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Abstract
Lck (lymphocyte-specific protein tyrosine kinase) is an enzyme which plays a number
of important roles in the function of immune cells. It belongs to the Src family of
kinases which are known to undergo autophosphorylation. It turns out that this leads
to a remarkable variety of dynamical behaviourwhich can occur during their activation.
We prove that in the presence of autophosphorylation one phenomenon, bistability,
already occurs in a mathematical model for a protein with a single phosphorylation
site. We further show that a certain model of Lck exhibits oscillations. Finally, we
discuss the relations of these results to models in the literature which involve Lck and
describe specific biological processes, such as the early stages of T cell activation and
the stimulation of T cell responses resulting from the suppression of PD-1 signalling
which is important in immune checkpoint therapy for cancer.
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1 Introduction

Phosphorylation and dephosphorylation, the processes in which proteins are modified
by the addition or removal of phosphate groups, play an important role in biology. The
activity of an enzyme is influenced by its phosphorylation state, and these processes
provide a way of switching enzymes on and off quickly. The enzymes which catalyse
phosphorylation and dephosphorylation are called kinases and phosphatases, respec-
tively. The phosphorylation of a protein X is usually catalysed by another protein Y.
It may also be catalysed by X itself, a process called autophosphorylation. This can
happen either in trans (one molecule of X catalyses the phosphorylation of a site on

B Alan D. Rendall
rendall@uni-mainz.de

1 Department for Applied Mathematics and Theoretical Physics, University of Cambridge,
Wilberforce Road, Cambridge CB3 0WA, UK

2 Institut für Mathematik, Johannes Gutenberg-Universität, Staudingerweg 9, 55099 Mainz, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-021-00900-9&domain=pdf
http://orcid.org/0000-0003-3666-6632


64 Page 2 of 21 L. M. Kreusser, A. D. Rendall

anothermolecule ofX) or in cis (amolecule ofX catalyses the phosphorylation of a site
on that samemolecule). Here, we are concernedwith the kinase Lck (Bommhardt et al.
2019), which can undergo both autophosphorylation in trans and phosphorylation by
another kinase Csk. Lck belongs to the Src family of kinases (Shah et al. 2018) which
have many properties in common, in particular those related to their phosphorylation.

In what follows we are interested in understanding the way in which the activity of
Lck is controlled, an issuewhich is important for analysinghow the function of immune
cells is regulated.More specifically,wewant to do so by studyingmathematicalmodels
for phosphorylation processes. There has been a lot of work onmodels for cases where
there is a clear distinction between substrates and enzymes. A standard example is the
multiple futile cycle where bounds for the maximal number of steady states were
obtained in Wang and Sontag (2008) and Flockerzi et al. (2014) and for the maximal
number of stable steady states in Feliu et al. (2020). Much less is known in the case of
autophosphorylation. To our knowledge the earliest papers onmathematicalmodelling
of Src family kinases are by Fuß et al. (2006, 2008). In the first of these papers, the
authors consider a system coupling Src (with autophosphorylation included) to Csk
and the phosphatase PTPα. They then introduce a simplification by assuming the
concentration of Csk to be constant, and find twofold bifurcations in simulations. In
particular, this system appears to exhibit bistability. In Fuß et al. (2008), sustained
oscillations and infinite period bifurcations were observed in a slight extension of the
model of Fuß et al. (2006). These dynamical features occurred in a context where the
basic system describing phosphorylation and dephosphorylation of Src is embedded
in feedback loops. In fact, it was found in Kaimachnikov and Kholodenko (2009) that
complicated dynamical behaviour is possible even without the feedback loops. More
recently the dynamics of a model for autophosphorylation of a protein with only one
phosphorylation site was studied in Doherty et al. (2015). In that case, also twofold
bifurcations were observed. The model considered there is one-dimensional and thus
relatively easy to analyse. The bistability found in Doherty et al. (2015) contrasts with
the situation in the multiple futile cycle where in the case of a single phosphorylation
site there is only one steady state.

