–8) 8 (2–13) NA NA

aThirty sites overlapped between the training set and the tuning set because patients who visited both training set sites and tuning set sites were randomly assigned to either set. Fifty-six sites overlapped 
between validation sets A and B because they included both patients with dilated and non-dilated pupils. There was no patient-level overlap between the development set and the validation sets. bIn the 
development set, all visits, eyes and images were used. In each validation set, one random visit was selected per patient. Although all evaluations were performed on the patient level, for eye disease 
evaluation, one random eye per patient was selected and, for HbA1c, evaluation images of both eyes were used (and the DLS predictions averaged). Note that not all labels were available in some visits, and 
the number of visits/images used for evaluating each task can be smaller than the numbers here. See Tables 2–5 for the number of visits used for the evaluation of each task. cPatient-level information not 
available; these reflect a cohort-level estimate and are consistent with the predominantly Black/White population in previous studies58. CA, California; GA, Georgia; NA, not applicable; –, data not available.
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Table 2 | Adjusted analysis for validation set A

Prediction target Number of visits Odds ratio (95% CI), P value

Total Positive (%) Age (per 
decade)

Male Whitea Blacka Asian/Pacific 
islandera

Years with 
diabetes  
(per five years)

DLS (external 
eye image)

HbA1c ≥7% 21,183 13,544 (63.9%) 0.891 1.106 0.962 0.976 1.077 1.451 1.720

(0.866–0.918) (1.042–1.175) (0.892–1.038) (0.892–1.067) (0.976–1.188) (1.408–1.496) (1.660–1.782)

P < 0.001 P < 0.001 P = 0.314 P = 0.593 P = 0.140 P < 0.001 P < 0.001

HbA1c ≥8% 21,183 9,347 (44.1%) 0.916 1.073 0.907 0.925 1.029 1.326 1.955

(0.889–0.944) (1.011–1.138) (0.843–0.977) (0.847–1.010) (0.932–1.135) (1.290–1.363) (1.883–2.030)

P < 0.001 P = 0.019 P = 0.010 P = 0.083 P = 0.572 P < 0.001 P < 0.001

HbA1c ≥9%b 21,183 6,537 (30.9%) 0.934 1.072 0.911 0.965 0.944 1.210 1.971

(0.904–0.965) (1.007–1.142) (0.842–0.986) (0.878–1.060) (0.847–1.051) (1.176–1.245) (1.895–2.051)

P < 0.001 P = 0.030 P = 0.021 P = 0.459 P = 0.290 P < 0.001 P < 0.001

Tch ≥200 mg dl−1 9,318 2,913 (31.3%) 0.966 0.921 0.963 0.878 0.833 0.915 1.251

(0.925–1.009) (0.841–1.010) (0.861–1.078) (0.781–0.987) (0.696–0.996) (0.879–0.954) (1.188–1.318)

P = 0.122 P = 0.079 P = 0.517 P = 0.030 P = 0.045 P < 0.001 P < 0.001

Tch ≥240 mg dl−1 9,318 984 (10.6%) 0.981 0.946 1.065 0.858 0.808 0.916 1.328

(0.921–1.046) (0.827–1.083) (0.901–1.259) (0.717–1.028) (0.606–1.079) (0.861–0.975) (1.241–1.420)

P = 0.564 P = 0.423 P = 0.459 P = 0.096 P = 0.149 P = 0.006 P < 0.001

Tg ≥150 mg dl−1 9,104 4,674 (51.3%) 0.989 1.053 1.056 0.809 0.803 0.914 1.503

(0.952–1.028) (0.967–1.147) (0.946–1.180) (0.705–0.928) (0.684–0.941) (0.879–0.950) (1.416–1.595)

P = 0.589 P = 0.233 P = 0.330 P = 0.003 P = 0.007 P < 0.001 P < 0.001

Tg ≥200 mg dl−1 9,104 2,894 (31.8%) 0.939 1.144 1.028 0.717 0.773 0.935 1.433

(0.900–0.980) (1.044–1.254) (0.915–1.155) (0.620–0.830) (0.646–0.926) (0.897–0.975) (1.348–1.522)

P = 0.004 P = 0.004 P = 0.641 P < 0.001 P = 0.005 P = 0.002 P < 0.001

Tg ≥500 mg dl−1 9,104 323 (3.5%) 0.859 1.782 1.123 0.593 0.713 0.907 1.212

(0.765–0.963) (1.392–2.281) (0.855–1.475) (0.412–0.855) (0.436–1.169) (0.814–1.012) (1.088–1.351)

P = 0.009 P < 0.001 P = 0.405 P = 0.005 P = 0.180 P = 0.080 P < 0.001

Mild+ DR 26,950 5,144 (19.1%) 0.901 1.160 0.781 1.047 1.301 1.641 1.796

(0.876–0.928) (1.086–1.240) (0.718–0.850) (0.952–1.152) (1.165–1.454) (1.595–1.688) (1.741–1.853)

P < 0.001 P < 0.001 P < 0.001 P = 0.342 P < 0.001 P < 0.001 P < 0.001

Moderate+ DRb 26,950 3,247 (12.0%) 0.904 1.205 0.785 0.833 1.141 1.680 1.881

(0.873–0.936) (1.111–1.306) (0.709–0.870) (0.739–0.938) (0.997–1.305) (1.625–1.737) (1.819–1.944)

P < 0.001 P < 0.001 P < 0.001 P = 0.003 P = 0.056 P < 0.001 P < 0.001

Severe+ DR 26,950 404 (1.5%) 0.870 1.516 0.803 1.084 2.216 1.840 1.444

(0.798–0.949) (1.234–1.863) (0.612–1.052) (0.795–1.477) (1.651–2.975) (1.695–1.999) (1.384–1.507)

P = 0.002 P < 0.001 P = 0.111 P = 0.611 P < 0.001 P < 0.001 P < 0.001

DMEb 26,950 797 (3.0%) 0.899 1.241 0.633 0.989 1.206 1.664 1.475

(0.843–0.958) (1.072–1.438) (0.519–0.772) (0.807–1.211) (0.947–1.534) (1.569–1.765) (1.416–1.536)

P < 0.001 P = 0.004 P < 0.001 P = 0.913 P = 0.128 P < 0.001 P < 0.001

VTDRb 26,950 1,042 (3.9%) 0.901 1.244 0.691 1.037 1.419 1.729 1.574

(0.852–0.953) (1.091–1.418) (0.581–0.823) (0.862–1.247) (1.152–1.747) (1.640–1.823) (1.517–1.633)

P < 0.001 P = 0.001 P < 0.001 P = 0.703 P < 0.001 P < 0.001 P < 0.001

Cataract 27,415 639 (2.3%) 1.704 0.845 1.617 1.399 3.746 1.080 1.608

(1.568–1.852) (0.709–1.006) (1.273–2.055) (1.053–1.859) (2.948–4.760) (1.006–1.158) (1.547–1.671)

P < 0.001 P = 0.059 P < 0.001 P = 0.021 P < 0.001 P = 0.033 P < 0.001

aReference category: Hispanic (the most prevalent race/ethnicity in this cohort). bPre-specified primary prediction tasks. Bold font indicates P < 0.05.
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Table 3 | Adjusted analysis for validation set B

Prediction 
target

Number of visits Odds ratio (95% CI), P value

Total Positive (%) Age (per 
decade)

