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Background. Necroptosis, a recently identified type of programmed necrotic cell death, is closely related to the tumorigenesis and
development of cancer. However, it remains unclear whether necroptosis-associated long noncoding RNAs (lncRNAs) can be
used to predict the prognosis of kidney renal clear cell carcinoma (KIRC). This work was designed to probe the possible
prognostic worth of necroptosis-associated lncRNAs along with their impact on the tumor microenvironment (TME) in KIRC.
Methods. The Cancer Genome Atlas (TCGA) database was used to extract KIRC gene expression and clinicopathological data.
Pearson correlation analysis was used to evaluate necroptosis-associated lncRNAs against 159 known necroptosis-associated
genes. To define molecular subtypes, researchers used univariate Cox regression analysis and consensus clustering, as well as
clinical significance, TME, and tumor immune cells in each molecular subtype. We develop the necroptosis-associated lncRNA
prognostic model using univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO)
regression analysis. Patients were divided into high- and low-risk groups according to prognostic model. Moreover,
comprehensive analyses, including prognostic value, gene set enrichment analysis (GSEA), immune infiltration, and immune
checkpoint gene expression, were performed between the two risk groups. Finally, anticancer drug sensitivity analyses were
employed for assessing associations for necroptosis-associated lncRNA expression profile and anticancer drug chemosensitivity.
Results. Through univariate analysis, sixty-nine necroptosis-associated lncRNAs were found to have a significant relationship
with KIRC prognosis. Two molecular clusters were identified, and significant differences were found with respect to
clinicopathological features and prognosis. The segregation of patients into two risk groups was done by the constructed
necroptosis-associated lncRNA model. The survival prognosis, clinical features, degree of immune cell infiltration, and
expression of immune checkpoint genes of high-risk and low-risk groups were all shown to vary. Conclusions. Our study
identified a model of necroptosis-associated lncRNA signature and revealed its prognostic role in KIRC. It is expected to
provide a reference for the screening of KIRC prognostic markers and the evaluation of immune response.

1. Introduction

Renal cell carcinoma (RCC) represents a highly prevalent
global malignancy within the genitourinary tract and ranks
second, after prostate and bladder cancer [1]. In 2020, there
were over 430,000 newly diagnosed cases, resulting in nearly

180,000 deaths [2]. Kidney renal clear cell carcinoma (KIRC)
is the predominant RCC histology-subtype, forming approx-
imately 70% of all RCC cases [3]. Cigarette smoking, obesity,
and hypertension are high-risk parameters for RCC,
although their relative effects can vary across populations
[4]. Notwithstanding a plethora of therapeutic option
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availability, including surgery, radiotherapy, chemotherapy,
and targeted drug therapy, partial/radical nephrectomy
remains the ideal therapeutic course adopted against early
stage or localized KIRC with definite efficacy. In addition,
local recurrence or distant organ metastasis still occurs in
20%~40% of KIRC patients postsurgery [5]. Currently, there
are several targeted drugs accepted for first-/second-line
therapy against metastatic RCC, including sorafenib [6],
sunitinib [7], pazopanib [8], axitinib [9], lenvatinib [10],
and cabozantinib [11]. However, multiple patients show dis-
tinct treatment responses to targeted drug therapy, which
could be related to intratumor and intertumor heterogeneity
[12, 13]. Such restrictions lead to reduced prognostic odds,
aggravated through a lack of KIRC-predictive biomarker
repertoires, consequently requiring the generation of such
a novel prognostic modelling system.

Apoptosis is the main form of cellular mortality within
living organisms. In recent years, through extensive research
on the mechanism of cell death, emerging methods of cell
death have been discovered and described. Degterev et al.
[14] first reported and named a new cell death mode—
necroptosis. Necroptosis shares a common pathway with
apoptosis [15, 16]. TNF-α combines with TNFR1-linked
death domain protein, Fas-associated death domain, pro-
caspase-8, and RIPK1 to form complex IIa, which promotes
caspase 8 activation. Activated caspase 8 induces apoptosis
by activating caspase 3 [17]. Whenever caspase 8 activity is
downregulated, RIPK1, RIPK3, and MLKL form complex
IIb, also termed necrosome [16]. Phosphorylated MLKL
causes plasma membrane rupture, consequently inducing
necroptosis [18, 19]. Similarly, the morphological character-
istics of necroptosis are degradation of lysosomal mem-
brane, vacuolation of cytoplasm, disintegration of plasma
membrane, and cell rupture. Following further research,
necroptosis is confirmed as having an important position
within multiple cancer models, including renal [20], colorec-
tal [21], ovarian [22], and breast cancer [23]. Furthermore,
latest investigations have shown that antiapoptotic tumor
cells may be sensitive to the necrosis pathway [24, 25], sug-
gesting that it is necessary to search for additional biomark-
ers involved in necroptosis to understand the interplays
concerning KIRC necroptosis and have appropriate prog-
nostic predictive capacities for KIRC cases.