In Sect. 2, a model for autophosphorylation is introduced which is of central impor-
tance in what follows and it is shown that in a certain Michaelis–Menten limit it can
be reduced to a one-dimensional model. Section 3 contains an analysis of some prop-
erties of solutions of this reduced model. In particular, it is shown that this system can
exhibit more than one stable steady state. This section provides a rigorous treatment
of some features found in the simulations of Doherty et al. (2015). The property of
bistability is lifted to the original model. The main results are Theorems 1–3. The
model of Sect. 2 without external kinase only exhibits bistability under the condition
that phosphorylation has an activating effect on the enzyme. The corresponding case
with inhibition exhibits no multistability. The aim of Sect. 4 is to show that in the
case of an inhibitory phosphorylation multistability can be restored by modelling the
external kinase explicitly. The main result is Theorem 4. Here, in contrast to the results
of Sect. 3, the multistability is not present in the Michaelis–Menten limit.

Section 5 is concerned with a model for Lck which can be reduced by timescale
separation to a two-dimensional one. The original model inherits certain patterns
of behaviour such as bistability, Hopf bifurcations and homoclinic orbits from the
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two-dimensional one. It is proved that the two-dimensional model does exhibit these
phenomena as a consequence of the occurrence of a Bogdanov–Takens bifurcation.
The main result is Theorem 5. In Sect. 6, the models analysed in the present paper
are compared with ones which occur as parts of more comprehensive models in the
literature describing some concrete biological situations. Section 7 presents some ideas
on possible further developments of the results of this paper.

2 The Basic Model

Consider a protein with one phosphorylation site. We denote the unphosphorylated
form of this protein by X and the phosphorylated form by Y. Suppose X is able to
catalyse its own phosphorylation in trans. The simplest model for this reaction is
2X→ X + Y. If Y is also able to catalyse the phosphorylation of X, then this can be
modelled by the reaction X + Y → 2Y. The basic model considered in what follows
includes these two reactions together with phosphorylation of X catalysed by a kinase
E and dephosphorylation of Y catalysed by a phosphatase F. Mass action kinetics
is assumed for the autophosphorylation reactions in the form written above. For the
other two processes, we use a description consisting of elementary reactions involving
a substrate, an enzyme and a complex, which we call an extended Michaelis–Menten
description. Mass action kinetics is assumed for the elementary reactions. It would
be possible to use an alternative description of the autophosphorylation reactions
including homo- and heterodimers. We expect that many of the results we obtain
could be extended to that more complicated model, but this will not be pursued further
here. A further remark on the more complicated alternative can be found in Sect. 6.

With our choices the reaction network is as follows:

2X
k1−→ X + Y

F + Y
k2−→ YF

YF
k3−→ Y + F

YF
k4−→ X + F

E + X
k5−→ XE

XE
k6−→ E + X

XE
k7−→ E + Y

X + Y
k8−→ 2Y

The concentrations of X, Y, E, F and the complexes XE and YF are denoted by x ,
y, e, f , d and c, respectively. The evolution equations are of the form:

ẋ = −k1x
2 + k4c − k5ex + k6d − k8xy, (1)
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ḋ = k5ex − (k6 + k7)d, (2)

ė = −k5ex + (k6 + k7)d, (3)

ċ = k2 f y − (k3 + k4)c, (4)

ḟ = −k2 f y + (k3 + k4)c, (5)

ẏ = k1x
2 − k2 f y + k3c + k7d + k8xy, (6)

where the dot stands for the derivative with respect to t and the ki are positive rate
constants. There are three conserved quantities defined by the total amounts of the
substrate and the two enzymes E and F . These are A = x + c + d + y, B = c + f
and C = d + e. A situation where the amounts of both enzymes and the rates of both
autophosphorylation reactions are small can be described using a Michaelis–Menten
reduction. To do this, introduce new variables by means of the relations k1 = εk̃1,
k8 = εk̃8, c = εc̃, f = ε f̃ , d = εd̃, e = εẽ and τ = εt . Substituting these relations
in the above equations and dropping the tildes give

x ′ = −k1x
2 + k4c − k5ex + k6d − k8xy, (7)

y′ = k1x
2 − k2 f y + k3c + k7d + k8xy, (8)

εd ′ = k5ex − (k6 + k7)d, (9)

εe′ = −k5ex + (k6 + k7)d, (10)

εc′ = k2 f y − (k3 + k4)c, (11)

ε f ′ = −k2 f y + (k3 + k4)c, (12)

where the prime stands for the derivative with respect to τ . The motivations for this
choice of rescaling are as follows. The first is that it can be used to find a smaller
limiting system which is more accessible to mathematical analysis than the original
one. The second is that the scaling of k1 and k8 ensures that competing effects are of a
comparable order of magnitude in the limit and that this is conducive to the occurrence
of interesting dynamical behaviour.

