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Abstract: Smart cities are expected to improve the quality of life of citizens by relying
on new paradigms, such as the Internet of Things (IoT) and its capacity to manage and
interconnect thousands of sensors and actuators scattered across the city. At the same
time, mobile devices widely assist professional and personal everyday activities. A very
good example of the potential of these devices for smart cities is their powerful support for
intuitive service interfaces (such as those based on augmented reality (AR)) for non-expert
users. In our work, we consider a scenario that combines IoT and AR within a smart city
maintenance service to improve the accessibility of sensor and actuator devices in the field,
where responsiveness is crucial. In it, depending on the location and needs of each service,
data and commands will be transported by an urban communications network or consulted
on the spot. Direct AR interaction with urban objects has already been described; it usually
relies on 2D visual codes to deliver object identifiers (IDs) to the rendering device to identify
object resources. These IDs allow information about the objects to be retrieved from a
remote server. In this work, we present a novel solution that replaces static AR markers with
dynamic markers based on LED communication, which can be decoded through cameras
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embedded in smartphones. These dynamic markers can directly deliver sensor information
to the rendering device, on top of the object ID, without further network interaction.

Keywords: Internet of Things; sensors; augmented reality; smart city; visible
light communication

1. Introduction

Smart cities are complex environments where several areas of innovation meet in order to substantially
improve socioeconomic development and quality of life [1]. Economic innovations, technological tools
that encourage people to participate in governance processes and Internet-enabled city infrastructure
services and utilities form a thriving research field.

Although a widely-accepted definition of the concept of a smart city does not yet exist, there is
a general agreement that one of the main goals of smart cities should be to improve the quality and
efficiency of city services, while reducing operational costs and making better use of public resources [2].

In order to achieve these goals, vast networks of interconnected sensors are being deployed. Just a
few examples are pollution detectors, water quality meters, noise indicators and power grid controllers.
Actuators, such as water control valves or electrical switches, also need to be installed in order to both
monitor and control public resources. The practical interconnection of such a large set of devices to fulfill
specific optimization goals requires technological advances beyond the theoretical results for classic
wireless sensor network (WSN) architectures. The increasing need for scalability and distributed control
has led to the concept of the Internet of Things (IoT).

The IoT paradigm, which transforms any object or appliance into part of a connected network, thus
dissolving the barriers between the physical and virtual worlds, has become the cornerstone of many
services in a smart city, including more efficient maintenance tasks. With the support of distributed
sensor and actuator networks, it provides staff in the field with information as needed. This has been
demonstrated in city-wide testbeds, such as Smart Santander [3], or the smart cities of Padova [2],
Nice [4] and Oulu [5].

As stated in essential works on the topic [6], one of the main benefits of a world where everything is
connected is that technology forms an invisible part of people’s lives. This is where augmented reality
(AR) interfaces can make a difference compared with more traditional approaches.

Nowadays, city service maintenance agents often have difficulties identifying and fixing problems in
city infrastructures, as there is little technology available to facilitate their work. The system described
in this paper aims to facilitate this work through AR technology. We assume a scenario in which a sensor
and actuator network is available throughout the city infrastructure.

Traditional AR interfaces rely on static markers to determine the position and identifier (ID) of the
object to which virtual information is linked. However, in this work, we propose a novel mechanism
based on visible light communication (VLC) that not only provides the same identification and
positioning information as AR markers, but also allows the transmission of small amounts of arbitrary
data as a technological enabler to create more efficient services combining the IoT and AR paradigms. A
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VLC-based solution allows one to overcome some of the limitations of other near-range communication
technologies. VLC has a higher range than RFID or NFC, limited to tens of centimeters at most.
Therefore, the terminal camera may capture a wider scene while receiving data. This, combined with
the high directionality of VLC, enables the implementation of smartphone AR interfaces. Besides, the
proposed solution is also generalistic, since all smartphones include a camera, whereas RFID tags require
too specific reader technologies (note that NFC technology, howbeit included in many commercial
smartphone models, is not always available). Higher range radio beacons based on Bluetooth or
WiFi are lowly directional, so they do not support AR rendering well. In addition, radio waves often
propagate through walls, while VLC transmissions are always confined within the room where the
beacon is installed.