Meanwhile, long noncoding RNAs (lncRNAs) refer to
RNA molecules spanning over 200 nt long with nil protein-
coding potential. This was once considered part of the “dark
matter” of the genome with no biological functions being
assumed [26]. Presently, a plethora of lncRNAs have been
identified, and several lncRNAs are now believed to function
as important regulatory molecules [27]. Current investiga-
tions identified that lncRNAs can be implicated within mul-
tiple processes, including epigenetic remodeling [28],
regulating chromatin structure [29], regulating RNA stabil-
ity [30], and acting as microRNA sponges [31]. Presently, lit-
erature is scarce regarding necroptosis-associated lncRNAs.
In a related investigation, Harari-Steinfeld et al. [32] high-
lighted that lncRNA H19-derived miR-675 promoted
human hepatocellular carcinoma cell necroptosis in
response to inflammation symptoms by targeting Fas-

linked protein with death domain. One recent study revealed
that the tumor suppressor p53 upregulates lncRNA TRINGS
in a direct manner during glucose starvation conditions. The
lncRNA TRINGS interacts with STRAP and thwarts
STRAP-GSK3β-NF-κB necrotic pathways [33]. Moreover,
other studies have found that myocardial ischemia-
reperfusion injury can lead to abnormal expression of
lncRNAs in cardiomyocytes, thus affecting various cellular
functions such as mitochondrial homeostasis, apoptosis,
necrosis, and autophagy [34]. However, functions adopted
by necroptosis-associated lncRNAs for treating or prognos-
tic determination of KIRC are still unclear. This investiga-
tion focused on identifying necroptosis-associated lncRNAs
within KIRC and developed a prognosis-associated lncRNA
model of dysregulated necroptosis-associated lncRNAs. We
then explored functions adopted by necroptosis-associated
lncRNAs within the immune microenvironment, prognostic
odds determination, and anticancer drug sensitivity of
KIRC.

2. Materials and Methods

2.1. Data Acquisition. Transcriptomic data and clinical
information of 539 KIRC cases were obtained through
TCGA database (http://cancergenome.nih.gov/). Cases hav-
ing comprehensive clinical/pathology/prognostic odds data
were enrolled in this investigation for additional research.
Thirteen patients with unavailable overall survival (OS)
and clinical information were removed from the investiga-
tion. Overall, 526 cases having matching tumor tissue/med-
ical data were enrolled within this investigation.

2.2. Identifying Necroptosis-Associated lncRNAs. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
(https://www.kegg.jp/entry/hsa04217) was utilized for locat-
ing 159 genes tied with necroptosis. Protein-coding genes
and lncRNAs were annotated through Ensembl human
genome browser GRCh38.p13 (http://asia.ensembl.org/
index.html). Necroptosis-associated lncRNAs were recog-
nized through Pearson correlation analysis (jRj > 0:7 and p
< 0:001). This study probed differentially expressed
necroptosis-associated lncRNAs between cancer and normal
samples using the limma package for statistical significance.
The cutoff value was jlog 2FCj > 1 and FDR < 0:05 (fold
change (FC); false discovery rate (FDR)). Univariate Cox
regression analysis was employed for constructing progno-
sis-/necroptosis-associated lncRNA expression profiles
through the R “survival” package [35] (p < 0:05).

2.3. Determination of Prognostic Molecular Player Subtypes.
In order to investigate potential roles adopted by
necroptosis-associated lncRNAs within KIRC, “Consensu-
sClusterPlus” package [36] in R was employed for recogniz-
ing crystallized molecule-based nexa, depending upon
necroptosis-associated lncRNA expression profiles collected
through univariate Cox regression analysis. Using repeated
sampling procedure, 80% of all cases were assayed 1,000
times. Similarity distances across cases were determined
through Euclidean distance, with K-means employed in
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clustering. The criteria for defining cluster quantities were
low coefficient of variation, high consistency within clus-
ters, and no significant increase within the area under
the curve (AUC) of the cumulative distribution function
(CDF).

2.4. Molecular-Based Subtyping Clinical Importance. In order
to study the medical importance for two specific KIRC
molecular-based subtypes, associations across molecular-
based subtypes, clinical features, and prognostic odds were
examined. Collected clinical features of KIRC cases included
age, gender, TNM stage, and tumor-grade/-stage. Conse-
quently, the investigation focused on OS variations across
two differing KIRC case clusters using Kaplan–Meier
method. Meanwhile, this was presented through “survival”
and “survminer” packages in R [35].

2.5. Immune-System Infiltration Study for Molecular
Subtypes. The tumor microenvironment (TME) scores could
predict efficacy of immunotherapy well. The immune score,
interstitial score, and tumor purity were employed for evalu-
ating TME scores across differing clusters, measuring
through “estimate” R package [37]. Cell-type Identification
By Estimating Relative Subsets Of RNA Transcripts (CIBER-
SORT) was consistently proven to be reliable and could be
employed for evaluating associations for tumor-immune cell
landscape and therapeutic effect [38, 39]. The scores of 22
human immune cell subpopulations from KIRC cases were
calculated accurately through the CIBERSORT algo-
rithm [40].