If we set ε = 0 in equations (7)–(12), the last four become algebraic. Combining
these with the conservation laws and doing the usual algebra for Michaelis–Menten
reduction leads to the relations c = By

KM1+y and d = Cx
KM2+x where KM1 = k3+k4

k2
and

KM2 = k6+k7
k5

. It follows that

x ′ = −k1x
2 + Bk4y

KM1 + y
− Ck7x

KM2 + x
− k8xy (13)

while y satisfies an analogous equation. These two equations are equivalent because
x + y is a conserved quantity for ε = 0. Thus, the whole dynamics is contained in
the single Eq. (13) in that case. When C = 0 (no external kinase), the equation for y
reduces (up to a difference of notation) to the equation (1) in Doherty et al. (2015). To
make it clear that this is an equation for a single unknown, it is necessary to use the
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conserved quantity A = x + y. Thus, for C = 0 the evolution equation for y is

y′ = k1(A − y)2 + k8(A − y)y − Bk4y

KM1 + y
. (14)

3 Analysis of theModel of Doherty et al.

In Doherty et al. (2015), the authors describe certain aspects of the dynamics of
solutions of Eq. (14). Here we complement their analysis by giving rigorous proofs
of some of these. Steady states of this equation are zeroes of the polynomial

p3(y) = [(k1 − k8)y
2 + (−2k1A + k8A)y + k1A

2](KM1 + y) − Bk4y

= −(α − 1)y3 + [−KM1(α − 1) + A(α − 2)]y2
+ [KM1A(α − 2) + A2 − Bk−1

1 k4]y + KM1A
2 (15)

where α = k8
k1
. Positive steady states of the evolution equations for x and y are in

one-to-one correspondence with roots of this polynomial in the interval (0, A). Note
that p3(0) > 0 and p3(A) < 0. If k1 − k8 > 0, then p3 must have one root with
x < 0 and one with x > A. Thus, it has exactly one root in the biologically relevant
region. When k1 −k8 < 0, there could be up to three roots in (0, A). Since no root can
cross the endpoints of the interval, the number of roots counting multiplicity is odd
for any values of the parameters. In biological terms, bistability is only possible when
phosphorylation activates the enzyme. In the case ofLck, there are twophosphorylation
sites of central importance for the regulation of the kinase activity, Y394 and Y505,
whose phosphorylation is activatory and inhibitory, respectively. Thus, if we wanted
to use this model to describe Lck with mutations targeting one of its phosphorylation
sites, then to have a chance of bistability it is the inhibitory site Y505 which should
be knocked out. This type of modification of Lck has been studied experimentally
in Amrein and Sefton (1988). It was discovered that the mutated protein exhibits
carcinogenic effects. This underlines the significance of the regulation of the activity
of Lck through phosphorylation for the correct functioning of cells.

It will now be shown that there is a region in parameter space where three positive
steady states exist.

Theorem 1 If α > 2, A2k1 < Bk4, k8 is sufficiently large and KM1 is sufficiently
small for fixed values of the other parameters, then Eq. (14) has three hyperbolic
steady states, of which two are asymptotically stable and the other unstable.

Proof When three steady states exist, they must be simple zeros of p3 and it follows
that when ordered by the value of y the first and third steady states are stable, while
the second is unstable. Each of these steady states is hyperbolic. Thus, to complete
the proof of the theorem, it suffices to prove the existence of three steady states under
the given assumptions. The condition for a steady state can be written in the form:
q1(y) = q2(y), where q1(y) = (A − y)[k1A + (−k1 + k8)y] and q2(y) = Bk4y

KM1+y .
Note that q2(y) < Bk4 for all y ≥ 0. If α > 1, then q1 has a local maximum
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Fig. 1 (Color figure online)
Illustration of Theorem 1

when y = y1 = (α−2)A
2(α−1) . Assume that α > 2 so that y1 > 0. Evaluating at the

maximumgives q1(y1) = k8αA2

4(α−1) . By choosing k8 large enoughwhile keeping all other
parameters fixed, we can ensure that this maximum is greater than Bk4. It follows
that q1(y1) > q2(y1). Then, choosing KM1 small enough while keeping all other
parameters fixed and using the fact that A2k1 < Bk4 ensures that there is some
y2 < y1 with q1(y2) < q2(y2). This implies that there are two roots of p3 which are
less than y1 and these are simple. Under these conditions, p3 has three positive roots
in the interval (0, A) and so there exist three positive steady states. ��

This theorem and its proof are illustrated in Fig. 1 where we show q1, q2 and p3
for parameters A = 1, B = 2, k1 = 1, k4 = 1, k8 = 8, α = k8

k1
and KM1 = 0.02

satisfying the assumptions in Theorem 1.
In fact, the three steady states arise in a single bifurcation. To prove this, we first

need a result on cubic equations.