The rest of this paper is organized as follows: Section 2 briefly reviews previous related work in
the fields of IoT and AR interfaces applied to smart cities and also addresses basic usage of VLC with
commercial image capture devices. Section 3 presents the main contribution of this article, the design of
a dynamic AR anchor to link IoT infrastructure and AR interfaces via VLC communications. Section 4
describes the proposed architecture that takes advantage of these technologies to improve maintenance
efficiency in smart cities. Section 5 describes the laboratory testbed that emulates the smart city scenario
to validate the proposal and evaluates the performance of the dynamic AR marker. Finally, Section 6
concludes the paper and suggests future work.

2. Related Work

The IoT paradigm is very well suited to the architectural requirements of smart city services and has
therefore been previously considered in work in this field.

Zanella et al. [2] designed an urban IoT network based on the web service paradigm, deployed
in Padova (Italy). This proof of concept monitors street lighting and air quality and allows remote
identification of issues that demand the attention of maintenance staff through either a central control
station or mobile devices.

A different perspective is found in previous publications [7], where sensors and actuators of an
IoT-enabled smart city scenario are considered service providers, just as in a cloud provisioning model.
This proposal eliminates the barriers between physical (sensors and actuators) and logical (cloud service
providers) worlds, creating a higher level of abstraction that allows the deployment of innovative
ubiquitous smart city services.

Taking a framework perspective, Jin et al. [8] identified the basic IoT elements needed in smart cities
and described a case study for noise monitoring.

Although the above works deal with the interaction through mobile devices between city staff and
citizens and smart city services, they mainly focus on the communications architecture and do not
describe methods to improve user interaction or proximity communications with AR technologies, as
proposed in our work.

We must remark, however, that AR interfaces have already been applied in smart city and smart
building scenarios to deliver context-dependent information for both maintenance tasks and other
purposes, such as tourist information services [9–12]. For example, in Smart Santander, tourist
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information is delivered via AR interfaces on GPS-enabled smartphones, associating points of interest
with cloud data. This is complemented with QRcode labels and RFID tags when a more precise location
is needed [13,14].

Current smartphones allow the creation of powerful AR interfaces using video see-through display
techniques [15]. To create an overlay with augmented information on top of the image shown to the user,
the system needs to accurately identify and track relevant objects in the video stream field of view. This
can be achieved with techniques such as video processing, RFID object labeling and user positioning.

Static AR markers have been proposed to help to visualize sensor information. Two approaches have
been considered: the placement of AR markers over the sensor nodes themselves [16,17] or elsewhere,
using the marker as a gate identifier to access sensor information [18,19].

In the field of dynamic markers, we are only aware of the work by Peiris et al. [20], who proposed
an AR marker with limited information printed using temperature-sensitive ink. This thermochromic
marker enabled the devising of a four-range temperature sensor. In a smart city IoT environment, this
would pose scalability and connectivity problems.

Finally, while various authors have combined AR interfaces and IoT architectures in the same
framework, they only proposed static AR markers as physical object IDs [21,22]. In general, although
the individual technologies that form part of our proposal have all been dealt with in considerable depth
in the literature, none of the studies to date have considered the combination of AR and VLC to support
proximity information services relying on IoT architectures (where the AR marker acts as an additional
communications channel between a smart object and the user interface). In this paper, we show how this
combination of technologies improves usability and efficiency in a smart city maintenance scenario.