2.6. Definition and Assessment of a Novel Necroptosis-
Associated lncRNA Expression Profile. All patients were seg-
regated in a randomized manner within either a training
group (n = 264) regarding necroptosis-associated lncRNA
expression profile generation and a validating group
(n = 262) regarding model validation, respectively. Univari-
ate Cox regression assessment was executed within training
group to bear necroptosis-associated prognostic lncRNAs.
p < 0:05 was deemed to act as cutoff threshold for statistical
significance. Through support by “glmnet” R package,
LASSO regression analysis was employed for identifying
ideal putative lncRNAs and construing a prognosis-
associated expression profile. The following formula was
employed:

Risk Score = Σ Expi ∗ Coefið Þ, ð1Þ

where Expi represents lncRNA expression level and
Coefi reflects the expected regression coefficient for the indi-
vidual lncRNA. All KRIC cases were placed into high- or
low-risk groups, depending upon risk scoring. Survival
assessment across both risk groups was performed for eval-
uating statistical significance in OS variations. Receiver
operating characteristic (ROC) curves were designed
through “survivalROC” in R, for evaluating prognosis prop-
erties by the survival model. In order to confirm prediction
effectiveness by this model, the survival model was deployed
onto the validation group and developed Kaplan–Meier sur-
vival/ROC curves accordingly.

Pearson correlation analysis

LvASSO regression analysis

univariate Cox regression analysis

TCGA database

159 necroptosis-related-linked genes

365 necroptosis-related-linked lncRNAs

69 necroptosis-related-linked lncRNAs
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Figure 1: Schematic diagram for total analysis process.
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2.7. Clinical Significance for Prognostic Risk Stratification. In
order to evaluate prognosis value for necroptosis-associated
lncRNA model in KIRC, the study focused on associations
for risk-scoring and clinical/pathology features through uni-
variate/multivariate Cox regression analyses. Subsequently,
the hazard ratio (HR) with 95% confidence intervals and
log-rank p value were determined through “glmnet” and
“survival” packages in R [35].

A stratified assessment was employed for evaluating con-
sistency in model prediction across multiple subgroups. Such
parameters included age (≤65/>65 years), gender (female/
male), tumor stage (stage I/II/III/IV/unknow), grade (G1/
G2/G3/G4/unknow), T stage (T1/T2/T3/T4), N stage (N0/
N1/unknow), M stage (M0/M1/unknow), cluster (Cluster1/
2), risk (high/low), and immune score (high/low). Further-
more, in order to examine expression profile influence
upon clinical/pathology-based KIRC features, correlations
between both such factors were evaluated through Chi-
square test and presented through “pheatmap”/“ggpubr” R
packages [41].

2.8. Gene Set Enrichment Analysis (GSEA). (MSigDB, https://
www.gsea-msigdb.org/gsea/msigdb) Genome-wide expres-
sion profiles for KRIC cases were assessed for GSEA in order
to identify dysregulated genes across high-/low-risk group
cases. The GSEA function in the Java software was executed,
and the Hallmark gene set “c2.cp.kegg.v7.4.symbols.gmt”
was used. Overall, 1000 random case permutations/enriched
gene sets having p < 0:05 were encompassed within this eval-
uation, with FDR < 0:25 deemed to confer statistical signifi-
cance. All remaining variables had default values.

2.9. Immunity Correlation Analysis. Meanwhile, the CIBER-
SORT [42], ESTIMATE [36], MCPcounter [43], single-
sample gene set enrichment analysis (ssGSEA) [44], and
TIMER algorithms [45] were comparatively analyzed for
cell-based constituent components/immune repercussions
across both risk groups, depending upon necroptosis-
associated lncRNA model. Variations within immune-
system repercussions by differing algorithms were revealed
through a heat map. In addition, ssGSEA was employed
for quantifying tumor-infiltrative immune cell subgroups
across both groups together with evaluating immune effects.
Possible immune-system checkpoints were also identified
through past investigations.

2.10. Drug Sensitivity Analysis. In order to probe associations
for necroptosis-associated lncRNA expression and antican-
cer drug sensitivity, the nine necroptosis-associated lncRNA
expression and anticancer drug sensitivity datasets were col-
lected through CellMiner (https://discover.nci.nih.gov/
cellminer/home.do), followed by filtering anticancer drug
sensitivity datasets (postclinical laboratory confirmation/
FDA certifications). Subsequently, Pearson correlation anal-
ysis was employed for exploring such an association.

