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Abstract

Different methods are used in ecotoxicology to estimate thresholds in survival data. This

paper uses Monte Carlo simulations to evaluate the accuracy of three methods (maximum

likelihood (MLE) and Markov Chain Monte Carlo estimates (Bayesian) of the no-effect con-

centration (NEC) model and Piecewise regression) in estimating true and apparent thresh-

olds in survival experiments with datasets having different slopes, background mortalities,

and experimental designs. Datasets were generated with models that include a threshold

parameter (NEC) or not (log-logistic). Accuracy was estimated using root-mean square

errors (RMSEs), and RMSE ratios were used to estimate the relative improvement in accu-

racy by each design and method. All methods had poor performances in shallow and inter-

mediate curves, and accuracy increased with the slope of the curve. The EC5 was generally

the most accurate method to estimate true and apparent thresholds, except for steep curves

with a true threshold. In that case, the EC5 underestimated the threshold, and MLE and

Bayesian estimates were more accurate. In most cases, information criteria weights did not

provide strong evidence in support of the true model, suggesting that identifying the true

model is a difficult task. Piecewise regression was the only method where the information

criteria weights had high support for the threshold model; however, the rate of spurious

threshold model selection was also high. Even though thresholds are an attractive concept

from a regulatory and practical point of view, threshold estimates, under the experimental

conditions evaluated in this work, should be carefully used in survival analysis or when there

are any biological reasons to support the existence of a threshold.

Introduction

The existence of thresholds in ecotoxicology has been questioned and addressed for more than

fifty years now [1–4]. For many years, precise and accurate estimation of thresholds was

impractical, unreliable or too complex to be done with the available tools and methods. Statis-

tical methods such as analysis of variance and generalized linear models (GLM), used to esti-

mate the no observed effect concentration (NOEC) and the effect concentration (ECx)

respectively, were the best available tools to analyze ecotoxicological data. Both analysis of
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variance and GLM remain as the most used approaches in the field. However, serious criti-

cisms have been made of both metrics (e.g., [5]) and ecotoxicologists are now suggesting that

thresholds estimates are more ecological relevant meaningful and more useful in risk assess-

ment [6–8].

With computational advances, different statistical methods have been developed and

applied in ecotoxicology (e.g., [4, 9–11]). One of the first recognized and most used approaches

is the no-effect concentration (NEC) model [3]. The term NEC now seems to describe a series

of models with a threshold parameter that can be assumed to be time-independent and have

an elimination rate of the organism as a parameter (e.g. [7]) or not (e.g. [9, 10]). Another com-

mon approach used in ecotoxicology is the piecewise regression, which also includes a thresh-

old parameter (e.g., [11]). The term EC0 have also been used to describe thresholds (e.g., [11])

and by definition, both terms, NEC and the EC0, assume that there is no effect before the

threshold concentration other than background mortality.

Previous simulation studies have shown that the NEC models can be used to accurately esti-

mate thresholds in survival, time to death and count data (e.g. [7,9]). However, given that dif-

ferent methods are now available, the question remains about which statistical method is the

most accurate to estimate thresholds in ecotoxicology. Another important question is how

these models behave with datasets for which a true threshold does not exist, or what is the rate

of spurious threshold detection. In many situations, models with and without thresholds could

fit to the observed data equally well and deciding which model to use is not straightforward

[12]. In such cases, an apparent threshold can be estimated, which can have practical value

[13]. However, the rates of spurious threshold estimation and the advantages of estimating an

apparent threshold instead of estimating lower ECx values have not been fully accessed yet. At

the same time, misspecification of the correct model may also result in biased ECx estimates in

datasets that have a threshold.

This paper aims to (i) identify the most accurate and precise method to estimate critical

thresholds in survival data among three different methods, (ii) compare the accuracy of 2 dif-

ferent sampling designs in estimating threshold, (iii) evaluate the rate of spurious threshold

detection when using model selection, (iv) evaluate if there are any advantages in estimating

an apparent threshold from datasets that do not have a true threshold, and (v) evaluate the

implications of specifying the incorrect model (i.e., with or without a threshold) when estimat-

ing ECx values. Three different statistical methods were selected to estimate thresholds in sur-

vival datasets: (i) maximum likelihood estimation of the threshold parameter by fitting a NEC

model; (ii) a Bayesian estimation of the NEC model using Markov Chain Monte Carlo

(MCMC) methods, and (iii) generalized linear Piecewise regression.

