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Summary.-An easy, rapid and improved technique for homogenizing whole skin is
described. This technique consists of reducing skin to a powder in liquid N2 by using
a metallic mortar, and homogenizing the powder in a Potter-Elvehjem tube.
Using this homogenizing method, we have shown that skin AHH activity in

C57BL/6J and C3H/Ico mice can be induced by i.p. injected or topically applied methyl-
cholanthrene during a defined period of the hair growth cycle, i.e. between the 8th
and 14th days after depilation (Stage 6 of the anagen period). In each experimental
model, there is an optimal methylcholanthrene concentration which yields a maxi-
mum induction. Topical methylcholanthrene is also responsible for a smaller aryl
hydrocarbon hydroxylase (AHH) induction when the chemical is applied the same
day that the club hairs are plucked.
On the other hand, skin AHH activity is never induced by methylcholanthrene in

DBA/2J mice, a genetically non-responsive strain. No clear-cut segregation of skin
AHH inducibility levels is found among the offspring from the back-cross between
(C57BL/6J x DBA/2J)F1 and non-inducible DBA/2J mice.

IN MOST INSTANCES, polycyclic hydro-
carbons are not harmful by themselves,
but become mutagenic when they are
converted in vivo by different enzymatic
systems into reactive intermediates. In-
deed, these metabolites are able to bind
covalently to cellular macromolecules, and
thereby initiate a toxic or carcinogenic
phenomenon (for review, see DePierre
& Ernster, 1978; Heidelberger, 1975;
Miller & Miller, 1976; Miller, 1978;
Sims & Grover, 1974; Weisburger, 1978).
The initial enzymatic reaction in this
metabolic pathway is catalysed by a
microsomal mono-oxygenase, i.e. aryl
hydrocarbon hydroxylase, AHH (De-
Pierre & Ernster, 1978; Jerina & Daly,
1974; Thorgeirsson & Nebert, 1977),
which produces a reactive arene oxide or
epoxide (DePierre & Ernster, 1978; Jerina
& Daly, 1974; Sims & Grover, 1974). The

fate of these electrophilic metabolites is
multiple, as they can react with cellular
nucleophilic targets (Heidelberger, 1975;
Miller & Miller, 1976; Weisburger, 1978),
or be further transformed by other enzy-
matic systems (DePierre & Ernster, 1978;
Sims & Grover, 1974) into less toxic or
sometimes more reactive metabolites (Sims
et al., 1975).
The liver has been widely used for the

study of polycyclic hydrocarbon metabo-
lism. Unfortunately, it is a rather poor
biological model, as the primary targets of
these carcinogens are the lung and the skin
(Berenblum, 1974; Buty et al., 1976). In
this respect, skin is a very attractive tool,
as it is also easily accessible in man. More-
over, by using topical application, treated
and control samples can be obtained from
the same subject. Biochemical studies on
this tissue have been hindered by its low
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enzyme activity (Oesch et al., 1977;
Pannatier et al., 1978; Thompson & Slaga,
1976), the presence of various cell types
(Montagna, 1962) and the difficulty of
preparing suitable homogenates.
Among the various physiological pheno-

mena in skin, the hair growth cycle is of
particular interest. Three major morpho-
logical phases (Montagna, 1962) charac-
terize this process: (a) the anagen phase,
or growth of the hair ( + 15 days in mice);
(b) the catagen phase, or degeneration of
the bulb (+ 1 day); and (c) the telogen
phase, ending by the loss of the hair
(± 20 days in mice). The anagen phase is
divided into 6 periods (Al to A6), the
most critical being: Al, or the advent of
the first mitosis; A3, or follicle insertion
into the adipose hypodermic layer and the
onset of cellular differentiation; A5, when
the hair shaft reaches the epiderm; and
A6, the visible and constant hair growth
stage. In the young mouse, the hair
growth cycle is usually well synchronized
(Berenblum et al., 1958). However, one
can initiate a new synchronized cycle by
plucking the club hairs during the telogen
phase.
The goal of our study was to determine

whether the activity of the enzyme sys-
tems involved in carcinogen activation
would change during the various phases of
the hair growth cycle. With this purpose in
mind, we first developed an improved
method for homogenizing skin, and then
applied it to the study of 3 enzymes
implicated in the activation or detoxifica-
tion of polycyclic hydrocarbons. And
finally, from a biochemical point of view,
we have shown that the inducibility of
mouse skin AHH activity by polycyclic
hydrocarbons was only possible during the
periods A4-A5 and early A6. The bio-
logical implication of this phenomenon
will be discussed.