Lemma 1 The polynomial p(x) = ax3 + bx2 + cx + d has a triple root if and only
if b3 = 27a2d and c3 = 27ad2.

Proof If x∗ is a triple root, then p(x∗) = p′(x∗) = p′′(x∗) = 0. From the last of these
equations, we can conclude that x∗ = − b

3a . Substituting this in the other two equations
gives b2 = 3ac and b3 = 9

2a(bc − 3ad). Combining the last two equations gives
b3 = 27a2d and c3 = 27ad2. Suppose conversely that b3 = 27a2d and c3 = 27ad2.
Then, bc = 9ad and abc = 9a2d. Thus, 9

2 (abc − 3a2d) = 27a2d and it follows that
b3 = 9

2a(bc − 3ad). Using b3 = 27a2d then implies that b2 = 3ac. With all this
information, it can be checked directly that x∗ = − b

3a is a triple root of p. ��
Theorem 2 The three steady states in Theorem 1 arise in a generic cusp bifurcation.

Proof To prove this, it will be shown that the parameters can be chosen so that the
polynomial p3 satisfies the conditions of Lemma 1. Assume that KM1 < A. Since
b3 = [−KM1(α − 1)+ A(α − 2)]3 we see that b3 = (A− KM1)

3α3 + · · · for α large
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and b3 = (KM1 − 2A)3 + · · · for α → 0. Now A − KM1 > 0 and KM1 − 2A < 0.
Thus, if we consider b3 as a function of α with the other parameters fixed it is an
increasing function which takes on all values in the interval [(KM1 − 2A)3,∞). On
the other hand, a2d = (α − 1)2KM1A2 and so a2d = KM1A2α2 + · · · for α large
and a2d = KM1A2 + · · · for α → 0. It follows that there exists an α∗ for which
b3 = 27a2d. In this way the first condition of Lemma 1 has been achieved. Since
a2d is non-negative, there the same must be true of b and it follows that α∗ > 2.
Hence, ad2 is negative and so in order to achieve the second condition of Lemma 1,
it is enough to show that c can be given any prescribed negative value by choosing k4
appropriately while fixing the other parameters. Note that a, b and d do not depend on
k4 so that the first condition remains satisfied. Since α∗ > 2, the quantity c is positive
for α = α∗ and k4 sufficiently small. By increasing k4, it can then be made to have any
desired negative value. Thus, it can be ensured that the second condition is satisfied.
Note that the point x∗ at which the bifurcation takes place does lie in the biologically
relevant region (0, A) since there is one steady state in that region and x∗ is, neglecting
multiplicity, the only one.

Next we note that the derivative of the mapping (α, KM1, A, k4) 	→ (a, b, c, d) is
always invertible for α > 2. Thus, by the inverse function theorem, we see that by
varying the parameters arbitrarily we can vary the coefficients of the polynomial p3
arbitrarily in a neighbourhood of the values for the triple root. Thus, we can choose
two parameters so that the point with the triple root is embedded in a generic cusp
bifurcation as defined in Kuznetsov (2010). More specifically, we can choose a map-
ping (β1, β2) 	→ (α, KM1, A, k4) such that, after translating the coordinate y so that
the bifurcation is at the origin, we have (a, b, c, d) = (1, 0, β2, β1). ��

Consider now the rescaled mass action system (7)–(12) in the case C = 0. In this
case, we can discard the equations for d and e. Moreover, we can use the conservation
laws to discard the equations for x and c and replace these quantities in the right-hand
sides of the equations for y and f . The result is

y′ = k1(A − B − y + f )2 − k2 f y + k3(B − f ) + k8xy, (16)

ε f ′ = −k2 f y + (k3 + k4)(B − f ). (17)

We now want to study the limit ε → 0 in these equations and show that solutions
converge.