Methods

Simulated data

All datasets were generated to simulate the survival of ten organisms exposed to different efflu-

ent concentrations. A non-linear model with a threshold parameter was modified from Pires

et al., [9] and used by Fox [10], to describe the survival probability of organisms exposed to an

effluent with the equation

pi ¼ le½� mðxi � cÞIðxi� cÞ�; ð1Þ

Iðxi � cÞ ¼
1; x > c

0; x � c

(
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where (i) pi is the survival probability in the xi concentration, (ii) l is the intercept, or the sur-

vival probability when the effluent concentration is equal to 0, (iii) m is the rate of decay

(throughout the paper, m is referred as a “slope” to make it consistent with all the other mod-

els), (iv) c is the threshold parameter, and (v) I(xi − c) is the indicator function. When xi is

lower or equal to the threshold, the probability of survival is equal to the intercept.

Three types of curves were generated with different slopes parameters: (i) shallow (m = 3),

(ii) intermediate (m = 5) and (iii) steep (m = 10) slopes (Fig 1A). In all curve, the threshold

concentration was set to 20% of the effluent. This concentration was selected to make sure that

most datasets, within all different types of curves, designs and background mortalities, would

have at least one concentration with partial kills (i.e., mortality is higher than 0 and lower than

100% at that concentration). The application of the methods described in this manuscript is

not recommended for datasets without partial kills and, for this reason, simulations with dif-

ferent values of the threshold parameter were not conducted.

Three different intercepts were selected to consider different levels of background mortal-

ity: the lowest (0.95), medium (0.90) and the highest (0.85) background mortality. The rates of

test rejection of all background mortalities are presented in S1 Table in S1 Appendix. Datasets

that had the mean survival lower than 80% in the control were discarded and replaced by

another dataset. Note that as background mortality increases, variability around the threshold

should also increase.

Datasets without the presence of a true threshold were generated using a three parameter

log logistic model as described by Ritz [14]

pi ¼
d

1þ eðbðlogðxiÞ� logðeÞÞ
; ð2Þ

where (i) pi is the survival probability in the xi concentration, (ii) b is the slope, (iii) e is the

inflection point, or the EC50, and (iv) d is the intercept. Three types of curves were created

with the same slope parameters of the NEC models (i.e. 3, 5 and 10 for the shallow, intermedi-

ate and steep curve respectively). The EC50 of the NEC models were used as the parameter e

Fig 1. Three types of probability curves with medium background mortality. (a) NEC and (b) log-logistic models used in this study.

https://doi.org/10.1371/journal.pone.0231149.g001
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for each type of curve in order to generate similar curves among the two models (Fig 1B). Eqs

(1) and (2) were solved to estimate the true EC5, EC10 and EC50 values from the probability

curves. The true values of the EC50, EC10, and EC5 for both types of curves are presented in

Table 1.

Experimental designs

Two different designs were used: (i) the categorical design, which consisted of 5 concentrations

with 3 replicates per concentration plus the control (i.e. 0%, 6.25%, 12.5%, 25%, 50% and

100%) and (ii) the continuous design, without replicates at the same treatment and fifteen con-

centrations equally spaced in the loge scale from 100% to 3.94%. Please notice that even though

effluent concentrations are presented as percentage throughout this work, concentrations

could also be expressed as 0, 0.625, 0.125, 0.25, 0.5 and 1 μg/L (or mg/L) of a hypothetical

chemical without loss of generality. The categorical design follows similar procedures recom-

mended by the EPA for measuring the acute toxicity of effluents [15]. In the continuous

design, replication only occurred in the control treatment to ensure quality control of the

organisms used in the test. Thus, both designs had the same number of experimental units

(n = 18) and number of organisms (n = 180). Each concentration is assumed to be indepen-

dent (true replicates). The concentrations in the continuous design include the same 5 concen-

trations of the categorical design plus 10 different concentrations. For each design (i.e.,

categorical and continuous), background mortality (i.e., low, medium and high), slope (i.e.,

shallow, intermediate and steep) and type of dataset (with and without a threshold parameter),

one thousand datasets were generated. As a result, 36 thousand datasets were analyzed. One

example of each slope and design for the datasets generated with the NEC model is provided

in Fig 2.