3. Dynamic AR Marker

Several options are available to link a physical IoT node to its logical representation in the network,
so that end user applications may access this information directly through the AR user interface. Some
frameworks use previously analyzed images as markers (also called anchors) to track the position and
orientation of areas where augmented content needs to be added [23–25], while others use QR codes or
even geopositioning to locate the points of interest.

The less computationally expensive mechanism is geopositioning. It is, however, also the least
accurate option and is generally useless for scenarios where the object is centimeters or even meters
from the user’s smartphone. For short-range applications, such as interactive print, QR codes or image
anchors are preferred for their high precision, yet they require greater computing power in user devices.
Whatever the case, all of these approaches are static in the sense that the information coded in the anchor
(the image, the information decoded from the QR image or the geographical position of a marker) cannot
be changed at runtime. Most systems based on these approaches resolve this issue by using anchors only
as a referrer to an online resource. In other words, a persistent connection is needed between the user
devices and a backend infrastructure.

In this work, we propose a new type of optical AR anchor that allows precise definition of the area of
interest for media overlays while providing a direct low-bandwidth communications channel for dynamic
information. To achieve this, instead of static markers based on images or QR codes, we employ an LED
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matrix that can be easily read by most personal device cameras nowadays. A basic diagram of this
dynamic marker is shown in Figure 1.

Figure 1. Dynamic LED marker.

Because of its geometric simplicity, a beacon consisting of a square array of eight LEDs was selected
for a proof-of-concept implementation. The function of the LEDs in the corners of the array is to define
the area to be analyzed, which is used as a reference to determine the position and orientation of the
beacon. The LED in the upper left corner always remains on as a reference point to find the other three
vertices and, hence, the transmitting LEDs. The remaining LEDs on the vertices (upper right, lower left
and lower right) blink at a fixed frequency (F1), as a clock reference for synchronizing the sampling of
the data LEDs. The four remaining LEDs, positioned halfway between the reference LEDs, are used to
transmit information (data LEDs).

The four transmitting LEDs follow a pattern depending on the value to be transmitted. Each
transmitting LED corresponds to a bit, in such a way that information is partitioned in four-bit chunks,
equivalent to nibbles. Thus, the values sent range from 0x0 to 0xF , expressed in hexadecimal format
(0b0000 and 0b1111 in binary format). Each of the four LEDs Xi is assigned a weight 2i, so that the
transmitted nibble X can be calculated simply as defined in Expression (1), where Xi is zero for a dark
LED and one for a lit LED.

X =
3∑

i=0

Xi2
i (1)

Care must be taken when reading the values of each Xi so that the smartphone camera does not sample
the status of a changing LED (ON to OFF or OFF to ON), since this could lead to errors in the decoded
message. To prevent this from happening, the blinking reference LEDs are used as a clock source, so that
data LEDs only change their values when the blinking reference LEDs are OFF. Furthermore, the value
of each Xi is only assumed to be valid if the blinking reference LEDs for the frame being processed are
all ON.

According to this symbol coding scheme, the information transmission data rate for a given frequency
F1 is F1/2 bytes per second (half a byte every 1/F1 seconds). Since most modern smartphones and video
conferencing cameras are capable of shooting video at 30 frames per second [26] (i.e., the sampling
frequency is Fs = 30Hz) and taking into account the sampling theorem, the maximum LED blinking
frequency that can be correctly detected is Fb = Fs/2 = 15Hz. As shown in Figure 2, at least two
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samples (images) must be captured each blinking period in order to correctly detect the LED frequency
of reference.

Figure 2. Effects of various sampling rates while sampling a signal [27].

In order to make the system more robust against spurious external light reflections and to avoid errors,
the value of each bit must be observed for three consecutive frames for the system to consider it valid.
The working frequency of the data transmission system is thus F1 = Fb/3 = 5 Hz. This means that,
using this transmission channel, a symbol of four bits can be transmitted five times per second, which
results in an overall throughput of 20 bits per second or 2.5 bytes per second. This was sufficient to
validate the proposed application in a real scenario.