2.11. Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR). The above necroptosis-associated lncRNAs were
verified using KIRC cell line (786-O, National Collection of
Authenticated Cell Cultures, China) and human renal prox-
imal convoluted tubule cell line (HK-2, National Collection
of Authenticated Cell Cultures, China). Total cellular RNA
was extracted from 786-O and HK-2 cells with TRIzol
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Figure 2: Consistent cluster analysis and differential clinical prognostic features in two KIRC clustering subgroups. (a) Forest plots of the
relationship between 69 necroptosis-associated lncRNAs and the OS of KIRC. (b) The consensus clustering cumulative distribution function
(CDF) for k = 2 to 9. (c) Relative change of the area under the CDF curve for k = 2 to 9. (d) Consensus clustering matrix for k = 2. (e) The
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Figure 3: Continued.
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reagent (Beyotime, China) and reverse transcribed into
cDNA. qPCR amplification was performed in CFX96 real-
time PCR detection systems (Bio-Rad, USA) using the SYBR
Green PCR kit (Servicebio, China). The primers are shown
in Supplementary Table S1. GADPH was used as the
internal control. The PCR parameters were set for an
initial cycle of 1 minute at 95°C, followed by a total of 40
cycles at 95°C for 20 seconds, 55°C for 20 seconds, and
72°C for 30 seconds. The relative expression of each gene
was calculated and compared using the 2ΔΔCt method.
Experiments were repeated three times.

2.12. Statistical Analyses. All statistical evaluations
employed R (version 4.0.4). For each analysis, p < 0:05
conferred statistical significance. Uni-/multivariate Cox
proportional hazard regression analyses were used for
determining necroptosis-associated lncRNA model use as
a separate prognosis indicator. Chi-squared test was used
to assess the medical features for differing study groups.
Kaplan–Meier survival analyses were employed for the
bilateral logarithmic rank test, assessing OS variations
across KIRC cases. ROC was used for scoring prediction
property sensitivity and specificity for this necroptosis-
associated lncRNA prognostic model.

3. Results

3.1. KIRC Necroptosis-Associated lncRNA Recognition. Sche-
matic diagram for the total analytical process is shown in

Figure 1. Transcriptomic datasets for 539KIRC cases/72 healthy
volunteers throughTCGAwere investigated, leading to the iden-
tification of 4,668 lncRNAs. Overall, 159 necroptosis-associated
genes were attained through KEGG (https://www.kegg.jp/
entry/hsa04217; Supplementary Table S2). In addition,
screening was performed on 1,210 necroptosis-associated
lncRNAs that were intimately linked to necroptosis-
associated genes through Pearson correlation analysis
(jRj > 0:7 and p < 0:001). The 365 necroptosis-associated
lncRNAs were differentially expressed between cancer and
normal samples with statistical significance (Supplementary
Table S3). Consequently, univariate Cox regression analytical
dataset outcomes demonstrated 69 necroptosis-associated
lncRNAs to be highly linked to KIRC case OS timeframes
(Figure 2(a)) and were deemed to be utilized for further
analyses in this study.

3.2. Consensus Clustering Discerned Differing Molecular-
Based Subtypes. In order to recognize molecular-based sub-
types, this study conducted consensus clustering to classify
69 necroptosis-associated prognostic lncRNAs by using k
-means algorithm. The consensus clustering results were
compared using differing K values. Finally, k = 2 was
selected as the ideal cluster quantity for additional investiga-
tions stemming from minimized interferences across both
subgroups (Figures 2(b) and 2(c)). A total of 526 KIRC cases
were stratified within both subgroups called cluster 1
(n = 184) and cluster 2 (n = 342) (Figures 2(b)–2(e)).
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Figure 3: The TME scores and scores of 22 human immune cell subpopulations in two KIRC clustering subgroups. (a–c) The immune
score, interstitial score, and tumor purity of two clustering subgroups. (d) The difference of 22 human immune cell subpopulations
between clusters I and II. (e) The infiltrative levels of naïve-B cells, activated dendritic cells, M0-level-macrophages, CD8-T cells,
neutrophils, resting-NK cells, activated CD4 memory-T cells, and follicular-helper-T cells between two KIRC clusters were significantly
different.
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3.3. Molecular Subtypes with Different Clinical
Characteristics and Immune Landscape. Necroptosis-associ-
ated lncRNA within cluster 2 was downregulated, including
PCED1B-AS1, LINC00426, LACTB2-AS1, LINC02422, and
LINC00861 (Figure 2(f)). Additionally, clinicopathological
features across subgroups were recognized through consen-
sus clustering. Dataset outcomes showed cluster 1 to be pre-
dominantly linked to tumor T stage (p < 0:05; Figure 2(f))
and advanced tumor stage (p < 0:05; Figure 2(f)). Besides
those results, OS variations were analyzed across subgroups.
Patients with cluster 2 have better survival than those with
cluster 1 (p < 0:001; Figure 2(g)). Collectively, clustering
subgroups were highly associated with KIRC heterogeneity.