ECx estimates

For each dataset, three parameter log logistic models were fit to estimate the EC5, EC10 and

EC50 values. To allow comparisons among all types of curves and designs, and for the simplic-

ity of this work, the same model was fit to all datasets even though in many cases, three

Table 1. True values of ECx and threshold for the NEC and log-logistic curves.

NEC curve Log-logistic curve

Shallow (Slope = 3)

EC50 43.10% 43.10%

EC10 23.51% 20.72%

EC5 21.71% 16.15%

Threshold 20.00% -

Intermediate (Slope = 5)

EC50 33.86% 33.86%

EC10 22.10% 21.82%

EC5 21.02% 18.79%

Threshold 20.00% -

Steep (Slope = 10)

EC50 26.93% 26.93%

EC10 21.06% 21.61%

EC5 20.50% 20.06%

Threshold 20.00% -

https://doi.org/10.1371/journal.pone.0231149.t001
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parameter Weibull models were selected as the best fit based on the Akaike’s information crite-

rion (AIC). All models were fitted using maximum likelihood estimates (MLE) with the quasi-

Newton method, and the confidence intervals were estimated using the Delta method, with

the drc R package [16]. Because it would be unfeasible to manually evaluate model fit for thou-

sands of models, such as checking the residuals distribution and Q-Q plots, wide confidence

intervals were used as a proxy for very poor model fit. Indeed, after a closer inspection of these

models and datasets, models with very wide confidence intervals presented very poor model fit

and should not be used for statistical inference. Therefore, models with wide confidence inter-

vals (i.e. above 100) were counted and excluded from the analysis. This approach was used for

all models fitted in this manuscript.

MLE of the NEC

This approach consists in fitting the generalized nonlinear model described in Eq 1 using MLE

(quasi-Newton method) of the parameters. Because background mortality was added to all

types of curves, a three-parameter model (i.e., intercept, slope and threshold parameter) was

used. Confidence intervals were estimated using the Delta method and models were fit with

the drc R package [16].

Bayesian NEC

The model described in Eq 1 was fit using Markov Chain Monte Carlo (MCMC) methods

with a Gibbs sampler algorithm. Uniform distributions were used as uninformative flat priors

for both the intercept and slope parameters, assuming a minimum and maximum value of 0

and 1, and 0 and 20 for the intercept and slope, respectively. Uninformative priors were also

used for the threshold parameters using a gamma distribution with the shape and scale

Fig 2. Examples of simulated datasets with medium background mortality for each slope. (a, b, c) categorical and

(d, e, f) continuous design. Solid and dashed lines represent the three parameter log logistic and MLE NEC models

respectively.

https://doi.org/10.1371/journal.pone.0231149.g002

PLOS ONE Threshold analyses in ecotoxicology

PLOS ONE | https://doi.org/10.1371/journal.pone.0231149 April 8, 2020 5 / 16

https://doi.org/10.1371/journal.pone.0231149.g002
https://doi.org/10.1371/journal.pone.0231149


parameter equal to 0.001. Three independent chains were used in parallel with 205 iterations

for adaptation. An additional 105 iterations were run and the samples were monitored every

10 steps. The Bayesian models were fitted with the rjags R package [17].

Piecewise regression

The generalized linear piecewise regression, using a logit link function, can be written as

logitðpiÞ ¼ b0 þ b1xi þ b2ðxi � CÞIðxi � CÞ; ð3Þ

Iðxi � CÞ ¼
1; x > C

0; x � C

(

where (i) β0 is the intercept, (ii) β1 is the first slope on the left, (iii) β2 is the difference-in-slopes

after the threshold, (iv) ψ is the threshold parameter and (v) I(xi-ψ) is the indicator function,

similar to the indicator function in Eq (1). The first slope was set to zero, so the model has

three parameters and it assumes that there is no effect before the threshold. Note that different

from the other approaches, this model can also include more than one threshold. The GLM

models were fit using a bias-reduction method [18] to avoid perfect separation, or monotone

likelihood, where nonfinite estimates of coefficients or standard errors are produced [19].