MATERIALS AND METHODS

[3H]-benzo(a)pyrene (1 -2 Ci/mmol) was
obtained from I.R.E. (Fleurus, Belgium).
Benzo(a)pyrene, 3-methylcholanthrene and

Tris(hydroxymethyl)aminomethane were ob-
tained from Fluka (Buchs, Switzerland).
NADP+, NAD+, glucose-6-phosphate, glucose-
6-phosphate dehydrogenase and glutathione
were purchased from Boehringer (Mannheim,
F.R.G.); other chemicals and solvents from
Merck (Darmstadt, F.R.G.). Cigarette-smoke
condensate was a generous gift from Dr R.
Kouri (Microbiological Associates, Bethesda,
Maryland, U.S.A.). [3H]-BP-4,5-oxide was
prepared according to the method of Dan-
sette & Jerina (1974).

Benzo(a)pyrene purification.-13H]-BP was
purified by reverse-phase high-performance
liquid chromatography (HPLC) on a Micro-
bondapack C18 column using a Waters
(Model ALC 202) apparatus. 2-5 mCi of
[3H]-BP in 50 ,ul of cyclohexane was injected
on to the column and elution was performed
at room temperature by a methanol/water
(85/15; v/v) isochratic system with a 2 ml/min
flow rate. Effluent absorption was monitored
at 254 nm and the fractions corresponding to
[3H]-BP were collected and pooled. [3H]-BP
was then diluted with unlabelled BP to a
specific radioactivity of about 65,000 d/min/
nmol, evaporated to dryness and dissolved in
cyclohexane (2 mg/ml). This solution was
purified once again by HPLC on a silica-gel
column (Porasil, particle size, 75-125 -m;
internal diameter, 7-8 mm; length, 122 cm)
using cyclohexane as the eluting solvent.
Under these conditions, BP was readily eluted
and separated from the polar impurities which
were retained on the column. [3H]-BP was
then distributed in known amounts in a large
number of tubes, evaporated to dryness and
kept at - 20°C in the dark under argon until
use.
True specific radioactivity (- 65,000 d/

min/nmol) was recalculated for each prepara-
tion.

[3H]-benzo(a)pyrene-4,5-oxide purification.
-100 mg of BP-4,5-oxide (dissolved in 250 ml
of cyclohexane/triethylamine (96/4; v/v)) was
passed through filter paper and purified by
HPLC on a silica-gel column (porasil) under
the conditions described above for BP, the
cyclohexane being replaced by the cyclo-
hexane/triethylamine mixture.
The true specific radioactivity of [3H]-BP-

4,5-oxide used in this study was 5700 d/min/
nmol.

Treatment of animals.-Three strains of
25g male mice were used in this study:
C57BL/6J (B6) and C3H/Ico (AHH-inducible
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strains) and DBA/2J (D2, AHH non-induci ble
strain). Crossbreeding was carried out in order
to produce mice (D2 x D2B6), of which 50%
were theoretically genetically inducible (Gielen
et al., 1972). All the animals were housed in an
artificially lighted room where the lights were
automatically turned on and off at 12h
intervals. Tap water and food (UAR A03,
Villemoisson, France) were given ad libitum.
For the study of the influence of the hair

growth cycle on inducibility of AHH by
methylcholanthrene, we selected 53 ( ± 3)-
day-old mice, i.e. an age when all the hairs
have reached the telogen phase. In order to
induce a new hair cycle, depilation was per-
formed by plucking the club hairs with
haemostatic clips, the ends of which were
fitted with rubber tubes. A 4cm2 area was
depilated on each mouse's back left side, the
right side being considered as a control.

Induction was performed at various inter-
vals after depilation by i.p. (80 mg/kg in
peanut oil) or topical MC administration. For
topical treatment, MC (50, 150 or 450 ,ug per
mouse) was dissolved in 200 Ful of acetone and
applied on the depilated side oI' on the control
side after shaving with an electric razor.
Enzyme preparation.-Mice were killed

24 h after the last treatment with the inducer.
The entire skin was removed, cleaned from
s.c. fat and shaved if necessary.