In order to assess necroptosis-associated lncRNA func-
tions over KIRC TME, the study analyzed stromal, immune,
and estimate scorings for both subgroups and determined
the degree for 22 immune cell types. Dataset outcomes dem-
onstrated revealed stromal and immune scorings to be highly
raised within cluster 1, while stromal scoring was raised within
cluster 2 (Figures 3(a)–3(c)). As a result, cluster 1 had
increased infiltrative levels of CD8-T cells, follicular-helper-T
cells, and resting-NK cells, with increased levels of naïve-B
cells, activated CD4 memory-T cells, M0-level-macrophages,
activated-dendritic cells, and neutrophils were identified
within cluster 2 (p < 0:05; Figures 3(d) and 3(e)).

3.4. Generation and Validation for Necroptosis-Associated
lncRNA Prognostic Model. According to the results of Chi-
square test, there was no significant variation across both
training and verification groups throughout all comparisons
(p > 0:05; Supplementary Table S4).

In order to minimize overfitting across prognosis-based
biomarkers, LASSO Cox analysis was employed for further
analysis of 69 necroptosis-associated prognostic lncRNAs.
Finally, 9 lncRNAs (RNF139-AS1, SRD5A3-AS1,

LINC00551, RAP2C-AS1, LACTB2-AS1, LINC02709,
LINC01094, USP30-AS1, and LINC01355) were identified
from the training group (Figures 4(a) and 4(b)). Subsequently,
a nine-necroptosis-associated prognostic lncRNA model was
determined through modified regression coefficients for indi-
vidual lncRNAs, with risk scorings determined depending
upon summated expression levels for RNF139 −AS1 ∗ 0:500
+ SRD5A3 −AS1 ∗ 1:193 − LINC00551 ∗ 1:556 − RAP2C −
AS1 ∗ 0:900 − LACTB2 −AS1 ∗ 0:411 + LINC02709 ∗ 0:098
+ LINC01094 ∗ 0:032 + USP30 −AS1 ∗ 0:028 + LINC01355
∗ 0:158. After calculating individual case risk scoring using
the prognostic model, KIRC cases were segregated within the
low-/high-risk groups depending upon median risk scoring
ranks, based upon the expression profile model (Figure 4(c)).
Scatter plots reflected OS for KIRC cases depending upon risk
scoring and showed that the high-risk scoring group was inti-
mately linked to mortality rate (Figure 4(e)). The expression
profiles for the nine lncRNAs suggested that tumors having
elevated risk scores had overall upregulation for RNF139-
AS1, SRD5A3-AS1, LINC02709, LINC01094, USP30-AS1,
LINC01355, and downregulation for RAP2C-AS1,
LINC00551, LACTB2-AS1 (Figure 4(e)). Kaplan–Meier plots
demonstrated that the high-risk group cases had significantly
poorer OS than low-risk cases within the training group
(p < 0:05; Figure 4(f)). ROC curve analyses suggested that
the survival model applied to the training group had sufficient
prediction properties. The AUC at 1 year for ROC curves was
0.793. The AUC at 3 years for ROC curves was 0.743. The
AUC at 5 years for ROC curves was 0.741 (Figure 4(g)). In
order to validate that the necroptosis-associated model pos-
sessed reliable prognosis prediction worth, an identical evalu-
ation was conducted across the validation group, whereby the
dataset outcomes were in line with those stemming from the
training group (Figures 4(c)–4(g)). In a similar manner, varia-
tions in Kaplan–Meier survival curve across both risk groups
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Figure 4: The prognostic value of the necroptosis-associated lncRNA model in the training cohort and validation cohort. (a) LASSO
coefficient profiles of nine necroptosis-associated lncRNAs. (b) Nine necroptosis-associated lncRNAs were included when the cross-
validation error in the LASSO model was minimal. (c) The risk score distribution of the low-/high-risk KIRC groups in the training and
validation cohorts. (d) Survival status of KIRC patients with low-/high-risk scores in the training and validation cohorts. (e) Heat map of
a nine necroptosis-associated lncRNA model in the training and validation cohorts. (f) Kaplan–Meier survival curves for KIRC patients
in the low-/high-risk KIRC groups in the training and validation cohorts. (g) ROC curves and AUCs of the nine necroptosis-associated
lncRNA model in the training and validation cohorts.
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Figure 5: Relationship between the high-/low-risk score and clinicopathological features. (a, b) Forest plots of factors associated with OS by
univariate Cox regression analysis in the training and validation cohort. (c, d) Forest plots of factors associated with OS by multivariate Cox
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carried statistical significance within the validation group
(Figure 4(f)). AUC for ROC curve evaluations was 0.730 at
one year. AUC for ROC curve evaluations was 0.710 at three
years. AUC for ROC curve evaluations was 0.736 at five years
(Figure 4(g)).