Male Whitea Blacka Asian/Pacific 
islandera

Years with 
diabetes (per 
five years)

DLS (external 
eye image)

HbA1c ≥​7% 4,120 2,819 (68.4%) 0.866 1.161 0.812 0.832 1.526 1.417 2.245

(0.803–0.933) (0.997–1.352) (0.607–1.086) (0.639–1.083) (0.814–2.859) (1.318–1.524) (2.054–2.453)

P <​ 0.001 P =​ 0.054 P =​ 0.160 P =​ 0.172 P =​ 0.187 P <​ 0.001 P <​ 0.001

HbA1c ≥​8% 4,120 1,991 (48.3%) 0.909 1.205 0.842 0.690 1.482 1.315 2.293

(0.844–0.978) (1.047–1.388) (0.634–1.118) (0.538–0.885) (0.817–2.690) (1.235–1.400) (2.101–2.501)

P =​ 0.010 P =​ 0.009 P =​ 0.234 P =​ 0.003 P =​ 0.195 P <​ 0.001 P <​ 0.001

HbA1c ≥​9%c 4,120 1,455 (35.3%) 0.945 1.175 0.834 0.788 1.418 1.197 2.241

(0.875–1.021) (1.017–1.358) (0.615–1.130) (0.609–1.020) (0.754–2.666) (1.124–1.274) (2.052–2.448)

P =​ 0.150 P =​ 0.029 P =​ 0.241 P =​ 0.070 P =​ 0.279 P <​ 0.001 P <​ 0.001

Tch ≥​ 
200 mg dl−1

859 219 (25.5%) 1.077 0.865 1.914 1.365 3.062 0.920 1.419

(0.924–1.256) (0.625–1.199) (1.168–3.135) (0.927–2.011) (1.200–7.814) (0.806–1.050) (1.179–1.707)

P =​ 0.343 P =​ 0.385 P =​ 0.010 P =​ 0.115 P =​ 0.019 P =​ 0.214 P <​ 0.001

Tch ≥​ 
240 mg dl−1

859 82 (9.5%) 1.074 0.788 1.709 1.318 0.675 0.821 1.316

(0.860–1.342) (0.492–1.262) (0.855–3.418) (0.752–2.312) (0.087–5.273) (0.671–1.005) (1.032–1.679)

P =​ 0.526 P =​ 0.322 P =​ 0.129 P =​ 0.335 P =​ 0.708 P =​ 0.057 P =​ 0.027

Tg ≥​ 
150 mg dl−1

843 414 (49.1%) 1.123 1.104 1.144 0.819 0.702 0.881 1.458

(0.988–1.276) (0.834–1.460) (0.709–1.846) (0.530–1.266) (0.288–1.715) (0.784–0.991) (1.207–1.761)

P =​ 0.075 P =​ 0.491 P =​ 0.582 P =​ 0.369 P =​ 0.438 P =​ 0.035 P <​ 0.001

Tg ≥​ 
200 mg dl−1

843 260 (30.8%) 1.072 1.153 1.289 0.625 0.712 0.923 1.404

(0.928–1.238) (0.849–1.566) (0.791–2.099) (0.386–1.011) (0.253–2.008) (0.812–1.048) (1.156–1.705)

P =​ 0.345 P =​ 0.362 P =​ 0.309 P =​ 0.056 P =​ 0.521 P =​ 0.215 P <​ 0.001

Tg ≥​ 
500 mg dl−1

843 21 (2.5%)b 0.770 2.492 3.288 0.500 2.044 0.789 0.890

(0.479–1.238) (0.930–6.677) (0.972–11.121) (0.107–2.344) (0.237–17.615) (0.525–1.183) (0.527–1.504)

P =​ 0.280 P =​ 0.069 P =​ 0.056 P =​ 0.379 P =​ 0.515 P =​ 0.251 P =​ 0.663

Mild+​ DR 4,982 1,509 (30.3%) 0.937 1.358 0.784 0.763 1.883 1.710 2.897

(0.873–1.006) (1.169–1.578) (0.589–1.042) (0.586–0.993) (1.017–3.488) (1.604–1.822) (2.667–3.147)

P =​ 0.071 P <​ 0.001 P =​ 0.094 P =​ 0.044 P =​ 0.044 P <​ 0.001 P <​ 0.001

Moderate+DRc​ 4,982 1,172 (23.5%) 0.903 1.443 0.657 0.723 1.600 1.768 3.102

(0.835–0.977) (1.221–1.704) (0.470–0.918) (0.540–0.970) (0.806–3.174) (1.650–1.894) (2.845–3.383)

P =​ 0.011 P <​ 0.001 P =​ 0.014 P =​ 0.030 P =​ 0.179 P <​ 0.001 P <​ 0.001

Severe+​ DR 4,982 455 (9.1%) 0.852 1.417 0.483 0.523 0.173 1.622 2.504

(0.761–0.954) (1.123–1.788) (0.273–0.853) (0.314–0.870) (0.024–1.236) (1.476–1.781) (2.286–2.744)

P =​ 0.006 P =​ 0.003 P =​ 0.012 P =​ 0.013 P =​ 0.080 P <​ 0.001 P <​ 0.001

DMEc 4,982 394 (7.9%) 1.044 1.637 0.315 0.511 0.645 1.735 1.957

(0.930–1.172) (1.296–2.068) (0.165–0.600) (0.318–0.823) (0.197–2.119) (1.580–1.906) (1.801–2.127)

P =​ 0.466 P <​ 0.001 P <​ 0.001 P =​ 0.006 P =​ 0.470 P <​ 0.001 P <​ 0.001

VTDRc 4,982 617 (12.4%) 0.925 1.529 0.439 0.549 0.590 1.720 2.581

(0.837–1.022) (1.244–1.879) (0.268–0.718) (0.366–0.822) (0.187–1.865) (1.584–1.869) (2.364–2.818)

P =​ 0.125 P <​ 0.001 P =​ 0.001 P =​ 0.004 P =​ 0.369 P <​ 0.001 p <​ 0.001

Cataract 5,058 268 (5.3%) 1.465 1.320 1.371 0.647 3.364 1.259 2.695

(1.258–1.706) (0.961–1.815) (0.791–2.374) (0.348–1.200) (1.509–7.500) (1.116–1.419) (2.451–2.964)

P <​ 0.001 P =​ 0.087 P =​ 0.260 P =​ 0.167 P =​ 0.003 P <​ 0.001 P <​ 0.001

aReference category: Hispanic (the most prevalent race/ethnicity in this cohort). bFewer than 50 positive examples. cPre-specified primary prediction tasks. Bold font  
indicates P <​ 0.05.

Nature Biomedical Engineering | www.nature.com/natbiomedeng

http://www.nature.com/natbiomedeng


Articles NaTuRE BiomEDical EnginEERing

cataract presence acted as a positive control because it manifests as 
media opacity (‘cloudiness’ of the lens) and, thus, is generally vis-
ible from external eye images. The AUC of the DLS for predicting 
cataract was substantially higher than that for predicting the other 
targets, at 86.4% and 93.2% for validation sets A and B, respectively 
(labels were not available for sets C and D) (Supplementary Table 1).

In ablation analysis, we removed portions of each image, 
trained another DLS on such images and then evaluated this DLS 

DLS did not achieve higher AUC compared with the baseline model, 
the adjusted odds ratios were statistically significant (P < 0.05) in all 
cases, except where there were fewer than 50 positives (triglycer-
ides ≥500 mg dl−1, the only example among 20 analyses).