Precisely measured samples (3 cm2) were
excised on both sides of the back, placed in
small plastic vials and frozen in liquid N2
until homogenization. Small pieces (0-2 cm2)
of the depilated side were also collected and
immersed in Bouin fixative for microscopic
control of the hair-cycle phase. The fragments
were embedded in paraffin, sectioned in
5,m slices parallel to the axis of the hair-
follicles and stained with haematoxylin and
eosin.

Skin homogenization was performed as
follows: the frozen sample (3 cm2) was placed
in a cooled (liquid N2) stainless-steel mortar
(internal diameter: 30 mm) and powdered
by 10 hammer strokes on a well-fitted piston
(free lateral motion 0-1 mm). The powder of
each skin sample was then transferred into a
small Potter-Elvejhem tube and homogenized
with 2 ml of sucrose (0.24M)-Tris (pH 7-6;
O-O1M) buffer). The homogenates were centri-
fuged at 5000 g, the supernatants and pellets
being stored separately at - 18°C until use.
Enzyme and chemical assays.-AHH acti-

vity was measured by a recently developed

isotopic assay (Van Cantfort et al., 1977). Our
standard conditions (500 ,il final incubation
volume) consisted of incubating 250 ,ul of the
5000g supernatant for 30 min at 37°C in the
presence of optimal co-factor concentrations.
In order to lower the blank values and in-
crease measurement sensitivity, the un-
metabolized BP was removed after incubation
by 3 successive extractions in hexane, rather
than 2 as in the original assay (Van Cantfort
et al., 1977). In the presence of skin homogen-
ate the enzyme reaction was linear for about
90 min. AHH activity was also assayed by
measuring the fluorescence of 3 hydroxy-
benzopyrene, as described by Nebert & Gielen
(1972). Epoxide hydrolase (EH) activity was
measured by the method of Schmassman et
al. (1976). The standard conditions were as
follows: 250 ul of the 5000q supernatant (final
volume of 500 jul) for a 30min incubation at
370C.
The protein concentration of the tissue

preparation was determined by the Lowry
method. The protein concentration of the
homogenate accurately paralleled the weight
of the sample; the results expressed in nmol/
min/mg protein or/g skin (data not shown)
therefore display the same significance.
DNA measurements were made on the

10OOg pellet according to the method of
Burton (1956) with two extractions by 1 ml of
HC104 (0.5N) at 80°C for 30 min. After each
extraction, the tubes were centrifuged at
2000 g for 10 min; the two supernatants were
filtered on a small Buchner and mixed for the
colorimetric assay.

RESULTS

Optimization of the 8kin homogenate prep-
aration

In a preliminary experiment, it was
shown that freezing an organ in liquid N2
did not modify AHH and EH activities.
Indeed, they were identical in a liver
homogenate which had either been pre-
pared according to the technique for skin
described in the Methods section, or which
had been directly made from the fresh
tissue without prior freezing in liquid N2
(data not shown).
In the homogenate, AHH and EH acti-

vities increased as a function of skin
pulverization, as indicated by the hammer-
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Enzyme activities

AHH

Fluori- Iso-
metric topic
0-10
0-18
1-35
1-75
2-80
2-10
2-00
2-20
0-65
2-15
1-80

0-5
0-9
4-4
5-1
6-6
6-4
6-3
6-4
2-8
6-3
6-1

EH
2
3

19
25
28
28
24
28
12
24
23

The shaved skin of 10 normal mice was excised,
cut into small pieces and mixed. A sample was then
taken for each preparation. Except for the number
of hammer strokes and Potter-Elvehjem move-
ments, the procedure of freezing and powdering was
as described in the Methods section. The 20-sec
Ultra-turrax homogenization was performed in a vial
maintained in an iced water-bath and eventually
repeated at 3-min intervals. All the enzyme activities
are expressed in pmol/min/cm2 skin.

stroke number on the mortar piston (Table
I). Conversely, the number of up and
down movements of the Potter-Elvehjem
piston had to be limited, as the heat
brought about by the repeated motions
probably decreased the enzyme activity
(Table I). As a rule, in order to reduce this
phenomenon, the homogenizer tube must
be maintained in an appropriate ice-water
bath during the entire process.
AHH and EH activities in the differ-

ently prepared homogenates evolved in a

similar manner; however, EH seemed to be
less sensitive to the heating problems
caused by homogenization. This observa-
tion was not unexpected, as EH is a much
stabler enzyme (Oesch, 1973) than the
monooxygenase (Mazel, 1971).