To enable detection of the emitted LED pattern, we implemented a simple image processing routine
using OpenCV libraries [28]. First, the RGB image taken from the smartphone camera is converted
to grayscale. The FindContours [29] function then locates the frame contours and stores each one as
a vector of points. Once the contours of each LED have been identified, the Moments [30] function
is used to return the area described by each of the stored contours. Next, the center of these areas is
calculated so that each LED is referenced by a pair of x and y coordinates. However, even though LEDs
are correctly located with the described method, problems may arise in highly illuminated environments.
For example, light reflections or direct sunlight may give rise to false positives. To solve this problem,
the detection system was improved by eliminating higher and lower contrast regions within a fixed range.
Open contours were eliminated, yielding a procedure that is more robust in high luminosity conditions
(Figure 3). Finally, once the LEDs have been detected and positioned, the message is decoded. The
following restrictions were imposed to improve decoding reliability:

• All messages start with the byte 0x00.

• Message length is predefined and fixed.

When the mobile device camera is aimed at the beacon and the application starts capturing frames,
these frames are analyzed until a single lit LED is found. This corresponds to the fixed reference LED
located in the upper left corner of the beacon.
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Figure 3. Intense light reflections may cause false positives (Left). False positives are
reduced by applying simple image processing techniques (Right).

This LED can be detected because (1) the three LEDs located in the other corners of the beacon blink
at a fixed frequency and (2) all messages start with a 0x00 code, with all emitting LEDs off. Thus, all
other LEDs are turned off at given times. This serves as a start-of-frame (SOF) marker. Consequently,
the byte 0x00 should not be included in the message, and therefore, a byte stuffing algorithm, such as
COBS [31], is needed to escape illegal characters in the encoded sequence.

When the fixed reference LED is detected, its position is stored in memory. More captures are made
until four lit LEDs (the fixed LED and the three blinking reference LEDs) are located. Next, some basic
trigonometric operations are performed to verify that the four detected LEDs are arranged in a square,
and the positions of the other three corner LEDs are also stored in memory.

Once the positions of the beacon corners have been identified, the middle points of the edges of the
square are calculated. The locations of the data LEDs are estimated to be at these four points, as shown
in Figure 4.

Figure 4. Sampling points for fixed, blinking and data LEDs.

In subsequent captures, the status of all blinking reference LEDs is checked prior to evaluating the
status of the data LEDs. If the blinking reference LEDs are all lit, the values provided by the four data
LEDs are stored in a vector as the transmitted symbol. Otherwise, those values are discarded in order to
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avoid erroneous decoding due to transient states. As previously mentioned, the system ignores symbols
that are not repeated over at least three consecutive frames (Figure 5).

Figure 5. Sampling sequence for dynamic augmented reality (AR) marker LEDs.

When the number of correctly received values matches the pre-established length of the message,
the message is completely decoded and passed as an input to the AR application. The positions of the
corners that define the relative orientation of the marker are also sent to the application as a geometrical
reference for AR overlaying tasks (Figure 6).

Figure 6. A geometrical reference is passed to the application so it can determine the relative
positions of the camera and the dynamic marker.

4. Architecture and Implementation

The following use case was defined to validate the proposed technologies and their integration in a
smart city scenario (Figure 7):

• A maintenance worker wishes to check the status of some city appliances.

• The worker approaches an electrical panel and points a smartphone at an AR dynamic marker.
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• The smartphone decodes the information sent by the AR marker and obtains the device ID of the
electrical panel and dynamic status information (average energy consumption and status codes).

• This information is shown to the maintenance worker via the AR interface.

• If additional data are needed, the smartphone application can use the device ID obtained from the
AR marker to send a query to the backend infrastructure. Note that this is not compulsory in many
cases, as the status codes will quite often be enough to inform the worker of the situation.