Explainability analysis. To better understand how the DLS was able 
to detect these diseases without looking inside the eye at the retina, 
we next conducted several explainability experiments. Predicting 

Table 4 | Adjusted analysis for validation set C

Prediction target Number of visits Odds ratio (95% CI), P value

Total Positive (%) Age (per decade) Male DLS (external eye image)

HbA1c ≥7% 8,995 5,119 (56.9%) 0.881 1.181 1.616

(0.841–0.923) (0.958–1.456) (1.541–1.695)

P < 0.001 P = 0.119 P < 0.001

HbA1c ≥8% 8,995 2,947 (32.8%) 0.830 1.185 1.706

(0.788–0.875) (0.953–1.474) (1.618–1.798)

P < 0.001 P = 0.126 P < 0.001

HbA1c ≥9%a 8,995 1,766 (19.6%) 0.807 1.004 1.770

(0.757–0.860) (0.788–1.279) (1.665–1.881)

P < 0.001 P = 0.973 P < 0.001

Tch ≥200 mg dl−1 9,304 1,935 (20.8%) 0.805 0.802 1.255

(0.755–0.860) (0.646–0.997) (1.174–1.341)

P < 0.001 P = 0.047 P < 0.001

Tch ≥240 mg dl−1 9,304 580 (6.2%) 0.768 0.813 1.272

(0.693–0.850) (0.585–1.130) (1.153–1.403)

P < 0.001 P = 0.217 P < 0.001

Tg ≥150 mg dl−1 9,280 3,825 (41.2%) 0.943 1.533 1.745

(0.902–0.985) (1.227–1.914) (1.668–1.825)

P = 0.009 P < 0.001 P < 0.001

Tg ≥200 mg dl−1 9,280 2,261 (24.4%) 0.908 1.870 1.759

(0.863–0.956) (1.409–2.481) (1.673–1.849)

P < 0.001 P < 0.001 P < 0.001

Tg ≥500 mg dl−1 9,280 205 (2.2%) 0.791 1.368 1.579

(0.678–0.922) (0.630–2.973) (1.419–1.757)

P = 0.003 P = 0.428 P < 0.001

Mild+ DR 9,518 992 (10.4%) 0.945 1.614 2.000

(0.881–1.013) (1.078–2.417) (1.892–2.114)

P = 0.112 P = 0.020 P < 0.001

Moderate+ DRa 9,518 454 (4.8%) 0.837 1.768 2.044

(0.756–0.925) (0.968–3.229) (1.913–2.184)

P < 0.001 P = 0.064 P < 0.001

Severe+ DR 9,518 203 (2.1%) 0.795 2.571 1.640

(0.689–0.917) (0.937–7.057) (1.525–1.763)

P = 0.002 P = 0.067 P < 0.001

DMEa 9,528 119 (1.2%) 0.590 2.135 1.746

(0.491–0.709) (0.729–6.252) (1.583–1.926)

P < 0.001 P = 0.167 P < 0.001

VTDRa 9,528 287 (3.0%) 0.725 2.043 1.962

(0.640–0.822) (0.948–4.405) (1.828–2.106)

P < 0.001 P = 0.068 P < 0.001
aPre-specified primary prediction tasks. Bold font indicates P < 0.05.
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extends to the edge of the corneoscleral junction. Corneal diam-
eter (or iris size here) is known to be relatively constant in the adult 
population13,14.

We first examined to what degree pupil size added useful infor-
mation to these predictive tasks by inspecting the effect of its addi-
tion to the baseline characteristics model (Supplementary Table 2). 
There was generally little to no improvement in AUC of the baseline 
characteristics model (approximately 1% with overlapping confi-
dence intervals (CIs)). The only exceptions were in validation set C, 
with 3–4% AUC improvements for moderate+ DR and VTDR. The 
improvement of the DLS over these augmented baseline characteris-
tics models remained statistically significant in all cases (P < 0.001). 
Similarly, in an adjusted analysis including estimated pupil size, the 
external eye predictions retained statistically significant odds ratios 
(Supplementary Table 3).

Additionally, to determine whether the model’s ability to 
detect diabetic retinal disease could be explained by its ability to 
detect elevated HbA1c, we conducted an analysis adjusting for 
laboratory-measured HbA1c values (Supplementary Table 4). 
Even in this adjusted analysis, the odds ratios remained statisti-
cally significant, ranging from 1.4 to 3.2 on the primary predictions 
(P < 0.001 for moderate+ DR, DME and VTDR across all three vali-
dation datasets that contain DR labels).

Sensitivity and subgroup analysis. Because these external eye 
images were taken with fundus cameras, we next sought to exam-
ine whether lower-quality images would suffice. To simulate 

(Methods)3. The central region of the image was more impor-
tant than the outer rim for all predictions except for lipids, with 
the biggest delta being our positive control, cataract (Fig. 2a,b). 
For lipids predictions, the central region and outer rim appeared  
equally important.

Next, we conducted saliency analysis using several gradient-based 
methods (Methods and Fig. 3). The systemic predictions (HbA1c 
and lipids) were the most distinct, with almost all of the attention 
on the nasal and temporal conjunctiva/sclera (that is, where con-
junctival vessels tend to be prominent; Fig. 3b–d). By contrast, all 
three diabetic retinal disease predictions (moderate+ DR, DME and 
VTDR) focused on both the pupil and the nasal and temporal iris 
and conjunctiva (Fig. 3e–g). The cataract predictions focused on the 
pupil in the middle of the image (Fig. 3h). The results of additional 
saliency methods are presented in Extended Data Fig. 4a–g, with a 
quantitative summary of these trends in Extended Data Fig. 4h,i.

Because diabetes is known to affect pupil sizes7,12, and multiple 
attribution methods highlighted the pupil/iris region (Fig. 3 and 
Extended Data Fig. 4), we reasoned that the DLS could have learnt 
to perform these predictions via measuring pupil size. To test this 
hypothesis, we first trained a pupil/iris detection model using a 
subset of the development set (Methods), and we used this model 
to estimate the pupil size in the validation sets (Supplementary 
Information and Supplementary Figs. 1 and 2). To correct for dif-
ferences in distance from the camera, we normalized the pupil size 
by representing the pupil radius as a fraction of the iris radius. The 
iris size is equivalent to the corneal diameter since the visible iris 

Table 5 | Adjusted analysis for validation set D

Prediction target Number of visits Odds ratio (95% CI), P value

Total Positive (%) Age (per 
decade)

BMI (per 
5 kg m−1)

Male Whitea Othera DLS (external 
eye image)

HbA1c ≥7% 2,949 1,045 (35.4%) 1.440 1.413 1.574 0.790 0.900 1.896

(1.328–1.562) (1.320–1.512) (1.196–2.071) (0.659–0.946) (0.626–1.295) (1.735–2.073)

P < 0.001 P < 0.001 P = 0.001 P = 0.010 P = 0.571 P < 0.001

HbA1c ≥8% 2,949 572 (19.4%) 1.315 1.230 1.651 0.656 0.692 1.966

(1.191–1.451) (1.141–1.325) (1.183–2.305) (0.529–0.814) (0.442–1.083) (1.772–2.182)