Table I also shows that an enzymatically
active homogenate was obtained by using
an ultra-turrax. However, this procedure
proved to be much more troublesome
because: (a) the skin had to be cut into
very small pieces; (b) homogenization had
to be frequently interrupted in order to
avoid overheating; and (c) the ultra-

TABLE II.- AHH and EH activities as a
function of the centrifugal fractionation
of the homogenate

AHH

Fluori- Iso-
Enzyme preparation metric topic

I000yg supernatant 1-9 5 9
5000 g ,, 3-0 6-8

10,000g ,, 2-4 5-8
15,000 g ,, 1-8 5-4
20,000g 1-7 5-1
105,000 g ,, 0-1 0-1

Microsomes 2-0 4-5

EH
21
29
27
20
18
1

25

A pool of skin homogenate prepared under optimal
conditions was divided into several parts and sub-
mitted to various centrifugation speeds. Microsomes
were obtained from the pellet of a 105,000g centri-
fugation of the 5000g supernatant. AHH was
measured by the fluorimetric method, and all the
enzymatic activities are expressed in pmol/min/cm2
skin.

turrax had to be cleaned after each sample
preparation as the connective tissue fre-
quently clogged the helix.
The skin homogenate was then frac-

tionated by differential centrifugation
(Table II). The 5000g supernatant dis-
played the highest AHH and EH acti-
vities. At higher centrifugation speeds, the
enzyme activities decreased with micro-
somal fraction sedimentation and were
completely absent in a 105,000g super-

natant. It should also be noted that, in
units per skin surface, the enzyme acti-
vities were higher in the 5000g supernatant
than in those measured in microsomal
pellets.

Advantages of an isotopic method for assay-

ingAHH
As previously described (Van Cantfort

et al., 1977) the AHH isotopic assay
presents numerous advantages when com-

pared to the fluorimetric assay: (a) it
takes into account all the metabolites
formed by the action of AHH, whereas
with the fluorimetric assay, only two meta-
bolites (3 and 9 hydroxybenzopyrene) are
measured (Holder et al., 1975); (b) It is
not influenced by a further metabolism of
the primary metabolites, whereas the
conjugation of 3 hydroxybenzopyrene, for
example, leads to a decrease in the

TABLE I.-AHH and EH activities as a
function of the homogenate preparation

Homogenate
preparation

e- --l

Potter-
Hammer Elvehjem
strokes movements

0 6
0 12
3 6
6 6

10 3
10 6
10 12
20 6

Ultra-turrax: 1 x 20 sec
2 x 20 sec
4 x 20 sec
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fluorimetric measurement and (c) it is not
influenced by the lighting conditions of
the room.
The discrepancy between the fluori-

metric and isotopic assays varies according
to the incubation conditions and the
tissue tested, but as a general rule it is
greater when the activities are smaller
and the enzyme less purified. In the par-

ticular case of AHH in the skin, it is
obvious that the fluorimetric assay cannot
be recommended, as the activities are very
low and the enzymatic preparation is
crude, in order to avoid the loss or de-
naturation of enzymnes during the purifica-
tion.
The superiority of the isotopic assay for

skin studies can already be deduced from
Tables I and II, which clearly show that
this assay presents higher values. More-
over, these values are closer when one

compares different homogenate prepara-
tions. This is why we performed the entire
study on skin AHH regulation, using this
isotopic. assay.

Skin AHH induction by i.p. methylcholan-
threne

In a preliminary experiment, we deter-
mined that skin AHH induction was

influenced by the hair growth cycle. AHH
activity was measured in control and in
depilated B6 mice which were treated or

untreated with MC. The interval between
depilation and killing of the mice was

fixed at 8 days, i.e. the onset of the hair
growth anagen-6 period.
MC induction was performed according