Without the bias correction many of the models produced extremely high or infinite standard

errors that would have to be excluded from the analysis. To avoid convergence to local min-

ima, four different initial values for the threshold concentration were used (i.e., 10%, 15%, 20%

and 25%). GLM models were fit using the brglm package [20]. Piecewise regressions models

were fit to the logit GLM models with the Segmented R Package [21].

Data analysis

For each method, accuracy was estimated with the root-mean-square error (RMSE) as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ðdi � yÞ

2
;

r

ð4Þ

Where δi is the ith parameter estimate and θ is the true parameter value. Thus, smaller RMSE

values indicate higher accuracy. Note that the RMSE is calculated from a distribution of esti-

mates so it also takes into account the precision of the method. Because the log-logistic model

does not have a true threshold, two different approaches were used to estimate the RMSE: (i)

assuming an apparent threshold equal to the threshold in the NEC models (i.e. 20%) in all

curves, and (ii) assuming an apparent threshold equal to the true EC5 values of each log-logis-

tic curve. Only the results from the apparent threshold equal to 20% are presented because

there were no differences in the general trend of the results and, assuming an apparent thresh-

old equal to the EC5 would inherently favor ECx analysis. The RMSE ratios among the designs

were used to estimate the relative improvement in accuracy by each design and methods.

Hence, RMSE ratios (RMSECategorical/RMSEContinuous) should not deviate substantially from 1

if there is no difference in the accuracy of the design, and values higher than 1 would favor the

denominator. The probability density distribution of the ECx and threshold estimates were

plotted using Kernel density estimates with the beanplot R package [22]. High density intervals

(HDI) were calculated for all thresholds and ECx estimates with the BEST R package [23]. Sep-

arate limits for discontinuous HDIs in multimodal distributions were not considered, so HDIs

could be overestimated in these cases.
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Model selection was used to identify the true and spurious incidences of threshold detection

(i.e., detecting thresholds in datasets do not contain a true threshold). The AIC was calculated

in the MLE NEC and models were compared to a three parameter log-logistic model. The DIC

was calculated using MCMC in the Bayesian NEC and models were compared to a three

parameter Bayesian log-logistic model. The piecewise regression was the only case where the

two compared models had different numbers of parameters (i.e. with and without the thresh-

old) so the AIC with a correction for finite sample sizes (AICc) was used. Note that model

selection criteria using bias reduction methods is controversial [20]. However, very similar

results were obtained with and without the bias reduction GLM fit and with the Konishi’s gen-

eralized information criterion (GIC). Information criteria weights, which provides a relative

weight of evidence for each model, was also used to estimate how many datasets had strong

evidence (information criteria weights equal to or higher than 0.9) in support of a specific

model [24]. All simulations and analysis were conducted using the R statistical environment

software version 3.2.1[25].

Results

ECx analysis

When log-logistic models were fitted to the datasets with a threshold (i.e., NEC datasets), the

EC50 was slightly overestimated and the EC5 and EC10 were underestimated (Fig 3). The dis-

tribution of EC5 and EC10 in the NEC datasets in the categorical design also tended to be

bimodal for the steeply sloped curve. Due to the low number of concentrations used in the cat-

egorical design, stochastic variation may have a drastic impact in the curve fitting process of

datasets with a threshold. The ECx estimates were generally more accurate in the datasets gen-

erated with the log-logistic models, especially in datasets with a steep slope. The EC50 esti-

mates were more precise and accurate estimates in comparison to the EC5 and EC10 for all

slopes and background mortality. The number of datasets that fitted to the model, accuracy

and precision also increased with the slope of the curves. The mean ECx estimates were similar

in all levels of background mortality; however, the 95% high density intervals became wider

with the increase in background mortality. Consequently, the RMSE estimates also increased

(S1 and S2 Figs in S2 Appendix).