3.5. Subgroup Analyses with Different Clinicopathological
Features. Consequently, uni-/multivariate Cox regression
analyses were conducted for discerning if such a lncRNA
model could serve as a separate prognosis indicator. Within
the training group, the risk scoring and tumor stage were
highly linked to OS across both Cox regression analyses
types (p < 0:001; Figures 5(a) and 5(c)). Notably, risk scor-
ing/tumor stage was also intimately linked to OS within
the validation group through identical analyses, suggesting
that risk scoring acted as a separate robust OS-prognostic
parameter for KIRC (Figures 5(b) and 5(d)).

The expression of nine necroptosis-associated prognos-
tic lncRNAs together with the spread of clinical/pathological
features, TME immune scorings, together with case cluster-
ing into the high-/low-risk groups was visualized through a
heat map (Figure 5(e)). Distinct variations across both
groups depending upon differing clusters (p < 0:001) were
identified. Major variations in risk scoring were identified
across differing ages (p < 0:05), TNM stage (p < 0:05), tumor
stage (p < 0:05), tumor grade (p < 0:05), gender (p < 0:05),
and immune scores (p < 0:001).

3.6. Survival Stratification Analysis. In order to evaluate
whether the model has predictive ability in KRIC case sub-
groups having differing medical features, subgroups were
stratified through age (age > 65/age ≤ 65), gender (female/

male), stage T (T1-T2/T3-T4), stage N (N0/N1), stage M
(M0/M1), grade (G1-G2/G3-4), and clinical stage (stages I-
II/III-IV). Illustrated in Figure 6, dataset outcomes demon-
strated that low-risk cases depending upon age (p < 0:001
in age ≤ 65 and p < 0:001 in age > 65), sex (p < 0:001 in
female and p < 0:001 in male), stage T (p < 0:001 in T1-T2
and p < 0:001 in T3-T4), stage N0 (p < 0:001), stage M
(p < 0:001 in M0 and p = 0:013 in M1), and clinical stage
(p < 0:001 in stages I–II and p < 0:001 in stages III–IV) had
the best prognostic odds.

3.7. Gene Set Enrichment Analysis. This was employed for
rooting out the major physiological roles adopted by the
nine necroptosis-associated lncRNA model. The results
revealed that the necroptosis-associated lncRNA prognostic
model modulated immune-associated disease and processes
such as antigen processing and presentation, homologous
recombination, allograft rejection, graft versus host disease,
primary immunodeficiency, NK cell-mediated cytotoxicity,
cytokine receptor interaction, intestine-based immune-
networking for IgA generation, and systemic lupus erythe-
matosus (Figure 7).

3.8. Immunity Correlation Analysis of Necroptosis-Associated
lncRNA Model. Depending upon CIBERSORT, CIBERSORT
−ABS, QUANTISEQ, MCPCOUNTER, XCELL, EPIC, and
TIMER algorithms, we scrutinized the immune cell and
pathway profiles among both groups (Figure 8(a)). The
ssGSEA highlighted distinct variations regarding T cell func-
tion (Figure 8(b)), with the high-risk group having higher
scores for coinhibition, costimulation, CCR, checkpoint,
cytolytic activity, HLA, inflammation-enhancing, MHC-
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class-I, para-inflammation, and type-I-IFN-response.
Consequently, we further investigated the dysregulated
expression of immune checkpoints across both risk
groups, especially for PD-L1 expression. Illustrated within
Figure 8(c), the KRIC risk groups had distinct variations
in PD-1 expression (p = 0:034). Moreover, both groups
showed distinct dysregulations within immune checkpoint
expression and multiple immune checkpoints being upreg-
ulated (CD274, LAG3, CTLA4, BTLA, and PDCD1)
within the high-risk group (Figure 8(d)).

3.9. Anticancer Drug Sensitivity Analysis of Necroptosis-
Associated lncRNAs. Since necroptosis-associated lncRNAs
are often associated with stem cell-like features, we further

studied the expression of necroptosis-associated lncRNAs
in cancer cell lines and then comprehensively analyzed the
correlation between their expression levels in cancer cell
lines with drug sensitivity of >200 chemotherapeutic drugs.
We observed that the expression levels of necroptosis-
associated lncRNAs showed great heterogeneity in cancer
cell lines and in cancer patients. Interestingly, we found that
increased expression of necroptosis-associated lncRNAs was
related to increased drug resistance to a variety of chemo-
therapy drugs in cancer cell lines. As shown in Figure 9,
the expression of USP30-AS1 was positively correlated with
the sensitivity of isotretinoin, bendamustine, fluphenazine,
nelfinavir, oxaliplatin, megestrol acetate, dromostanolone
pro, ifosfamide, palbociclib, etoposide, alectinib, valrubicin,
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Figure 8: Continued.
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and imiquimod. The expression of USP30-AS1 had a
remarkable negative relationship with the sensitivity of iro-
fulven. Upregulated LINC00551 led to enhanced drug sensi-
tivity for fluphenazine, though it was also associated with
reduced drug sensitivity for irofulven.