to 3 experimental procedures, i.e. 1, 2 or

3 successive i.p. injections. Collection of
the samples took place 24 h after the last
injection. In each case, only the left side
of the mice was depilated, the right side
being considered as the control. The results
are summarized in Fig. 1. Without treat-
ment, the left and right sides displayed
about the same enzymatic activity. Eight
days after depilation, there was a sig-
nificant increase in AHH activity in the
depilated area when compared to the
non-depilated skin, which was observed
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FIG. 1.-Effect of depilation and i.p. methyl-
cholanthrene on skin AHH activity in
mice. C57BL/6J mice were depilated on
one side 8 days before being killed and/or
treated with MC (80 mg/kg, i.p.) once (24 h
before being killed), twice (1 and 3 days
before being killed) or 3 times (on the 1st,
4th and 7th days). In each case, the right
side of the skin was not depilated. The
crosses in the bottom of the diagram indi-
cate the treatment (depilation or MC injec-
tion). The vertical lines represent the s.e. of
the mean from 5 animals. * indicates a sig-
nificant difference (P < 0 05) between the
two sides of the mice.

when the activity was expressed in units
per skin surface and not in units per mg of
protein. This discrepancy could be related
to a thickening of the skin during the hair
growth cycle.
MC administration to non-depilated

mice did not produce significant AHH
induction. On the other hand, 8 days after
depilation and 24 h after MC administra-
tion, we observed a major increase in AHH
activity, regardless of the means selected
for expressing the results (u/min/cm 2
skin or/mg protein). Repeated MC adminis-
tration did not further enhance the
induction phenomenon, but on the con-
trary decreased it.
A control experiment (Fig. 1) was also

performed on D2 mice. First, we verified
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FiG. 2. Skin AHH induction as a function

of the hair cycle. Groups of 5 C57BL/6J
mice were depilated on one side of the
back, treated at different intervals with MC
(80 mg/kg, i.p.) and killed 24h later. Results
are expressed as the ratio of the activity
between the depilated and non-depilated
side. The shaded area corresponds to the
zone containing all the control values ob-
tained in mice not treated with MC. Verti-
cal bars indicate s.e.

that AHH activity was not inducible by
polycyclic hydrocarbons in the liver as
reported in the literature (Gielen et al.,
1972; Nebert & Gielen, 1972). Secondly,
we observed that polycyclic hydrocarbons
were unable to induce skin AHH activity
during either the telogen or anagen phases.
On the contrary, when expressed per mg
protein, AHH activity was significantly
decreased on the depilated side as com-
pared to the control side (Fig. 1).

Skin AHH induction by i.p. methylcholan-
threne as a function of the hair cycle
We studied skin AHH inducibility as a

function of the hair growth cycle 24 h after
MC injection (Fig. 2). No induction was
observed during the first 7 days after

16

depilation. On the 7th day, microscopic
examination showed that the hair growth
stage varied from mouse to mouse between
anagen 3 and 5. Between the 7th and the
11th days, skin AHH inducibility in-
creased abruptly; it peaked around the
11th day and decreased thereafter, dis-
appearing once again after the 18th day.

Skin AHH induction by topical methylchol-
anthrene
MC was topically applied just after

depilation and 5, 10 or 21 days later.These
mice were then killed the next day. The
results (Fig. 3) were very similar to those
obtained after i.p. injection; the enzyme
was significantly induced in the skin of the
animals which had been depilated 10 days
earlier and was not modified in the mice
depilated 5 or 21 days earlier. Surprisingly,
a significant induction was also observed
in the group of mice which received the
topical MC application the same day as
the depilation. The dose-response rela-
tionship was also inverted, as previously
observed after i.p. MC (Fig. 1). In fact, the
dose of 50 tg per mouse was found to be
optimal, as shown in Table III.
We have also studied the effect of MC

(50 jug/mouse) on another strain of
responsive mice (C3H/Ico). In this strain,

TABLE III.-Effect of topical application of
different doses of MC on AHH induction
in mouse skin

MC
administered
(,g/mouse)
Control

6
12
25
50
100
200
400

AHH activity*
(% of control)
assayed on the

5th day 10th day
100 100
112 161
104 140
121 260
116 292
102 238
108 205
96 164

Mice were depilated 5 or 10 days before being
killed and were topically treated with MC 24 h before
being killed.

* Mean from 3 mice. The control activities were
8-2 and 10-1 pmol/cm2 skin/min for mice killed on
the 5th and 10th day, respectively.

b

1 t- .s ..