In most cases, the RMSE ratio did not deviate substantially from 1 but favored the continu-

ous design most of the time (S1 Table in S3 Appendix). The RMSE of the EC5 and EC10 esti-

mates of the continuous design in datasets with a steep slope were, on average, 1.3 and 1.37

higher in the datasets with a threshold parameter. The RMSE ratios also increased with the

slope. However, the categorical design was more accurate, with lower RMSE estimates by fac-

tors ranging from 0.62 to 0.84, in the ECx estimates in the log-logistic datasets with a steep

slope (S1 Table in S3 Appendix). This was the only instance where the categorical design out-

performed the continuous design in the ECx analysis. The mean estimates of the slope were

generally overestimated in log-logistic datasets and underestimated in the NEC datasets (S4

Appendix).

Threshold analysis

Both accuracy and precision of all threshold estimates also increased with the slope of the

curves (Fig 4). All methods evaluated in this study had very poor performance (i.e. high RMSE

and HDIs) in datasets with shallow slopes. Increases in the background mortality also led to an

increase in the 95% HDIs and RMSE estimates (S1 and S2 Figs in S5 Appendix).

The piecewise regression was the only method where the accuracy increased with back-

ground mortality (Fig 4 and S1 and S2 Figs in S5 Appendix). In all scenarios, the piecewise
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regression underestimated the true threshold. The Bayesian estimation of the NEC model in

datasets with a steep slope was the most accurate of the methods considered in this paper. The

number of models that the Bayesian NEC fit acceptably to the data decreased with the slope

and with the increase in background mortality. The estimates of the slope parameter were usu-

ally overestimated with the MLE NEC, especially for datasets generated with the log-logistic

model. Higher estimates of the slope were also found in the datasets generated with log-logistic

models with the Bayesian approach. Therefore, misspecification of the appropriate model

resulted in a biased estimation of the slope parameter.

In most cases, EC5 estimates from datasets with shallow and intermediate slopes were the

most accurate and precise estimations of both true and apparent thresholds. However, the

Bayesian and MLE NEC estimates outperformed the EC5 in datasets with a steep slope and a

true threshold parameter (Fig 5). In this case, the MLE NEC in the continuous design with a

steep slope had similar accuracy to the EC5, with the mean RMSE ratio close to 1. The piece-

wise regression only outperformed the EC5 in datasets with highest background mortality and

a true threshold. The Bayesian NEC in the continuous design and steep slope was the only case

where an apparent threshold was more accurate than the EC5. In datasets with a true threshold

and a steep slope, the Bayesian NEC had on average RMSE values 1.67 times lower in

Fig 3. Distributions of the ECx estimates for the continuous and categorical designs (with medium background

mortality) for three different types of curves (rows) and for the datasets generated from NEC and log-logistic

models (columns). All models were fit with a three parameter log-logistic model. Black dashed lines indicate the true

values of the ECx, and gray dashed lines indicate the 95% HDI. The RMSE and number of datasets are presented for

each design.

https://doi.org/10.1371/journal.pone.0231149.g003
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comparison to the MLE NEC. In the categorical design, both MLE and Bayesian NEC had sim-

ilar RMSE, being on average 1.64 times lower than the EC5.

Regarding the threshold estimates among the two different designs, the RMSE of the con-

tinuous design was on average 1.31 lower than the RMSE of the categorical design with the

Bayesian method in datasets with a true threshold parameter and a steep slope (Fig 6). In the

log-logistic datasets, there was not a strong support for the continuous design with an average

RMSE ratio of 1.12. In the MLE NEC approach, the RMSEs of the categorical design were

lower than the continuous design in the steep slope in both datasets. The piecewise regression

was more accurate in the continuous design in datasets with a true threshold. However, for

datasets without a true threshold, the categorical design the RMSEs became lower with the

increase of the slope.