3.10. The Results of qRT-PCR. In addition, HK-2 and 786-O
cell lines were used to verify the above necroptosis-
associated lncRNAs. The results showed that the expressions
of RNF139-AS1, SRD5A3-AS1, LINC01094, USP30-AS1,
LACTB2-AS1, and LINC01355 were elevated in renal
carcinoma cells, and the expressions of RAP2C-AS1 and
LINC00551 were reduced in renal carcinoma cells compared
with normal renal proximal convoluted tubule cells
(Figure 10).

4. Discussion

KIRC is a major malignant tumor of the urinary system, and
approximately 33% of patients have metastasis when diag-
nosed. Although treatment methods have advanced recently,
relapse/mortality rates are still very high, especially for
advanced and metastatic patients, where the prognosis is
poor [46]. Recent studies suggest that tumor cells resistant
to apoptosis may be sensitive to the necroptosis pathway
[24, 25], suggesting that necroptosis may be a potential ther-
apeutic target for KIRC. Consequently, it is vital to develop
biomarkers for early diagnosis, treatment, and prognosis
monitoring of KIRC patients.

This investigation identified 9 novel necroptosis-
associated prognostic lncRNA expression profile by
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Figure 8: Immunity correlation analysis of the necroptosis-associated lncRNA model in KIRC. (a) Heat map of immune cell infiltration
landscape in the high-/low-risk KIRC groups. (b) ssGSEA for the relationship between immune functions and immune cell
subpopulations in the low-/high-risk KIRC groups. (c) The expression levels of PD-L1 between high-/low-risk KIRC groups. (d) The
expression levels of immune checkpoints between high-/low-risk KIRC groups.
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Pearson’s correlation analysis between necroptosis-
associated genes and lncRNAs in KIRC cases obtained from
TCGA datasets. Subsequently, we divided 526 KIRC samples
into two cluster subgroups, and both demonstrated dis-
tinctly differing survival, clinical features, immune score,
and immune cell infiltrative properties. It is also in line with
previous similar studies [47, 48]. Subsequently, LASSO Cox
regression analysis was conducted, with a nine necroptosis-
associated lncRNA prognostic expression profile being gen-
erated. Among the nine necroptosis-associated lncRNAs,
six were unfavorable diagnostic factors for KIRC (RNF139-
AS1, SRD5A3-AS1, LINC02709, LINC01094, USP30-AS1,
and LINC01355), and three were favorable diagnostic factors
for KIRC (LINC00551, RAP2C-AS1, and LACTB2-AS1).
The expression profile was employed to categorize KIRC
patients into the high-risk and low-risk groups, depending
upon median-risk score. A high-risk score was linked to
poor OS/late-stage clinicopathological features. The predic-
tive power of this expression profile was validated through
the ROC curve and the validation group. Cases across both
risk groups showed distinctly differing molecular-interplay
profiles, PD-L1 expression, and immune score. In addition,
a stratified analysis showed that the expression profile
retains its prediction power across differing subgroups. Mul-
tivariate analysis suggested that the expression profile was
also a separate indicator in comparison to alternative clini-

copathological features. In conclusion, the assembly of
markers—including nine necroptosis-associated lncRNAs—
proved to be prognostic biomarkers for KIRC. Compared with
other prognostic models, our prognostic model focuses on
necroptosis-associated lncRNAs and could be employed for
prognostic stratification of KIRC cases and contributing novel
drug targeting therapeutic options and provide new theoreti-
cal foundations and treatment options for KIRC. In addition,
these necroptosis-associated lncRNAs may play an important
role in the prognosis of KIRC by targeting microRNAs and
mRNAs, which may also better reveal their molecular
mechanisms.

Presently, many studies have demonstrated the crucial
role of lncRNAs in the necroptosis of malignant tumor cells.
Min et al. [49] found that lncRNA CRLA was significantly
associated with EMT and chemotherapy resistance of lung
adenocarcinoma cells. By binding to the intermediate
domain of RIPK1, it weakens the interaction of RIPK1-
RIPK3, thus significantly upregulating and inhibiting
RIPK1-induced necroptosis. However, the research reports
of necroptosis-associated lncRNAs in relation to cancer—
and especially KIRC—are extremely inadequate. A large
number of preceding studies have shown that lncRNAs play
a key role in the occurrence and development of cancer by
regulating corresponding miRNAs and target genes. For this
reason, it is necessary to explore the role of gene-related
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Figure 9: Anticancer drug sensitivity analysis of necroptosis-associated lncRNAs.
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lncRNA in tumors. We conducted a correlation analysis
between necroptosis-associated genes and lncRNAs to deter-
mine necroptosis-associated lncRNAs. The recommended
prognostic expression profile contained nine necroptosis-
associated lncRNAs in this study. Among these nine
lncRNAs, the specific mechanisms of SRD5A3-AS1,
RNF139-AS1, LACTB2-AS1, RAP2C-AS1, and LINC02709
have not yet been reported. The results of many previous
studies are identical to our analysis, showing that
LINC00551 acts as a tumor suppressor. Wang et al. [50]
found that LINC00551 was differentially downregulated in
lung adenocarcinoma, and its expression level correlated
with clinical prognosis. LINC00551 inhibits glycolysis and
tumor progression by regulating the expression of PKM2,
which is mediated by c-Myc in pulmonary adenocarcinoma.
LINC00551 binds to HSP27 to reduce its level of phosphor-
ylation, thereby downregulating the proliferation and inva-
sion of esophageal squamous cell carcinoma cells [51].
LINC00511 is upregulated in non-small-cell lung cancer tis-
sues and cell lines. LINC00511 downregulates LATS2 and
KLF2 by combining EZH2 and LSD1 to promote the prolif-
eration, migration, and invasion of non-small-cell lung can-