Theorem 3 There is a choice of parameters such that the system (1)–(6) with d = e =
0, C = 0 and fixed values of A and B imposed has three steady states, of which two are
asymptotically stable and the other a hyperbolic saddle. The three steady states arise
in a generic cusp bifurcation. For arbitrary values of the parameters each solution
converges to a steady state as t → ∞. In particular, this system has no periodic
solutions.

Proof It suffices to prove corresponding results for the system (16)–(17). The the-
orem can be proved using the results of Theorems 1 and 2 and geometric singular
perturbation theory (GSPT) (Kuehn 2015). The important condition to be checked is
that of normal hyperbolicity. It says that on the critical manifold, which is the zero
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set of the right-hand side in the equation for f ′, the derivative of that right-hand side
with respect to f should be nonzero. This is indeed the case since the derivative is
−k2 f − k3 − k4 < 0. It can be concluded that for each hyperbolic steady state of the
Michaelis–Menten system, there is a nearby steady state of the mass action system
which is hyperbolic within the invariant manifold of constant A and B. In addition,
when the steady state of theMichaelis–Menten system is stable, the same is true of the
corresponding steady state of the mass action system and when the steady state of the
Michaelis–Menten system is unstable, the steady state of the mass action system is a
saddle point whose stable manifold is one-dimensional. To obtain the statement about
the convergence of general solutions to steady states, we compute the linearization of
(16)–(17) which is

A =
[
2k1( f + y − A − B) − k2 f 2k1( f + y − A − B) − k2y − k3

−ε−1k2 f −ε−1[k2y + (k2 + k3)]
]

(18)

It is always the case that A−y and B− f are positive on the region of biological inter-
est. Thus, the system is competitive. Every solution of a competitive two-dimensional
system converges to a steady state (Smith 1995), and this completes the proof of the
theorem. ��

To conclude this section, we consider the limiting case of the system (14) obtained
by setting k1 = 0. In this case only the phosphorylated form of the protein is catalyt-
ically active. Bistability for a system of this type was considered in Lisman (1985).
If we continue to assume C = 0, then y = 0 is a steady state. Thus, in order to get
bistability, we need to include that boundary steady state in the counting. With this
understanding, we obtain an analogue of Theorem 1 for this case, where the condition
on α is absent. The proof is strictly analogous to that of Theorem 1. To see what
happens to Theorem 2 in this case, we need to replace p3, which was got by division
by k1, by p̃3 = y[k8(−y + A)(y + KM1) − Bk4]. This polynomial has a triple root at
the origin when A = KM1 and AKM1 = Bk4.

4 Effect of an External Kinase

We next consider the case where the phosphorylated kinase is completely inactive,
which can be modelled by setting k8 = 0 in the model of the last section. This might
be thought of as amodel of themutant of Lckwhere the activatory siteY394 is knocked
out. It should, however, be noted that in reality the catalytic activity of this mutant,
although much reduced, is not actually zero (Smith et al. 1993). In that case we have
k1 − k8 > 0 and, as mentioned above, there is only one positive steady state in the
Michaelis–Menten system. Next, we will investigate the case where k1 − k8 > 0 but
an external kinase is present (C > 0). It turns out that there is still only one steady
state in the Michaelis–Menten system. For in any such steady state, we have

k1x
2 + k8x(A − x) + Ck7x

KM2 + x
= Bk4(A − x)

KM1 + A − x
. (19)
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Since the function on the left-hand side of this equation is monotone increasing on
[0, A] and is zero for x = 0, while the function on the right-hand side is monotone
decreasing on [0, A] and is zero for x = A, these two functions are equal at a unique
point x ∈ (0, A). Thus, there cannot be more than one steady state in the Michaelis–
Menten system with k8 < k1. It turns out, however, that there can be more than one
steady state in the corresponding mass action system, even in the case k8 = 0.

Positive solutions of the mass action system with k8 = 0 are in one-to-one cor-
respondence with solutions of the following system obtained by using the conserved
quantities to eliminate d, c and y.