215



L. MANIL, J. VAN CANTFORT, C. M. LAPIERE AND J. E. GIELEN

I1 I I1~~~~~~~~.~~~ -I!-~ ... !~

FIG. 3.-Effect of topical MC application and depilation on skin AHH activity in C57BL/6J mice.
Mice were depilated on one side, topically treated with MC (or acetone) on both sides 1, 4, 9 and 20
days later, and killed the next day. Three doses of MC were tested, 50, 150 and 450 jug per mouse.
AHH was measured on both the depilated (+) and non-depilated (-) skin areas. Vertical bars
represent the s.e. of the mean of 5 animals. *, significant difference (P < 0-01) between the results
from both sides.

TABLE IV.-Effect of depilation or shaving
and topical MC application on skin AHH
activity in C3H/Ico mice

AHH activity in

Vehicle-
Delay treated MC-treated
(days) Treatment mice mice

5 Shaving 29-9+5-7 30 7+5 5
(N.S.)

5 Depilation 31-6+5-1 30 5+2-7
(N.S.)

11 Depilation 25-7+3-4 41-1+4-9
(P < 0-001)

21 Depilation 29-6 + 6-4 29-6 + 5-7
(N.S.)

C3H/Ico mice were shaved or depilated 4, 10 and
20 days before the application of the vehicle
(acetone) or MC (50 itg in acetone). They were killed
the next day. Each result represents the mean + s.d.
obtained from 5 mice.

skin AHH presents a higher basal activity,
but is also specifically induced by MC on
the 10th day after depilation (Table IV).
In terms of absolute value, the amplitude
of induction is about the same as for the
C57BL/6J mice, but of course the factor
of induction is lower.

Finally, the effect of topical MC applica-

tion (50 ,ug/mouse) was studied in B6, D2
and backeross (D2 x D2B6) mice on the
10th day after depilation, i.e. when AHH
is most responsive to the treatment. As
expected, depilation alone or MC adminis-
tration to non-depilated mice did not
significantly modify AHH activity (Fig.
4). After depilation, topical MC produced
a strain-dependent induction. Skin AHH
was also induced in a limited number of
backeross mice.

If this inducibility follows the same
genetic control as described for the other
tissues (Gielen et al., 1972) we should have
found a clear-cut bimodal distribution of
AHH activities. We did not observe two
distinct populations, however, but rather
a single population in which AHH activity
varied from non-inducible to highly in-
ducible levels. A single large population
was also observed when the enzyme
activities were expressed in u/mg protein.
Indeed, one could also consider the possi-
bility of a trimodal distribution: a low
(7 mice below 14 pmol/cm2 skin x min),
an intermediate (4 mice between 14 and
22 pmol/cm2 skin x min) and a high (12

I Ii1. I I
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Fim. 4.-Effect of depilation and topical MC administration on skin AHH induction in DBA/2J,
C57BL/6J and backcross mice. The 3 groups of mice were depilated (or not) 9 days before topical
administration of MC (or acetone) and killed 24 h later. Each point represents one mouse.

mice over 92 pmol/cm2 skin x min) activity on the basis of protein content was greatly
group. influenced by non-enzymatic proteins

which greatly increased after depilation.
Compartson of the various methods of expres- For this reason, we tried to measure more
sing the results specific microsomal fraction markers. All
As our enzyme source is a crude skin proved to be inadequate. Glucose 6-

homogenate, the expression of the results phosphatase (Hers & Van Hoof, 1966) and

TABLE V.-Comparison of different expressions ofAHH activity on the 10th day (pmol/min)
Dose of MC (,tg)

Reference unit Depilation
Per cm2 skin

Per mg protein

Per mg DNA

Per nmol EH activity

+ 9-6 + 3-3
- 6-9 + 2-0

(N.S.)
+ 4-6+2-2
_ 5-9 + 2-8

(N.S.)
+ 51+19
- 84+ 34

(P<0-1)
+ 85 + 26
- 76 + 20

(N.S.)