cer [52]. One past study has shown that LINC01094
activates radio-resistance of clear cell RCC through miR-
577/CHEK2/FOXM1 axis [53]. Moreover, robust evidence
has shown that there is an intimate relationship between
LINC01094 and prognosis in KIRC [54, 55]. LINC01355
has differing effects on different tumors. Conversely,
LINC01355 inhibits the growth of breast cancer by inhibit-
ing FOXO3-mediated CCND1 transcription [56]. Con-
versely, it activates the Notch signaling pathway to
promote the malignant phenotype of oral squamous cells
and the invasion of cytotoxic T cells [57]. Currently, many
studies have found a close relationship between USP30-
AS1 and autophagy in cancer [58–61], though there is no
study on the relationship between USP30-AS1 and necrop-
tosis. However, further studies are needed to verify the spe-
cific mechanism of these lncRNAs in tumors.

Nevertheless, our present study contains a few limita-
tions. Firstly, it is not comprehensive enough to only use
bioinformatics methods and public databases for analysis.
More basic studies are still needed to explore the mechanism
of necroptosis-associated lncRNAs in the progress of KIRC.
Secondly, our study clarified the correlation between

0

2

4

6 P=0.0016 P=0.0222

HK-2 786-O HK-2 786-O HK-2 786-O

P=0.0018

0.0

0.5

1.0

1.5

Re
la

tiv
e R

N
F1

39
-A

S1
 le

ve
l

(to
 G

A
PD

H
)

Re
la

tiv
e R

A
P2

C-
A

S1
 le

ve
l

(to
 G

A
PD

H
)

Re
la

tiv
e L

IN
C0

13
55

 le
ve

l
(to

 G
A

PD
H

)
Re

la
tiv

e L
IN

C0
05

51
 le

ve
l

(to
 G

A
PD

H
)

Re
la

tiv
e S

RD
5A

-S
1 

le
ve

l
(to

 G
A

PD
H

)
Re

la
tiv

e L
A

CT
B2

-A
S1

 le
ve

l
(to

 G
A

PD
H

)

P=0.0025

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5 P=0.0114

HK-2 786-O HK-2 786-O HK-2 786-O

0

2

4

6

8

10

P=0.0013 P=0.1320

HK-2 786-O HK-2 786-O HK-2 786-O

P=0.3144

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e L

IN
C0

10
94

 le
ve

l
(to

 G
A

PD
H

)

Re
la

tiv
e L

IN
C0

13
55

 le
ve

l
(to

 G
A

PD
H

)

Re
la

tiv
e L

IN
C0

27
09

 le
ve

l
(to

 G
A

PD
H

)

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

2.0 P=0.0567

Figure 10: The qRT-PCR results of necroptosis-associated lncRNA relative expressing levels in two lineage cells (HK-2 and 786-O).
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necroptosis-associated lncRNAs and KIRC tumor immune
status, laying a theoretical foundation for the enhancement
of antitumor immunity and novel therapeutic targets of
KIRC, though the specific mechanism of immunity remains
to be further revealed. Thirdly, although our expression pro-
file profiles were validated in the TCGA validation group, we
should be cautious in assessing the prognostic value of
necroptosis-associated lncRNA expression profile. There-
fore, further validation with larger clinical samples is
required to verify these results.

In conclusion, we assessed survival, clinical characters,
and immune cell infiltration levels in two clustered sub-
groups and constructed a nine necroptosis-associated
lncRNA prognostic expression profile in KIRC, which had
significant value in predicting the OS of patients with KIRC,
clinicopathological characteristics, TME, immune score, and
anticancer drug sensitivity. Additionally, we found a close
correlation between necroptosis-associated lncRNAs and
KIRC drug sensitivity, which paves the way to augment
antitumor immunity and novel therapeutic systems for
KIRC. This work also provides important evidence for the
development of predictive biomarkers and immunotherapy
for KIRC.
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