This use case represents a system that is capable of linking a physical resource (an electrical panel)
to its logical representation (the panel ID) for AR applications and, at the same time, takes advantage of
the same identification channel to exchange basic information without the need for a permanent WAN
connection, saving thus both terminal power and bandwidth.

Figure 7. Use case for system validation.

Thus, the system in the use case consists of a combination of three main components, namely:

• An IoT infrastructure (described in Section 4.1) capable of gathering information from several
distributed monitoring points and distributing this via a low power wireless mesh communications
network to several devices, where it is consumed.

• An AR user interface (described in Section 4.2), supported by the user’s smartphone, that gives
the user seamless access to infrastructure information.

• An AR anchor (described in Section 3) that allows a physical point of information to be
dynamically linked to the logical information associated with that point.

The combination of these three elements lays the foundations for building an application that is both
more intuitive for users and more efficient in terms of network resource usage thanks to a distributed
access to information.
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The core contribution of this paper is a novel interaction mechanism for smart city proximity
information, with a use case focused on maintenance tasks, based on the combination of AR and IoT
through the previously described dynamic AR anchor. However, for the system to be successfully
validated in a testbed, an IoT communications infrastructure and an AR user interface are also required.
Sections 4.1 and 4.2 describe these complementary elements.

4.1. IoT Infrastructure

The IoT infrastructure supports a population of wireless nodes deployed in a smart city environment,
capable of sensing several parameters depending on the maintenance procedures. A backbone city
network of any type is used for central data transport.

Furthermore, a wireless infrastructure is available to provide the smartphones of the citizens and
maintenance workers with network access through several access points (WiFi APs or base stations)
scattered throughout the city.

Finally, sensing nodes are placed in several infrastructure elements, such as lamp posts, traffic lights
or electrical panels. These sensors collect information on parameters such as power consumption or
performance metrics. When arranged in local clusters, sensing nodes form local mesh networks in order
to communicate directly with each other.

In this scheme, at least one of the nodes in each mesh area acts as a border router (BR) to communicate
the group with the wired backbone and hence with the central servers and the cloud. Figure 8 summarizes
this architecture model.

Figure 8. Architecture model of the IoT infrastructure.

Each node uses 6LoWPAN and IPv6 protocols to communicate with other devices. This choice is
coherent with the fact that sensor nodes may be battery powered and have limited computation resources.
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Low power technologies, such as 6LoWPAN, can be applied to network data transfers while maintaining
a high degree of flexibility, scalability and energy efficiency. We chose to use the Contiki operating
system [32] for the nodes, as it is specially designed for constrained devices and includes many de facto
IoT communication standards

Sensor measurements are not expected to use more than 80-byte messages, and the transmission
frequency of the nodes is expected to be low, so high data rates are not necessary. We therefore used an
IEEE802.15.4 [33,34] wireless radio for mesh area communications. Adjacent areas use different radio
channels to avoid interference. Moreover, all areas are supposed to have their own PAN ID, so that they
are mutually independent.

The network layer employs the 6LoWPAN protocol [35]. This allows each node to have its own IPv6
address and to be directly accessed from any other node or device implementing the IPv6 protocol.

The BRs located in each of the defined mesh zones are responsible for routing information from their
respective mesh networks to the backbone and for ensuring adaptation between the 6LoWPAN protocol
and the standard IPv6 protocol. They maintain route tables for their networks and are also in charge of
6LoWPAN header compression and decompression for messages sent through their interfaces between
the 6LoWPAN network and the backbone.

The routing protocol of the 6LoWPAN network is the RPL [36] distance vector routing protocol. It
builds routes to communicate with nodes within the same mesh area. RPL was chosen for its efficient
memory usage and low control traffic relative to other options, such as link state routing protocols.

In Figure 9, the border router acts as the root node of the destination-oriented directed acyclic
graph (DODAG) built by the routing protocol. The objective function used to build the DODAG is
the minimum rank with hysteresis objective function (MRHOF), which uses the estimated transmission
count (ETX) as the default metric. This metric estimates the number of transmissions until a message
reaches its destination and builds the graph accordingly. When possible, redundant paths are established
to avoid node isolation.