50
26-7 + 1-6
8-0 + 1-8

(P < 0-00l)
13-4 + 1-2
5-8+2-1
(P < 0-001)
137 + 13
85 + 27

(P < 001)
343 + 79
184 + 25
(P< 0-01)

150 450
18-6+ 1-8
57+007

(P < 0-001)
818+06
18-6 + 1-8

(P < b0-Oo1)3-6+0*8
(P < 0-001)
97+7
41+ 14

(P < 0-001)
287 + 92
102 + 29
(P<0-01)

12-9 + 2-6
4 5 + 0 9

(P < 0-001)
6-3 + 1-4
3 5+ 0 9
(P < 0-01)
63 + 10
37 + 16
(P < 0-02)
227 + 105
96 + 73
(P< 0-1)

The results are expressed as the mean + s.d. (n= 5) after topical MC (or vehicle) application 9 days after
depilation, and killing on the 10th day. The significance of AHH activity differences between depilated and
non-depilated areas was obtained by t test.

r- TC UI J* .-- , A. a , __ A

r-
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TABLE VI.-Comparison of the isotopic and fluorimetric assays for measuring AHH
activity in the skin

AHH activity (pmol/min/cm2 skin)

Days between Isotopic Fluorimetric
Strain depilationA
of mice and killing Control MC-induced Control MC-induced

C57BL/6J 5 6-5+ 2-7 7-1+ 3 0 0-6 + 0-2 3-4 + 1-6*
11 80+1 8 26-7+1-6* 3-1+1-3 15-7+6-0*

C3H/Ico 5 31-6+5-1 30-5+2-7 3-7+0 9 8-7+2-4*
1 1 25-7 + 3-4 41-1 + 4-9* 5 9+1*6 22-3 + 6-5*
21 29-6 + 6-4 29-6 + 5-7* 3-8+1-5 9.5 + 1.9*

The methodology is the same as in Table IV, from which some of the data have been drawn.
* P < 0-001 compared to the control group (rest not significant).

NADPH cytochrome c reductase (Phillips
& Langdon, 1962) do not display enough
activity in skin, and could not be measured
in our samples. The epoxide hydrolase
(EH) activity was present at the lower
detectable limits and was difficult to
measure accurately (Oesch et al., 1977).
We also tried to express the results on the
basis of the number of cells in the sample,
as determined by DNA measurement.
Unfortunately, such a marker introduced
other difficulties: (a) DNA is not a marker
of the enzyme preparation (supernatant of
a 10OOg centrifugation), as it is associated
with the nuclei, the subcellular fraction
eliminated by centrifugation; a poor
homogenization could therefore lower
AHH activity without influencing DNA
content of the 10OOg sediment; (b) DNA
extraction from the 10OOg sediment is
difficult and losses at this point are hard to
avoid.

Table V shows AHH activity in control
and MC-treated skin, expressed as a
function of different references, i.e. skin
surface, protein, DNA content or EH
activity. These various means ofexpression
do not change the general interpretation
of the results, but the statistical signifi-
cance was diminished when DNA or EH
was used as a reference.

Comparison of results from the isotopic and
fluorimetric assays

As already mentioned, the isotopic AHH
measures all the metabolites formed during
incubation, whereas the fluorimetric assay,

although by far the most used, only takes
into account the formation of 3- and 9-
hydroxybenzopyrene. Since all the studies
on skin AHH performed in other labora-
tories used the fluorimetric assay, a com-
parison of the results from both methods
was imperative. As shown in Table VI,
the two methods produce quite different
results. Using the fluorimetric assay, we
already observed a clear induction of skin
AHH by MC in animals depilated for 5
days and again at 21 days; at the end of
the anagen phase (on the 10th day after
depilation), the activities are by far higher
but the induction factor remains similar.
The same phenomenon is observed with
both the C57B1/6J and the C3H/Jco mice.
The discrepancy between the isotopic

and fluorimetric assays indicates a great
modification in the pattern of the metabo-
lites produced by the skin under the
influence of the hair growth cycle. The
nature of the metabolites and the extent
of conjugation are factors which greatly
influence the fluorimetric assay. From a
quantitative point of view, the isotopic
assay better reflects true AHH activity,
but on a qualitative basis the fluorimetric
results may also be important. In this
respect, the absolute values of AHH
activity and the induction factor after MC
treatment are both important parameters
influenced by the hair growth cycle.

DISCUSSION

Carcinogenic polycyclic hydrocarbons
are normal combustion products of many
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organic compounds and are important
constituents of many types of smoke, such
as automobile exhausts, house smoke,
various industrial processes and cigarette
smoke.
The study of the skin enzymes involved

in polycyclic hydrocarbon metabolism is
potentially of great interest, as this par-
ticular tissue is in direct contact with soot
and other combustion products.