P < 0.001 P < 0.001 P = 0.003 P < 0.001 P = 0.107 P < 0.001

HbA1c ≥9%b 2,949 331 (11.2%) 1.235 1.170 1.707 0.387 0.341 1.992

(1.088–1.401) (1.068–1.283) (1.147–2.542) (0.290–0.516) (0.173–0.672) (1.759–2.256)

P = 0.001 P < 0.001 P = 0.008 P < 0.001 P = 0.002 P < 0.001

Tch ≥200 mg dl−1 3,866 1,029 (26.6%) 0.917 0.871 0.624 1.043 1.171 1.280

(0.849–0.992) (0.819–0.926) (0.509–0.764) (0.888–1.226) (0.853–1.606) (1.168–1.402)

P = 0.030 P < 0.001 P < 0.001 P = 0.606 P = 0.329 P < 0.001

Tch ≥240 mg dl−1 3,866 301 (7.8%) 0.948 0.809 0.562 1.171 1.431 1.213

(0.841–1.069) (0.728–0.899) (0.414–0.762) (0.899–1.524) (0.883–2.320) (1.062–1.385)

P = 0.382 P < 0.001 P < 0.001 P = 0.242 P = 0.146 P = 0.004

Tg ≥150 mg dl−1 3,891 1,102 (28.3%) 1.005 1.164 1.778 1.300 1.330 1.552

(0.935–1.081) (1.096–1.236) (1.381–2.290) (1.033–1.637) (0.954–1.854) (1.394–1.728)

P = 0.884 P < 0.001 P < 0.001 P = 0.026 P = 0.092 P < 0.001

Tg ≥200 mg dl−1 3,891 612 (15.7%) 0.998 1.178 1.507 1.376 1.304 1.533

(0.912–1.093) (1.096–1.266) (1.094–2.075) (1.043–1.815) (0.869–1.958) (1.360–1.728)

P = 0.967 P < 0.001 P = 0.012 P = 0.024 P = 0.200 P < 0.001

Tg ≥500 mg dl−1 3,891 43 (1.1%)c 0.828 1.044 3.271 1.652 0.999 1.213

(0.607–1.128) (0.821–1.329) (0.752–14.235) (0.753–3.625) (0.221–4.518) (0.936–1.571)

P = 0.231 P = 0.724 P = 0.114 P = 0.211 P = 0.999 P = 0.144
aReference category: Black (the most prevalent race/ethnicity in this cohort). bPre-specified primary prediction tasks. cFewer than 50 positive examples. Bold font indicates P < 0.05.
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subgroup; for cataract in the age >50 years, small pupil and camera 
type B subgroups. In all of these cases, the AUC of the baseline char-
acteristics model decreased as well.

Validation set D had additional variables available: body mass 
index (BMI), diabetes status and presence of intraocular lens (IOL). 
We conducted subgroup analysis based on these variables for both 
the HbA1c ≥9% and ≥ 7% prediction tasks (due to the relatively 
few numbers of positive examples of the former; Supplementary 
Tables 12 and 13). Across the different BMI groups, the DLS AUC 
dropped by at most 4% compared with the full dataset. In the 
non-diabetic group, as may be expected, there were few positives 
for these cut-offs and, hence, CIs are wide. Nevertheless, the DLS 
outperformed the baseline characteristics model (57.6% versus 
53.7% for HbA1c ≥7%). Across the two IOL groups, AUC differed 
by at most 0.6% compared with the full dataset. Taking into account 
both HbA1c ≥9% and HbA1c ≥7%, we did not observe any trends 

low-quality images, the input images were down-sampled to lower 
resolutions for both training and evaluation (Methods). The DLS 
performance decreased slightly as the input size decreased to 75 
pixels and then substantially as the input size decreased below  
35 pixels (Fig. 2c,d).

Next, we conducted extensive subgroup analyses across multi-
ple variables: demographic information (age, sex and race/ethnic-
ity), presence of cataract, camera types (for a subset of data where 
this information was available) and pupil size in validation set A 
(Supplementary Tables 5–11). In brief, the DLS (and the baseline 
variables) remained predictive in all subgroups. The DLS consis-
tently outperformed the baseline characteristics model, albeit with 
the difference not reaching statistical significance in some sub-
groups. The DLS AUC dropped by more than 5% in some sub-
groups: the triglycerides ≥200 and moderate+ DR targets in the 
Black subgroup; the VTDR target in the >10 years with diabetes 
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elevated lipids. We accomplished this through the development of 
a DLS, which generalized to diverse patient populations (includ-
ing race/ethnicity groups with differences in iris colour and the red 
reflex), different imaging protocols and devices from independent 
clinics in multiple US states. The results for our primary predic-
tion targets (HbA1c ≥9% and presence of varying levels of diabetic 
retinal disease) were statistically significantly better compared with 
using demographic information and medical history (such as years 
with diabetes) alone and remained statistically significant after 
adjusting for multiple baseline characteristics and within numerous 
subgroups. Our exploratory results also show promise in extend-
ing this method to predicting elevated lipids and generalizing to a 
non-diabetic population.

The discovery that predictions about systemic parameters and 
diabetic retinal disease could be derived from external eye photog-
raphy is surprising, since such images are primarily used to identify 
and monitor anterior eye conditions, such as eyelid and conjuncti-
val malignancies, corneal infections and cataracts. Although there 
are numerous studies noting that conjunctival vessel changes (fewer, 
wider and less tortuous conjunctival vessels)9,10,15–17 are associated 
with duration of diabetes18,19 and severity of DR20,21, and elevated 
cholesterol levels and atherosclerosis have been linked to xanthe-
lasmas (yellowish deposit under the eyelid skin)22. However, to our 
knowledge, there have been no large studies linking HbA1c or dia-
betic macular oedema to conjunctival vessel changes in diabetes. 
Furthermore, conjunctival vessel assessment for signs of diabetes 
or elevated lipids is not a common clinical practice due to the sub-
jectivity and time-consuming nature of such an evaluation and the 
option of a more accurate and easier test for the clinician (HbA1c). 
We verified that these surprising results were reproducible and not 
an artefact of a single dataset or site via broad geographical valida-
tion across 18 US states.

Our evidence provides several hints as to how these predic-
tions are possible. First, the ablation analysis indicates the centre 
of the image (pupil/lens, iris/cornea and conjunctiva/sclera) is sub-
stantially more important than the image periphery (for example, 
eyelids) for all predictions (Fig. 2a,b). Second, the saliency analysis 
similarly indicates that the DLS is most influenced by areas near 
the centre of the image. These included the pupil and the corneo-
scleral junction for diabetic retinal disease and both the nasal and 
temporal conjunctiva (where conjunctival blood vessels are often 
most prominent) for blood sugar control (HbA1c) (Fig. 3). In both 
analyses, the positive control (cataract, which is visible at the pupil/
lens) provides a useful baseline attribution map for a prediction that 
is expected to focus exclusively on the pupil/lens. Moreover, the 
quantitative results where the DLS remained predictive within pupil 
size subgroups, after adjusting for pupil size, and compared with a 
baseline model augmented with pupil size, suggest that the perfor-
mance of the DLS could not be explained by it relying on pupil size 
alone. Together, these data suggest that the DLS is leveraging both 
information in the pupil region, such as from the light reflecting 
from the retina (‘red reflex’), and information outside of the pupil/
iris region, such as in the conjunctival vessels. For diabetic retinal 
disease predictions, we observed that DLS scores remained statis-
tically significant even when adjusting for HbA1c, suggesting that 
the model is picking up on signals beyond elevated HbA1c to make 
these predictions. Finally, the performance of the DLS for HbA1c 
trended upwards for higher HbA1c cut-offs (AUC: 66.9% for ≥7% 
versus 69.1% for ≥8% versus 70.0% for ≥9% in validation set A), 
compared with a ‘flat’ trend of 65% for baseline characteristics. This 
‘dose dependent’ trend cannot be explained by increased training 
data (because the number of examples of ≥9% is strictly less than 
≥8%) and suggests that the features used by the DLS were related 
to the extent of elevated glucose levels. A similar trend of increasing 
DLS AUCs for higher cut-offs was observed for total cholesterol and 
triglycerides. Better scientific understanding of these predictions 

towards worse performance with race/ethnicity in this dataset with 
a higher proportion of Black patients.