Model selection

The rate of true threshold models selection with the Bayesian and Piecewise regression

increased with the slope of the curve (Fig 7). The slope of the curve had a smaller effect on the

model selection of the MLE NEC approach. In the MLE NEC, the threshold model was

selected on average 66.3% of the datasets with the continuous design and 40.6% with the cate-

gorical design in all slopes. The continuous design usually had higher rates of true model

Fig 4. Distribution of the threshold and EC5 estimates for the continuous and categorical designs (with medium

background mortality) for three different types of curves and for the datasets generated from NEC and log-

logistic curves. Dashed lines represent the true threshold value for the NEC datasets and the apparent threshold in log-

logistic datasets, assuming an apparent threshold equal to the NEC models. The numbers above the boxplots are the

RMSE of the estimates and the number datasets that the method fitted to the data.

https://doi.org/10.1371/journal.pone.0231149.g004
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selection in comparison to the categorical design. In the Bayesian NEC, the mean rates in data-

sets with a steep slope were 72.6% and 67.5% for the continuous and categorical design respec-

tively. In the Piecewise regression, the rates were on average 92.7% and 74.3% in the

continuous and categorical datasets with a steep slope. The increase in the background mortal-

ity generally decreased the rate of true threshold model selection, except for the piecewise

regression where the rate increased with background mortality (S1, S2 and S3 Tables in S6

Appendix).

On the other hand, the rate of model selection with the AIC and DIC weights were much

lower. In the MLE NEC approach, AIC weight was usually below 5% of the datasets with a

mean of 6.1%, 2.1% and 3.2% in the shallow, intermediate, and steep curve of the continuous

design, respectively. In the categorical design, this rate was even lower with 1.1%, 0.4%, and

1.1% in the shallow, intermediate and steep curve, respectively. In the Bayesian approach,

most DIC weights were below 1% in both designs. The piecewise regression had a higher

model selection rate with the AICc weights in datasets with a steep slope with a mean of 80.4%

and 41.7% in the continuous and categorical design respectively. Usually, the AIC and DIC

weights provided higher support for the log-logistic models in shallow and intermediate slopes

and were higher than the rate of support to the NEC models in all cases (S1, S2 and S3 Tables

in S6 Appendix).

The rates of spurious threshold model selection also increased with the slope of the curve in

the Bayesian NEC and piecewise regression but decreased in the MLE NEC approach (Fig 7).

The rates of spurious threshold detection were generally also higher with the continuous

Fig 5. RMSE ratios between the MLE NEC, Bayesian NEC and EC5 estimates. Each point in the graphic represents

one background mortality value (not differentiated in the figure) and each boxplot represents the shallow, intermediate

and steep slopes (from the left to the right). Values above 1 (dashed line) favors the denominator.

https://doi.org/10.1371/journal.pone.0231149.g005
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design, except for datasets with a steep slope in the Bayesian NEC approach, which had a mean

of 87.9% in the categorical and 42.9% in the continuous. The rates of spurious model selection

with the piecewise regression were even higher than the rates of true threshold selection in

datasets with a steep slope, with a mean of 79.7% and 92.1% in the categorical and continuous

design respectively. The AICc weights also had much higher values in comparison to the

Bayesian and MLE NEC approach, with a mean of 40.9% and 75.6% in datasets with a steep

slope in the categorical and continuous design respectively. The rates of spurious threshold

model selection with the DIC weights were below 1% in all scenarios and designs. In the MLE

NEC methods, the rates of spurious threshold model selection with the AIC weights was also

low and below 2% in almost all scenarios. The DIC and AIC weights also supported log-logistic

models more frequently than NEC models.

Discussion

Threshold estimates in ecotoxicology have been proposed as an alternative to ECx and NOEC

estimates. Different methods have been used to estimate these thresholds, such as the MLE

NEC [9], Bayesian NEC [10], and piecewise regression [11]. The application of other analysis

Fig 6. RMSE ratios between the categorical (numerator) and continuous designs (denominator) for the MLE NEC,

Bayesian NEC, Piecewise regression and EC5. Each point in the graphic represents one background mortality, and

each boxplot represents the shallow, intermediate and steep slopes (from the left to the right). Values above 1 (dashed

line) favors the continuous design.

https://doi.org/10.1371/journal.pone.0231149.g006
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such as the binomial cumulative sum control chart (CUSUM) analysis [26], receiver operating

characteristic (ROC) curves [27], and changepoint analysis [28] were also evaluated in earlier

versions of this work. Even though they might be useful in detecting break points in ecotoxi-

cology, their application in analyzing survival data is limited. These methods are mathemati-

cally and conceptually different from the previous described methods and thus not included in

this work. In this paper, the accuracies of three different methods were compared to each

other and to EC5 estimates under different scenarios and designs. Overall, the three methods

were less accurate than the EC5 estimates in datasets with a shallow and intermediate curve,

even in datasets which contained true thresholds. Based on these results, there seems to be no

advantage in using any of these methods instead of ECx analysis in datasets with shallow and

intermediate slopes.