Earlier works have demonstrated that
skin possesses activating and detoxifying
enzymes, notablyAHH and epoxide hydro-
lase (Pannatier et al., 1978; Pyerin &
Hecker, 1977). More precise studies have
shown that AHH is 4-5 times more active
in the epidermis than in the dermis. The
highest AHH activity of the dermis occurs
in its superficial layer which contains the
sebaceous glands and the hair bulb in the
telogen phase (Wiebel et al., 1975).
During the hair growth cycle, cell divi-

sions occur throughout the entire skin,
from the epidermis down to the hypoder-
mis, where the hair bulbs finally develop.
This phenomenon also affects the seba-
ceous glands, the endothelium cells of the
vessels, the wandering cells, and perhaps
the fibroblasts too. For this reason we
chose to prepare a whole-skin homogenate,
rather than separating dermis from epi-
dermis by sophisticated techniques, such
as application of a depilatory cream fol-
lowed by a specific thermal treatment
(Slaga et al., 1974). In order to perform a
homogenization which would not selec-
tively affect specialized cells, we developed
a technique for crushing skin into a pow-
der at liquid N2 temperature. The use of
metallic mortar proved to be extremely
simple and rapid. In addition, as a result
of other liver assays, we showed that
freezing in liquid N2 and subsequent
thawing do not modify AHH activities,
facilitate a subsequent homogenization
in a Potter-Elvejhem tube and even pro-
duce a slightly more active enzyme
preparation.
The goal of this study was to determine

whether AHH activity and its inducibility
varied during the hair growth cycle and

could possibly explain certain variations in
skin sensitivity to carcinogens. Indeed,
Andreasen & Engelbreth-Holm (1953)
demonstrated that 9, 10-dimethylbenzan-
thracene was 5 times more likely to induce
skin tumours when it was applied during
the resting phase than during the growing
phase of the hair cycle. This phenomenon
was explained by Berenblum et al. (1958)
as a result of different carcinogen persis-
tence in the tissues during the resting
phase of the hair growth cycle.
Our results show that AHH is only

induced by MC during the anagen 5-6
phases. This is contrary to most of the
literature, which suggests that skin AHH
is induced by MC during the telogen phase
(Bouwden et al., 1974; Gelboin et al., 1970;
Pannatier et al., 1978; Thompson & Slaga,
1976). As shown in Table VI, this dis-
crepancy arises mainly from the method'of
assaying AHH. As already mentioned
(Van Cantfort et al., 1977) the isotopic
method proves to be the best, and the
only one producing truly quantitative
results, as it takes into account all the
metabolites formed under the catalytic
action of AHH. On the other hand, the
experimental procedure can vary from one
laboratory to another. Firstly, following
topical MC administration during the
telogen phase (Day 0 in our experiments),
a significant AHH induction was observed
when depilation was performed at the
time of MC application. Conversely, no
induction occurred when the skin was
shaved at the time of killing. One has also
to point out that depilation by plucking,
as used in our study to induce a syn-
chronized hair growth cycle, is different
from spontaneous shedding. Indeed, Silver
et al. (1969) have demonstrated that
increased cellular activity of the epidermis
is more pronounced after plucking, which
might represent a pathological stimulus
similar to a trauma.
When a crude homogenate is used as a

source of enzymes, it is always difficult to
find an ideal expression for the enzyme
activity. As shown in Table V, the statis-
tical significance of the induction pheno-
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menon depends upon the choice of a
reference unit. The expression per mg of
protein has the advantage of moderating
the experimental variations of the enzyme
preparation procedures. Nevertheless, the
simultaneous extraction ofnon-microsomal
proteins might alter the significance of the
results. For example, after MC injection,
AHH is significantly lower in the depilated
side of the D2 mice (Fig. 1). The expression
of the results per unit area of skin seems
to be the most reliable, as the results
indicate the actual metabolic capacity of
the organ, regardless of the number or
type of cells present in the sample.
From a toxicological point of view, the

fact that skin AHH activity could only
be induced by polycyclic hydrocarbons at a
certain time during the hair growth cycle
might be of prime importance. Skin cells
would then have the potential ofproducing
higher amounts of reactive intermediates
at the exact time when tissue hyperplasia
and consequently promotion mechanisms
are very active (Bortwell, 1974). Such a
hazardous situation could be even worse
if the increased AHH response to induc-
tion by the polycyclic hydrocarbon is
limited to defined cell types in the skin,
a problem at present under study in our
laboratory.
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