Figure 9. Architecture model of the IoT infrastructure. Detail of mesh area network.
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The CoAP protocol [37] was chosen for the application layer, using UDP as the transport protocol
(Figure 10). This protocol allows the implementation of REST interfaces over constrained networks
formed by nodes with limited resources. Thus, each node can be accessed and its resources modified
using CRUD (create, read, update and delete) methods. Moreover, CoAP has been designed to support
HTTP bridging, so external devices (outside the network) not implementing the CoAP protocol may
access node resources directly if an HTTP/CoAP bridge is included in the network.

Figure 10. 6LowPAN protocol stack.

4.2. AR User Interface

We designed an AR graphic user interface (GUI) to exemplify the possibility of good user experience
with the system. The GUI is used to read and update information in the cloud infrastructure.

One of the main advantages of using AR along with a dynamic anchor is the possibility of visualizing
real-time data by simply pointing the user terminal to the target object (node), even when a connection
with the backbone network is not available. For that purpose, the terminal receives the following data
through an optical channel:

• ID number of the node.

• Status code of the node.

• Average power consumption over the last measuring period.

All of this information can be displayed as soon as the node is detected and the VLC message is
decoded. The transmitted message is composed of a three-byte node ID, followed by an eight-bit status
code (0x00 meaning OK) and a 16-bit integer value representing average power consumption (Table 1).

Table 1. Visible light communication (VLC) message fields. SOF, start-of-frame.

SOF Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5

0x00 Node ID Status code Average energy

As shown in Figure 11, the information is presented to the user as follows:

1. GUI background

(a) The actual image captured by the device camera is shown as the GUI background.

2. AR superimposed information.
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(a) Node ID: The top-left corner of the screen shows the unique identification number of the
detected node. This allows interaction with the node through the cloud.

(b) Node status: This represents the current status of the target node. A semi-transparent
color-coded rectangle is used, spread between the four corners of the dynamic anchor.
It also acts as a button to get extended information. The color of the square is related to
node status:

i. Green: All of the electrical features of the node are correct.

ii. Yellow: A problem has not yet been detected, but the readings exceed the normal ranges.
A maintenance worker should check the node to prevent further damage.

iii. Red: The node has a problem with one or more of its connections. A maintenance
worker should repair the panel.

(c) Average power: The bottom-left corner displays the average power consumption measured
over the last measurement period.

(d) Location map: A semi-transparent map is displayed in the top-right corner of the screen
showing the maintenance worker the location of the problem. This information is recovered
from the cloud services if available. Otherwise, the map is not shown.

Figure 11. Information presented to the user via the AR GUI.

This general GUI provides a quick overview of what is happening inside the target node. Nevertheless,
the proposed system has much more potential, which can be exploited with a GUI mode with finer detail.
In order to access this detailed information, an extended interface is proposed that would be displayed by
touching the colored zone over the dynamic anchor image. Figure 12 shows an example for the design
of this finer GUI.
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Figure 12. Design for a more detailed user interface.

When the maintenance worker changes the view from general to detailed information, the incoming
information is fed to the terminal in a different way. Whilst general data are mainly received through
optical (VLC) means, detailed information is retrieved by querying the cloud with the corresponding
node ID.

In our example, each electrical panel has several wired connections, and the GUI shows their
individual power consumption, status and the procedure for closing or opening the connection. To this
end, the relative position of the node with respect to the dynamic anchor is used as a reference to form
a grid. Some of the panel’s cells will contain a connection, easily identified by the grid coordinates, and
can be selected to obtain more detailed information.