Discussion
Our results show that external images of the eye contain signals of 
diabetes-related retinal conditions, poor blood sugar control and 
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20–90% could have moderate-or-worse diabetic retinal disease that 
warrants ophthalmology referral. Importantly, compliance with dia-
betic eye disease screening is estimated to be only 20–50% (refs. 29–32) 
due to factors such as transportation difficulties23. If our approach 
could be shown to generalize to images captured by non-specialized 
equipment, remote DR ‘pre-screening’ using this method may 
enable targeted support for high-risk patients. Conversely, patients 
at very low risk of developing diabetic retinal disease could poten-
tially be screened less frequently. Additionally, detection of high 
blood lipids, or hyperlipidemia, from external eye photos allows 
for an easy, non-invasive approach for cardiovascular disease risk 
factor33 screening. Early identification of individuals with hyper-
lipidemia, who have a twofold increased risk of cardiovascular 
disease development34, could allow for earlier lifestyle counselling, 
medication intervention, additional disease screening and reduc-
tion in morbidity and mortality. Lastly, minimizing in-person visits 
to health clinics has become exceedingly important in prevent-
ing disease spread. During the current coronavirus disease 2019 
(COVID-19) pandemic, many countries are actively encouraging 
‘social’ (physical) distancing and deferment of non-urgent medi-
cal visits, including decreased visits for diabetes35. Similarly to how 
phone cameras36,37 can help identify digital biomarkers of diabetes38, 
external eye photo-based screening could allow for remote evalua-
tion, potentially from home, and with common equipment, greatly 
minimizing risk to the individual and others.

This work establishes that signs of systemic disease can be identi-
fied from external eye images. These initial findings raise the tan-
talizing prospect that such external eye photographs may contain 
additional useful signals, both familiar and novel, related to other 
systemic conditions. Clinically, numerous external or anterior seg-
ment findings are correlated with or are the result of underlying 
systemic disease. Obstructive sleep apnoea is associated with floppy 
eyelid syndrome (easily everted eyelids) and resultant papillary 
conjunctivitis39,40. Thyroid disease can manifest specific ocular signs 
such as upper eyelid retraction, conjunctival injection (redness) and 
chemosis (swelling) and caruncular oedema (swelling of small, pink 
nodule at the inner corner of the eye)41,42. Atherosclerosis has been 
linked with xanthelasmas, which is predictive of adverse cardiac 
outcomes43. Systemic hypertension, another high-morbidity dis-
ease, has been associated with conjunctival microangiopathy and 
correlates with time since hypertension diagnosis44. Beyond eyelid 
and conjunctival changes, deposition of calcium or uric acid in the 
cornea may signify derangements related to hyperparathyroidism, 
chronic renal failure and gout45–47. Previous work has also shown 
that the severity of corneal and conjunctival calcium deposition, 
as determined by external eye photos, is predictive of all-cause 
one-year mortality risk in haemodialysis patients48. Recently, hep-
atobiliary disease signals have been identified in slit-lamp photos 
of the eye49. These manifestations could be readily captured with 
external eye photography that documents the eyelids, conjunctiva 
and cornea, and further work examining these disease populations 
is needed to assess additional systemic disease prediction models. 
Similarly to how investigations into manifestations of systemic dis-
ease in the retina have been dubbed ‘oculomics’50, such analyses on 
external ocular images could be termed ‘exoclumics’.

Our study is not without limitations. First, we have limited data 
with which to understand if smartphone or webcam images are suf-
ficient, because all images were taken by healthcare professionals 
using a table-top fundus camera. Although the resolution and actual 
image sensor (for example, Canon EOS-series cameras) were similar 
to consumer-grade cameras, these clinical-grade cameras provided 
chin stabilization that may have reduced motion blur and controlled 
the shooting angle and distance, good lighting via circular flash to 
reduce occlusion of features from shadows and greater magnifica-
tion51. Similarly, despite only semi-standardized protocols, clinical 
professionals may have provided instructions to standardize gaze 

via systematic falsifying of hypotheses, and potentially enabling 
experts to perform the same predictions, will need to be addressed 
in future work.

Our technique has potential implications for the large and rapidly 
growing population of patients with diabetes because it does not, in 
principle, require specialized equipment. Specifically, screening for 
diabetes-related retinal disease requires fundoscopy or the use of a 
fundus camera to examine the back of the eye through the pupil. 
This limits disease screening and detection examinations to either 
eye clinics or store-and-forward teleretinal screening sites where 
fundus cameras are present—both of which require in-person visits. 
Indeed, poor access and cost contribute, in part, to low DR screen-
ing rates23. Similarly, HbA1c and lipid measurements require an 
in-person visit for a venous blood draw, which can be unpleasant 
for patients and have multiple potential side effects, including bleed-
ing, bruising and nerve damage24. Our results suggest that signs of 
these conditions are extractable from a photograph of the front of 
the eye without pupil dilation via eye drops, as shown in validation 
set A. There appeared to be performance differences in the proposed 
model with versus without dilation, but the prevalence differences 
and the fact that baseline models (that do not depend on whether the 
eyes were dilated) shifted in the same direction suggest that a patient 
population difference was at least partially responsible. While the 
experiments in the paper did use external eye images captured by a 
fundus camera, we show that even low-resolution images of 75 × 75 
pixels (which is 1% of the resolution of a basic ‘720p’ laptop webcam 
and 0.1% of the resolution of a standard 8-megapixel smartphone 
camera) result in adequate performance, suggesting that the resolu-
tion requirements for this technique can be easily met. While further 
work is needed to determine whether there are additional require-
ments for lighting, photography distance or angle, image stabiliza-
tion, lens quality or sensor fidelity, we hope that disease detection 
techniques via external eye images can eventually be widely acces-
sible to patients, whether in clinics, pharmacies or even at home. The 
AUCs in our experiments may not be adequate for a confirmatory 
diagnosis; for example, it is not expected to approach detection par-
ity with the reference standard obtained via fundus photographs or 
blood test. However, they are comparable to other low-cost and acces-
sible screening tools, such as the pre-diabetes risk score from the US 
Centers for Disease Control and Prevention25,26, which achieves an 
AUC of 0.79–0.83, with a PPV ranging from 5% to 13%. Because lack 
of access to and underuse of healthcare are associated with poor dia-
betic management27, we hope that the availability of easily accessible 
techniques such as ours can improve adherence to diabetic interven-
tions, which we know to be cost saving or cost effective28. Finally, our 
exploratory analysis on validation set D shows promise in extending 
this approach to a more general, non-diabetic population.