A previous simulation study showed that piecewise regressions can provide accurate esti-

mates of thresholds [29]. In the present work, piecewise regressions were usually less accurate

than log logistic EC5 estimates and underestimated the true thresholds. However, estimates of

the apparent threshold with the piecewise regressions were more accurate than the MLE NEC

Fig 7. Rate of true and spurious threshold models selection from datasets with and without thresholds respectively. Each point in

the graphic represents one background mortality value (not differentiated in the figure) and each boxplot represents the shallow,

intermediate and steep slopes (from the left to the right). Asterisk marks represents the rate of model selection with the AIC, DIC and

AICc weights for the MLE NEC, Bayesian NEC and Piecewise regression respectively. The dashed horizontal line is a reference line set at

50% of the datasets.

https://doi.org/10.1371/journal.pone.0231149.g007
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and, in some cases, the Bayesian NEC. One disadvantage of the piecewise regression is that

threshold estimates were more affected by the effects of background mortality than are the

other methods. Overall, increases in the background mortality lead to an increase in the HDI of

all methods, which is in agreement with Bass et al. [7] who reported that increases in control

mortality can make the estimation of the NEC more difficult. Besides, background mortality

also affected the rates of true and spurious threshold models selection in all evaluated methods.

Of all the methods evaluated in this paper, the Bayesian NEC was the most accurate method

in datasets with a steep slope. The Bayesian approach also has a series of advantages such as the

direct inclusion of uncertainty in the estimates of the threshold parameter, which can be draw

from the posterior distribution. Another advantage is that prior information can also be

adjusted by using expert elicitation (e.g., [8]), information from the literature, or previous

experiments. For instance, information about background mortality can be easily gathered for

commonly used species in ecotoxicology. Even though weakly informative priors for all

parameters were used in this work, it is likely that the inclusion of priors in the model fitting

process contributed to the accuracy of the method. For instance, assuming flat priors with pre-

defined upper and lower boundaries for the slope may have contributed to the overall model

accuracy. One disadvantage of the Bayesian NEC is that the number of models that fit the data

acceptably decreased with the slope, especially with higher background mortality.

Regarding the true threshold estimates, the only scenarios where threshold methods were

more accurate than the EC5 were with the Bayesian and MLE NEC in datasets with a steep

slope and a true threshold, and with the piecewise regression with high background mortality.

Nevertheless, in such cases, the EC5 underestimated the true threshold, with a mean value of

approximately 17% in both designs and background mortalities. In most cases, the widths of

the HDIs of the Bayesian, MLE and EC5 within the same design were in the same range (Fig 4

and S4 Appendix). This indicates that the main driver of the lower RMSE values of the EC5 in

datasets with a true threshold and a steep slope is the underestimation of the threshold and not

the lack of precision of the method. Thus, if EC5 analyses are used in datasets with a true

threshold, the EC5 is expected to on average, underestimate the threshold value. This is a rea-

sonable result when the shape of both the log-logistic curve and the NEC curves are compared

(Fig 1 and Table 1).

The Bayesian NEC in the continuous design with a steep slope was also the only method

where apparent threshold estimates were more accurate than EC5 estimates. In this case, both

methods had very close mean estimates of the apparent threshold with 20.78% and 21.08%

respectively. However, the HDIs estimates were wider for the EC5 in comparison to the Bayes-

ian approach. This was not observed in the categorical design which EC5 estimates had very

precise and accurate estimates. Thus, from a practical point of view, there seems to be no

advantage in estimating an apparent threshold instead of an EC5 in almost all scenarios evalu-

ated in this work. In fact, the MLE NEC overestimated the apparent threshold in steep slopes

with a mean of around 23% of the effluent in both designs. Overestimation and underestima-

tion of the threshold value in relation to the EC5 may occur and were also observed by Forfait-

Dubuc [8] with real datasets.