By dividing the electrical panel image in cells, it is easy to show which connections are functioning
properly and which need to be repaired. For instance, a semitransparent colored region can be
superimposed over each connection. The color code can follow the same pattern as the general
GUI, applied at the connection rather than the overall node level. For example, in Figure 12, there
are connections in (1,1), (3,1), (2,2), (3,2) and (4,2), but only the connections in (1,1) and (3,2)
exhibit anomalies.

In addition to providing an adequate reflection of individual connection status, the grid division also
allows the creation of buttons to request information on and interact with a given connection. When the
maintenance worker clicks on one of the cells with a connection, the most detailed view will be displayed
(Figure 13). This interface offers the following options:

• Status of the target connection: only the cell of the selected connection will be enabled following
the same color code as in the other modes of the GUI.

• Power consumption of the connection: the bottom-left corner of the screen shows the power
consumption of the connection in real time.

• The bottom-right corner of the interface displays two buttons to open and close the target
connection. If the connection is closed, the “close” button will be disabled (as in Figure 13),
and if it is open, the “open” button will be disabled. Clicking the enabled button will switch the
connection on or off. This is the only option in which the terminal can change the state of the node.
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Figure 13. Example of a detailed view with available connections and related controls.

5. Validation and Results

We deployed a testbed to validate the systems described in this paper, emulating a real smart city
infrastructure. Figure 14 shows the main components of the testbed, which are described in Section 5.1.
In Section 5.2, we present the results of the performance evaluation of the dynamic AR marker.

Figure 14. Main components of the laboratory testbed: (1) border router and gateway;
(2) dynamic marker; (3) amperometric clamp.

5.1. Testbed Components Identification

The testbed was built over an Ethernet LAN emulating the wired backbone network with a WiFi
access point, allowing access to external terminals, such as smartphones. A 6LoWPAN border router
was connected to the network to route traffic from several test nodes and beacon prototypes.

The radio module used in the testbed nodes was the Freestar Pro ZFSM-201-X [38] from California
Eastern Laboratories. It includes a microcontroller unit (MCU), a transceiver and an antenna, integrated
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in a printed circuit board. It is based on Freescale’s MC13226V [39] platform and incorporates a power
amplifier (PA), a printed antenna and a connection interface for prototyping in other boards.

This module was included in a board designed to easily connect a variety of sensors and actuators
to the MCU ADC. Moreover, several LEDs were connected to that board in order to implement the
dynamic marker beacon described in Section 3.

Each node in the IoT network ran a version of the Contiki OS, ported to MC13226V microcontrollers,
with the uIP [40] protocol stack and CoAP as the application layer protocol. We have implemented the
following resources with CoAP for the nodes in the testbed, which are to be placed in electrical panels:

• well-known/core: default resource used by CoAP to request the list of resources for a node;

• sensors/vbatt: to monitor battery level;

• sensors/connstatus: to indicate the status of the indicated electrical connection of the panel;

• sensors/energycons: to obtain the average power consumption through the selected electrical
connection;

• actuators/set_beacon_freq: to set the frequency of the transmitting LEDs;

• actuators/led_pos: to activate the reference LEDs in the corners;

• actuators/led_beacon: to activate the data transmission LEDs;

• options/rfchannel: to modify the IEEE802.15.4 radio channel;

• options/txpower: to modify the transmission power of the node;

These resources are directly accessible on each node via the WAN interface of the border router.
Accordingly, any device connected to the backbone network can access relevant real-time information
provided by any of the individual infrastructure elements.

In the next step, we connected the test nodes to the electrical panels of a building using amperometric
clamps to measure the total intensity of current flow. These nodes were equipped with prototypes of
dynamic AR markers, allowing us to deliver basic information about the connections to an Android AR
application (Figure 15).