The potential future use cases for easy identification and moni-
toring of high-risk diabetic patients are manifold. First, detecting 
patients with diabetes who have difficulty controlling their blood 
glucose (HbA1c ≥9%) may help reveal which patients are in need 
of further counselling, additional diabetic resources and medi-
cation changes. In our analysis, when the top 5% of patients with 
the highest predicted likelihood were examined, 50–75% may 
truly have HbA1c ≥9%. Similarly, our exploratory analysis on the 
non-diabetic subgroup of validation set D demonstrates that it may 
be possible to identify potentially asymptomatic patients at risk 
for diabetes and help determine which patients may benefit from 
a confirmatory blood test and early interventions, such as lifestyle 
counselling or medications. Second, identification of patients at risk 
for diabetic retinal disease can determine which patients may ben-
efit from ophthalmology follow-up and targeted treatment to avoid 
diabetes-associated vision loss. In our analysis, if the top 5% of 
patients with the highest predicted likelihood of various severities 
of diabetic retinal disease were examined via fundus photographs, 
20–65% could have vision-threatening diabetic retinal disease, and 
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system’s catchment59. Ethics review and institutional review board exemption 
for this retrospective study on de-identified data were obtained via the Advarra 
institutional review board.

Imaging protocol. As part of the standard imaging protocol for DR screening at 
these sites, patients had photographs taken of the external eye for evaluation of 
the anterior segment (along with the retinal fundus photograph). At sites served 
by EyePACS, cameras (where this information was available) included Canon 
(CR1 and CR2), Topcon (NW200 and NW400), Zeiss Visucam, Optovue iCam 
and Centervue DRS. On the basis of available image Exif metadata, images were 
digitized using Canon EOS single-lens reflex cameras. The image protocol involved 
first positioning patients comfortably in front of the camera with their chin resting 
on the chin rest and their forehead an inch away from the forehead brace. The 
operator then took external images of the right eye and then the left eye, ensuring 
image clarity, focus and visibility of the entire eye, including the iris, pupil and 
sclera60. At sites served by the VA diabetic teleretinal screening programme, the 
cameras included Topcon NW8 and Topcon NW400. The acquisition protocol 
involved slightly distancing the patient from the fundus camera to capture a clear 
view of the external eye; further alignment was entrusted to the operator. The 
external eye photographs were intended to document findings such as cataracts 
and eyelid lesions. None of the external eye images was excluded for image quality 
or other reasons.

Labels. Diabetic retinal disease in EyePACS (development set and validation 
sets A and B) was graded by EyePACS-certified graders using a modified Early 
Treatment Diabetic Retinopathy Study grading protocol61,62. Graders evaluated 
three-field retinal fundus photographs (nasal, primary and temporal), and the 
absence or presence of lesions was mapped63 to five International Clinical Disease 
Severity Scale (ICDR) DR levels: no DR, mild, moderate, severe and proliferative 
DR and DME. VTDR was defined as severe-or-worse DR or DME. Diabetic retinal 
disease in the VA dataset (validation set C) was graded by ophthalmologists at the 
VA using the same protocol as EyePACS, except that only macular-centred and 
disc-centred fundus photographs were available. In all datasets, hard exudates were 
used as a surrogate for the presence of DME.

Baseline characteristics, including demographic information, were patient 
reported and provided by each site. Blood lab measurements (HbA1c, total 
cholesterol and triglycerides) were extracted from the patients’ medical records and 
could be from prior visits. For the VA datasets, labs from more than 90 days away 
from the date of the external eye photo were discarded; for EyePACS, this was not 
possible due to lack of precise dates. Diabetes status for the VA TECS dataset was 
determined from both the International Classification of Diseases codes (ICD-10 
codes E09–E11 and E13 and ICD-9 codes 250 and 362.0) available in their medical 
records and notes from their eye care visit (for example, if the patient self-reported 
as being diagnosed with DR, they were labelled as diabetic because the DR 
diagnosis requires a diabetes diagnosis). Intraocular lens status in the VA TECS 
dataset was determined from the notes of the eye care visit. Cataract presence in 
the EyePACS images was indicated by the EyePACS graders but was not available in 
the VA datasets.

Pupil size estimation. To better understand whether pupil size was associated 
with our results, we obtained segmentations of both pupil and iris size. To do so, 12 
ophthalmologist graders evaluated a total of 5,000 external eye images. If the pupil 
and iris were distinct enough to delineate the borders accurately, the graders drew 
ellipses around both the iris and pupil (Supplementary Fig. 1). This was performed 
for a subset of 4,000 randomly selected images in the development set, another 500 
images in validation sets A and B combined and 500 images in validation set C. We 
then trained a model to segment the iris and pupil using the labelled development 
set images and evaluated the accuracy in the validation sets (Supplementary Note 
1 and Supplementary Fig. 2). Our pupil size analyses were based on running this 
model across all images.

DLS development. The DLS takes an external eye photograph as input and 
was trained to provide predictions about both systemic parameters (from labs: 
HbA1c, total cholesterol and triglycerides) and diabetic retinal disease status 
(graded via colour fundus photographs). The DLS does not ‘see’ the colour fundus 
photographs, whether during training or evaluation. To develop the external eye 
DLS, we split the development dataset into training and tuning, split in a 7:1 ratio, 
while ensuring that each site was only in one split. All visits for all patients were 
used for training or tuning. A multi-task learning approach was used to train a 
single network to predict all tasks (that is, one ‘head’ per task). Specifically, all 
heads adopted a classification setup (with cross-entropy loss) to ensure that all 
losses were in comparable units. For HbA1c and lipids, we opted for a classification 
instead of regression setup, because experiments in the tune set found a 1–2% 
performance improvement in AUC by adopting a classification approach relative 
to a regression approach (and using the predictions as a proxy for the predicted 
likelihood of each binary outcome). Specifically, HbA1c was trained as 3 binary 
classification heads with thresholds at 7%, 8% and 9%; total cholesterol was trained 
as two binary classification heads with thresholds at 200 mg dl−1 and 240 mg dl−1, 
and triglycerides were trained as three binary classification heads with thresholds 

and improve image quality, and the clinical environment may have 
been darkened to enlarge pupil size. Additional work is needed 
to evaluate whether the DLS generalizes to other consumer-grade 
cameras and settings without modification or if additional data col-
lection for further training is needed. Second, part of the model’s 
performance may be derived from detecting confounding factors 
not available in this study. For example, patients with diabetes 
are more likely to develop cataracts52 and other anterior segment 
signs of proliferative DR (such as rubeosis iridis53 or neovascular 
glaucoma54) than non-diabetics, although these conditions are not 
common and unlikely to explain all of the model’s performance. 
To control confounding effects from cataract, we showed that the 
image-based model performed better than the baseline even with-
out the central, pupil-containing region, and we further verified 
our findings in a subgroup excluding patients labelled with cataract 
presence. However, cataract was not the primary screening goal in 
these datasets, and, therefore, their recall was probably imperfect; 
cataract type and severity were also unavailable. Other potentially 
relevant variables, such as BMI55 or use of related medications, were 
not consistently available and, thus, could not be used to develop 
baseline models or perform adjustment. Further study with veri-
fied and more granular incidental findings will help quantify the 
contribution from such potential confounding factors. Additionally, 
while we did present exploratory analysis showing promise in gen-
eralizing to non-diabetic populations, this will need to be evaluated 
further on a larger dataset, and the model may benefit from further 
training or refinement on this specific patient population (that is, 
those without diabetes). Lastly, other imaging modalities, such as 
slit-lamp photography, can reveal further signs of non-ophthalmic 
issues (hepatobiliary disease) from the eye49, and future work in 
understanding how to integrate these modalities or extracting simi-
lar information from external eye photographs is needed.