The rate of spurious threshold model selection based solely on the information criteria

might be as high as 99.4% or as low as 6.5% depending on the method, slope, and design (Fig

7). The piecewise regression had the highest rates of spurious threshold detection and was the

only method for which the information criteria weights provided high support for the thresh-

old model. Daily et al [30] also reported high rates of spurious threshold detection in multivar-

iate simulated datasets with piecewise quantile regression. The information criteria weights

with the Bayesian and MLE NEC had rates of true and false threshold model selection usually

below 5% and, in most cases, below 1%. Hence, there seems to be weak evidence in favor of
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one model over the other as pointed out by Ulm [12]. This is especially true in datasets with

steep slopes, which had the lowest information criteria weights and in cases where the thresh-

old is overestimated. As discussed by Fox [10], the introduction of a threshold parameter in

the model does not presuppose the existence of a threshold, but just allows it to be estimated.

However, the identification of the correct model is a hard task.

Regarding the experimental designs, the RMSEs ratios favored the continuous designs in

most cases, but not in all cases. For instance, in the steep slope, the categorical design was

more accurate than the continuous design with the MLE NEC method, and the opposite

occurred with the Bayesian NEC. The main idea of favoring the number of concentrations

instead of the number of replicates per treatment is that it might increase the accuracy in esti-

mating the shape of the curve [31] which can increase the ability to estimating thresholds [11].

One example of the problem with fitting threshold model with low number of concentrations

and a shallow slope can be illustrated in Fig 2A, where the log-logistic and NEC models pro-

vided very different results. In this example, the NEC model would predict a much higher

threshold (39.1% of the effluent) and the log logistic model is only weakly favored by the AIC

weights (i.e. 0.54). In such cases, where the shape of the curve is not clear, more data should be

gathered if threshold models are going to be used.

The low number of sampling replicates (i.e., organisms) per concentration in the continu-

ous design might also make it difficult to precisely estimate the threshold or ECx value, espe-

cially if there is high background mortality. Thus, experimental designs should balance the

number of concentrations and sampling replicates in a way that it maximizes the accuracy of

the statistical method. Because there are innumerable design permutations and design will also

depend on the funding of the study, pilot and simulation studies are recommended if thresh-

old models are going to be used. Also, dose response curves may present a wide range of slopes

depending on the test organisms, contaminant of interest and their modes of action [32].

Because organisms may present different sensitivity to contaminants (i.e., ranging from μg/L

to mg/L), the interpretation of steepness of the slope may be ambiguous when comparing

curves with different concentration units. A steep slope, in the context of this work, should be

interpreted based on the shape of the dose response curve, independent of the concentration

unit or x-axis scale. Future studies should also evaluate the accuracy of ECx estimates in rela-

tion to (i) different threshold models (such as the time-independent NEC and models that

assume triangular distributions), and (ii) other distributions, such as Gaussian and Poisson.

Conclusion

Thresholds are an attractive concept from a regulatory and practical point of view. However,

threshold estimates might not be reasonable in all scenarios, such as when the data have shal-

low or intermediate slopes. In most scenarios, EC5 estimates were the most accurate method.

Nevertheless, EC5 may underestimate the true threshold in steep slopes and in such scenario

the Bayesian NEC was the most accurate methods. However, there seems to be no strong evi-

dence in favor of either log-logistic or NEC models in all cases. Thus, selecting the correct

models is an extremely hard task. The piecewise regression was the only method where the

information criteria weights had higher support for the threshold model; however, the rates of

spurious threshold selection were also high. Measuring an apparent threshold does not seem

to have any advantage over the EC5 in most cases, and in fact, it can overestimate the apparent

threshold. Hence, threshold models should be used carefully or when there are any biological

reasons to support the existence of a threshold. In such cases, more data should be gathered

around the estimated threshold to better understand the shape of the dose-response curve and

the mechanisms behind threshold effects.
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