For the border router prototype, the following modules were used:

• ZFSM-201-2 California Eastern Labs MCU with Freescale MC123226V microcontroller

• FOX Board G20 [41] with Debian Linux system

The same radio module was used in the test nodes and the 6LoWPAN border router. Moreover,
to act as a bridge between wired (Ethernet) and wireless networks (WiFi), this module was connected
to a Linux board for routing traffic from these interfaces according to the destination subnet. This
was calculated using the IPv6 address of the destination (the same applied when routing traffic in the
opposite direction). Thus, interconnections between all of the elements of the testbed are supported,
thereby facilitating the inclusion of new nodes in the future.
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Figure 15. AR application in the testbed deployment showing the status of an
electrical panel.

Finally, the AR GUI in Figure 15 was implemented for Android devices. In order to interact with the
CoAP resources in IoT nodes, the Californium framework libraries [42] were ported to Android, after
resolving several problems regarding inter-process communications and library compatibility.

Using these ported libraries together with the OpenGL ESAPI [43], we implemented and tested the
basic information GUI described in Section 4.2 in a Nexus 4 terminal. Although the finer extended GUIs
described in Section 4.2 were left for future implementation, this prototype allowed us to validate direct
VLC communication between the user terminal and a node, as well as cloud information retrieval.

5.2. Dynamic AR Marker Performance

The first tests sought to find the optimum blinking frequency of the dynamic AR marker, to maximize
data throughput for an acceptable error rate. This frequency was estimated to lie in the interval between
3 and 6 Hz, as shown in Figure 16. Inside this range, the best frequency was ∼5 Hz.

Another relevant performance evaluation target was the maximum detection distance, to assess the
usability of the system proposed against other technologies that cannot attain both high directionality and
relatively long ranges, such as NFC, RFID, WiFi and Bluetooth. This distance is directly proportional to
the actual size of the marker. Figure 17 shows the maximum detection distances for our mobile device,
for dynamic marker sizes between 2 cm and 10 cm. Smaller sizes would be unfeasible, as the resulting
distances would not be valid for AR applications. Nevertheless, bigger sizes would be indeed feasible
and even desirable, if longer detection distances are necessary. For example, it would be possible to
arrange the marker LEDs around the electrical panel. The prototype presented in this paper used a
6 × 6 cm marker yielding a maximum interaction distance of about 160 cm.
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Figure 16. Error rate of the VLC message versus marker blinking frequency.

Figure 17. Maximum dynamic marker detection distance versus marker size.

We also evaluated the effect of the device camera incidence angle in the detection rate of the dynamic
marker. We tested this both for detection and tracking. Figure 18 shows the results. They suggest robust
detection is feasible for angles between −50 and 50 degrees, which is perfectly adequate for the purposes
of the system. By adding tracking to the recognition, this range widened to (−60, 60).

Figure 18. Dynamic marker detection rate versus camera incidence angle.
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The testbed demonstrates the interest and feasibility of the combination of IoT and AR technologies
and highlights the advantages in terms of usability and information availability that can be achieved with
our proposal.

6. Conclusions and Future Work

In this paper, we have proposed and described a novel approach to link real-world objects (with
sensor and actuator capabilities) to virtual world information relying on proximity communications. The
system combines dynamic AR markers (which can also be used to locate objects and estimate their
spatial orientation in video streams), VLC channels and a supporting IoT architecture. VLC has been
chosen versus other communication technologies, such as RFID/NFC, Bluetooth and WiFi, due to its
more extended hardware support, better accuracy for AR positioning and relatively long range. These
components allow one to represent the sensors and actuators in a smart city as services that can be easily
accessed via graphical interfaces based on real-world images, without the need for permanent connection
with the backbone network. As described, this new approach may help to improve maintenance tasks
in smart cities. Furthermore, our architecture can be easily adapted to other use cases. For example,
providing AR information to tourists, obtained from different sources of urban information, or providing
technical AR information to workers in industrial environments.

Future extensions of this work will consider mechanisms to reduce the decoding latency of marker
VLC messages, implement the finer AR user interfaces we have described, introduce new node actions
and apply our technologies to other interesting use cases.
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