In addition to the above limitations, as this is an initial study 
examining the feasibility of extracting useful signals of disease from 
external eye photographs, future work will be needed to tackle addi-
tional challenges before clinical validation studies. First, use cases 
and target patient populations should be identified, and the mod-
els should be thoroughly tested to ensure adequate accuracy across 
subgroups. If needed, the model should be further refined or tuned. 
Similarly, operating points should be customized for the target 
patient population and use case. Finally, whether the availability of 
this technology would improve adherence to diabetic retinal disease 
screening and ultimately improve patient outcomes will also need 
to be studied56.

In summary, we demonstrated that external eye images can be 
used to detect the presence of several conditions, such as poor blood 
sugar control, elevated lipids and various diabetic retinal diseases. 
Further study is warranted to evaluate whether such a tool can be 
used in a home, pharmacy or primary care setting to improve dis-
ease screening and help with management of diabetes.

Methods
Datasets. This work used three teleretinal diabetic screening datasets and one more 
general eye care dataset in the United States (Table 1). The first two datasets were 
the California and non-California cohorts from EyePACS, a teleretinal screening 
service in the United States57. In the EyePACS datasets, patients presented to 
sites, such as primary care clinics, for diabetic retinal disease screening. Visits 
from unknown sites were excluded, and patients associated only with sites from 
unknown states were excluded. We leveraged data from California (the state 
with the most visits in EyePACS) for development and the remaining US states 
for validation purposes. Within the development dataset, data from Los Angeles 
County were further excluded as held-out data for another project. Validation set 
A consisted of all non-California visits without pupil dilation, and validation set 
B consisted of all non-California visits with pupil dilation. The third validation 
dataset (C) was from the Atlanta VA Healthcare system’s diabetic teleretinal 
screening programme58, which serves multiple community-based outpatient clinics 
in the greater Atlanta area. Most visits in validation set C involved pupil dilation. 
The final validation dataset (D) was from the TECS programme established 
in primary care clinics in Georgia associated with the Atlanta VA Healthcare 
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at 150 mg dl−1, 200 mg dl−1 and 500 mg dl−1. DR was discretized into the five 
ICDR categories; DME was binary (present/absent); VTDR was binary (present/
absent) and cataract was binary (present/absent). Some additional ‘auxiliary’ 
heads were included: age was discretized into seven categories: (0, 30], (30, 40], 
(40, 50], (50, 60], (70, 80] and (80, 90] years; race/ethnicity was categorized into 
Hispanic, White, Black, Asian and Pacific Islander, Native American and others; 
sex was represented as male and female; and years with diabetes was discretized 
into five categories: (0, 1.5], (1.5, 5.0], (5.0, 10.5], (10.5, 15.5] and (15.5, infinity) 
years. Because not every label was available for all of these heads, the losses were 
propagated only for the relevant heads for each example.

We trained five models based on the Inception-v364 architecture using 
hyperparameters summarized in Supplementary Table 14, and the predicted 
likelihood was averaged unless otherwise noted. Within the hyperparameter search 
space detailed in Supplementary Table 14, 100 random trials were conducted, and 
the top 5 models were selected. During each training run, the tune set AUC for 
HbA1c ≥7% was the first to decline after reaching the peak, so early stopping was 
based on the tune set AUC of this task.

DLS evaluation. For evaluation, we selected a single visit per patient at random. 
This resulted in 27,415 visits for validation set A, 5,058 visits for set B and 10,402 
visits for set C. We preprocessed the external eye photographs in the same manner 
as in previous work for colour fundus photographs1,65. Some of the prediction 
targets (described below) were on a per-visit basis (for example, HbA1c has a single 
value per visit per patient), and so the predictions of both eyes were averaged for 
evaluation purposes. For prediction targets that were specifically for each eye (for 
example, eye diseases that affect each eye individually), we randomly selected one 
eye per visit during evaluation. The exact numbers of data points used for each 
prediction task are presented in Supplementary Table 1.

For validation sets A and B, visits without dilation status information were 
excluded (9% of the total visits). A small number of patients had both visits with 
dilation and visits without dilation and were included in both datasets (n = 497).

Baseline models for comparisons. Models leveraging baseline characteristics were 
used as a baseline and were trained using logistic regression with class-balanced 
weighting and the default L2 regularization (with the hyperparameter C = 1.0) 
in the scikit-learn Python library. For validation sets A and B, the input baseline 
characteristics were self-reported variables: age, sex, race/ethnicity and years 
with diabetes. These baseline models were trained using only undilated or dilated 
visits, respectively, because using the entire training dataset did not improve 
tune set performance. This also kept the development process of the baseline 
model consistent with that of the DLS. For validation sets C and D, because 
race/ethnicity and years with diabetes were not available, only age and sex were 
used as input variables. These baseline models were trained using the respective 
validation sets due to the large differences in patient population (mostly male 
and older and enriched for Black and White patients) and differences in available 
baseline characteristics. This overestimates the baseline model’s performance and 
underestimates the improvement (delta) of our DLS.

Statistical analysis. We evaluated all results using the AUC, expressed as percentage 
(that is, 0–100%, where 50% is random performance). To evaluate the superiority 
of DLS predictions compared with the baseline model predictions in each dataset, 
we used the DeLong method66. The superiority analysis on four tasks (HbA1c ≥9%, 
moderate+ DR, DME and VTDR) was pre-specified and documented as primary 
analyses before applying the DLS to the validation sets. Alpha was adjusted using 
the Bonferroni method for multiple comparison correction (α = 0.025 for one-sided 
superiority test, divided by four tasks = 0.00625).

Pre-specified secondary analyses included additional evaluation metrics 
(sensitivity, specificity, PPV and NPV), additional related prediction tasks (cataract, 
HbA1c, total cholesterol, triglycerides, mild+ and severe+ DR), subgroup analysis 
(presence of cataract, pupil size, HbA1c stratification, demographic groups based on 
age, sex and race/ethnicity), adjusted analysis, explainability analysis and sensitivity 
analysis for image resolution and dilation status. Adjusted analyses leveraged 
logistic regression models fit using the statsmodels library (v0.12.1). For subgroup 
analysis, when a patient had multiple visits that satisfied a filtering criteria, one visit 
was chosen randomly. Finally, exploratory analyses were conducted for additional 
subgroups in validation set D (diabetes status, BMI and IOL).

Ablation analysis. We evaluated the dependence of DLS performance on the 
visibility of different regions of the image. Because both the images and ocular 
anatomy are ‘circular’ (that is, roughly radially symmetric), and most pupils are 
centred, we conducted this ‘image visibility’ analysis based on concentric circles. 
Two types of masking were examined: keeping only the centre visible and keeping 
the peripheral rim visible. At various degrees of masking, the two types of masking 
were compared while controlling for the number of visible pixels. For each 
condition, the same mask was applied during both training and evaluation.

Saliency analysis. From validation set A, 100 positive images with the highest 
predicted likelihoods were selected for saliency analysis for each task. Images were 
manually inspected to ensure correct vertical orientation and to orient the nasal 

aspect on the right. Three saliency methods were applied: GradCAM67, guided 
backprop68 and integrated gradient69, as implemented in the People+AI Research 
saliency library70.

Image resolution analysis. When simulating the low-resolution images, images 
were first down-sampled to the specified resolution using the area-based method 
(tf.image.resize with method=AREA). Next, to ensure that the DLS input size 
(and, thus, the network’s number of parameters and capacity) remained the same 
for a fair comparison, we up-sampled each image back to the original resolution 
(by bilinear interpolation with antialias using tf.image.resize with antialias=True). 
Down-sampling and up-sampling methods were chosen to produce the most 
visually appropriate images, blinded to the actual DLS results.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The main data supporting the results in this study are available within the paper 
and its Supplementary Information. This study used de-identified data from 
EyePACS Inc. and the teleretinal diabetes screening programme at the Atlanta 
Veterans Affairs. Interested researchers should contact J.C. (jcuadros@eyepacs.
com) to enquire about access to EyePACS data and approach the Office of Research 
and Development at https://www.research.va.gov/resources/ORD_Admin/ord_ 
contacts.cfm to enquire about access to VA data.

Code availability
The deep-learning framework (TensorFlow) used in this study is available at 
https://www.tensorflow.org; the neural network architecture is available from 
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_ 
v3.py; and an ImageNet pretrained checkpoint is available from https://github.com/ 
tensorflow/models/tree/master/research/slim.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Curves of positive predictive value (PPV) as a function of threshold for various predictions using external eye images.  
a, poor sugar control (HbA1c ≥ 9%), b-c, elevated lipids (total cholesterol ≥ 240 mg dl-1 and triglycerides ≥ 200 mg dl-1), d, moderate-or-worse diabetic 
retinopathy (DR), e, diabetic macular edema (DME), f, vision-threatening DR (VTDR), and g, a positive control: cataract. In these plots, the x-axis 
indicates the percentage of patients predicted to be positive; for example 5% means the top 5% based on predicted likelihood was categorized to be 
“positive”, and the respective curves indicate the PPV for that threshold. The curves are truncated at the extreme end (when only 0.5% of patients are 
predicted positive, confidence intervals are wide) to reduce noise and improve clarity. Shaded areas indicate 95% bootstrap confidence intervals. Empty 
panels indicate unavailable data in validation set C and D. (*) Baseline characteristics models for validation sets A and B include self-reported age, sex, 
race/ethnicity and years with diabetes and were trained on the training dataset. (+) The baseline characteristics models for validation sets C and D use 
self-reported age and sex and were trained directly on validation sets C and D due to large differences in patient population compared to the development 
set. †: prespecified primary prediction tasks.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Curves of negative predictive values (NPV) as a function of threshold for various predictions using external eye images.  
a, poor sugar control (HbA1c ≥ 9%), b-c, elevated lipids (total cholesterol ≥ 240 mg dl-1 and triglycerides ≥ 200 mg dl-1), d, moderate-or-worse diabetic 
retinopathy (DR), e, diabetic macular edema (DME), f, vision-threatening DR (VTDR), and g, a positive control: cataract. This is the NPV equivalent of 
Extended Data Fig. 1. The curves are truncated at the extreme end (when only 1% of patients are predicted negative, confidence intervals are wide) to 
reduce noise and improve clarity. Shaded areas indicate 95% bootstrap confidence intervals. Empty panels indicate unavailable data in validation set C and 
D. (*) Baseline characteristics models for validation sets A and B include self-reported age, sex, race/ethnicity and years with diabetes and were trained 
on the training dataset. (+) The baseline characteristics models for validation sets C and D use self-reported age and sex and were trained directly on 
validation sets C and D due to large differences in patient population compared to the development set. †: prespecified primary prediction tasks.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Receiver operating characteristic curves (ROCs) for various predictions using external eye images. a, poor sugar control 
(HbA1c ≥ 9%), b-c, elevated lipids (total cholesterol ≥ 240 mg dl-1 and triglycerides ≥ 200 mg dl-1), d, moderate-or-worse diabetic retinopathy (DR),  
e, diabetic macular edema (DME), f, vision-threatening DR (VTDR), and g, a positive control: cataract. Sample sizes (“N” for the number of visits and “n” 
for the number of positive visits), area under ROC (AUCs), and the p-value for the difference are provided in Supplementary Table 1. Empty panels indicate 
unavailable data in validation sets C and D. (*) Baseline characteristics models for validation sets A and B include self-reported age, sex, race/ethnicity and 
years with diabetes and were trained on the training dataset. (+) The baseline characteristics models for validation sets C and D use self-reported age and 
sex and were trained directly on validation sets C and D due to large differences in patient population compared to the development set. †: prespecified 
primary prediction tasks.
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Extended Data Fig. 4 | Saliency analysis illustrating the influence of various regions of the image towards the prediction. a-g, Figures are generated  
in the same manner as in Fig. 3, but with different saliency methods: Integrated Gradients on the left, and guided backpropagation on the right.  
h-i, Quantifying the pixel intensity in the averaged saliency heatmaps. †: prespecified primary prediction tasks.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used.

Data analysis The open-sourced library TensorFlow was used to develop the models, and the statsmodels library and custom Python code were used for 
statistical analysis.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The main data supporting the results in this study are available within the paper and its Supplementary Information. This study used de-identified data from 
EyePACS Inc. and the teleretinal diabetes screening program at the Atlanta Veterans Affairs. Interested researchers should contact J.C. (jcuadros@eyepacs.com) to 
inquire about access to EyePACS data and approach the Office of Research and Development at https://www.research.va.gov/resources/ORD_Admin/
ord_contacts.cfm to inquire about access to VA data.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Explicit sample-size calculations were not done; instead, we aimed at having geographically separate regions for broad external validation 
(that is, if the model was trained on California data, it was evaluated on non-California data).

Data exclusions The images and baseline characteristics needed to be available. In addition, Los Angeles county was excluded from the training data because 
it was held out for other projects.

Replication Broad geographical validation across 4 validation sets spanning 198 sites in 18 other US states.

Randomization Randomization was not applicable, because this study was not interventional. However, a negative control prediction (cataract) was used for 
the saliency experiments.

Blinding All grading or labelling were done blinded to model predictions.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Details are provided in Table 1. Briefly, the EyePACS datasets and validation set C correspond to patients with diabetes, 
whereas validation set D also includes patients without diabetes who presented to eye care at the VA.

Recruitment This was a retrospective study involving de-identified data, and hence there was no explicit enrollment. Please see Methods 
for details.

Ethics oversight Ethics review and Institutional Review Board exemptions for this retrospective study on de-identified data were obtained via 
the Advarra Review Institutional Review Board.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Not applicable, because this study was not prospective nor interventional.

Study protocol Not applicable, because this study was not prospective nor interventional.
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Data collection This work used de-identified images and baseline characteristics from 4 teleretinal eye screening datasets in the US. The first two 

datasets were the California and non-California cohorts from EyePACS, a teleretinal diabetic screening service in the US. The third 
and fourth datasets were from the Atlanta Veterans Affairs (VA), which served multiple community-based outpatient clinics (CBOCs) 
in the greater Atlanta area.

Outcomes HgA1c values were extracted from the relevant records by each site; diabetic retinal diseases were graded by graders blinded to 
model predictions.
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