ẋ = −k1x
2 + k4(B − f ) − k5ex + k6(C − e), (20)

ė = −k5ex + (k6 + k7)(C − e), (21)

ḟ = −k2 f (A − B − C − x + e + f ) + (k3 + k4)(B − f ). (22)

Define a polynomial by p6(x) = ∑6
i=0 ai x

i with coefficients

a6 = k21k2k
2
5, (23)

a5 = 2k21k2k5(k6 + k7) + k1k2k4k
2
5, (24)

a4 = k1k2[−k25((A + B)k4 − (k4 + 2k7)C − k4(k6 + k7))

+ k1(k6 + k7)
2 + k1k5(k6 + k7)] − k1k4(k3 + k4)k

2
5, (25)

a3 = k1k5(k6 + k7){k2[−2(A + B)k4 + (k4 + 2k7)C]
− 2(k3 + k4)k4} + k2k4[k25(Bk4 − k7C) + k1(k6 + k7)

2], (26)

a2 = k2[−k1k4(A + B)(k6 + k7)
2 − k24k5(k6 + k7)B

+ k25(k4A − (k4 + k7)C − k4(k6 + k7))(Bk4 − k7C)]
− (k3 + k4)k4[k1(k6 + k7)

2 + k25k7C], (27)

a1 = k2k4k5(k6 + k7)[B(Ak4 − (k4 + k7)C − k4(k6 + k7))

+ A(k4B − k7C)] − (k3 + k4)k4k5(k6 + k7)k7C, (28)

a0 = k2k
2
4(k6 + k7)

2AB. (29)

Define xmax to be the largest value of x satisfying the inequalities

k1
k4

x2 + k5k7Cx

k4(k5x + k6 + k7)
≤ B, (30)

x + k1
k4

x2 +
(
1 + k7

k4

)
k5Cx

(k5x + k6 + k7)
≤ A. (31)

Note that xmax depends continuously on the parameters.

Lemma 2 For given positive values of A, B and C, positive steady state solutions of
the system (1)–(6) with k8 = 0 are in one-to-one correspondence with roots of the
polynomial p6 in the interval (0, xmax).
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Proof Note first that the equations for steady states of (1)–(6) are equivalent to the
equations for steady states of (20)–(22) and that these in turn are equivalent to the
equations

k5ex = (k6 + k7)(C − e), (32)

k2 f (A − B − C − x + e + f ) = (k3 + k4)(B − f ), (33)

k1x
2 = k4(B − f ) − k7(C − e). (34)

Nowsuppose that (x, d, e, c, f , y) is a positive steady state. It follows from (32) that

e = (k6+k7)C
k5x+k6+k7

and combining this with (34) gives f = B−(k1/k4)x2− k5k7Cx
k4(k5x+k6+k7)

.

Thus, we have solved for e and f in terms of x . Substituting this information in (33)
and rearranging give the equation p6(x) = 0. Suppose conversely that x is a root of
p6 with 0 < x < xmax. Define

e = (k6 + k7)C

k5x + k6 + k7
, (35)

f = B − (k1/k4)x
2 − (k7/k4)(C − e), (36)

y = A − B − C − x + e + f . (37)

It follows from (30) that the quantity f defined by (36) is positive and from (31) that
the quantity y defined by (37) is positive. It follows directly that (32) and (34) hold.
The fact that x is a root of p6 implies that (33) holds and hence that (x, d, e, c, f , y)
is a positive solution of (1)–(6). ��

Consider now the real roots of p6. They depend continuously on the parameters
and their number is constant modulo two. Since p6(0) > 0 a root of p6 cannot pass
through zero. We claim that xmax can also never be a root of p6. For if x were equal to
xmax while satisfying the inequalities (31), then at least one of them would become an
equality. In the first case f as defined by (36) would be equal to zero. This contradicts
equation (33). In the second case y defined by equation (37) would be equal to zero.
But then it follows from (4) that c = 0 and from (6) that x = 0, a contradiction.
It can be concluded that the sign of p6(xmax) is independent of the parameters. To
determine what the sign is it suffices to evaluate it for some particular values of the
parameters. Choose ki = 1 for all i , A = 5, B = 2 and C = 3. When x = 1, we see
that equality holds in (30), while the strict inequality holds in (31). Thus, in this case
xmax = 1. Evaluating the coefficients in p6 gives a6 = 1, a5 = 5, a4 = 8, a3 = −15,
a2 = −43, a1 = −18, a0 = 40. Hence, p6(xmax) = −22 < 0. It follows from the
intermediate value theorem that p6 has a least one root in each of the intervals (0, xmax)

and (xmax,∞). The number of sign changes of the coefficients in the polynomial is
even and atmost four. Thus, Descartes’ rule of signs implies that the number of positive
roots is zero, two or four. The case with no positive roots has already been ruled out.
Thus, there are two or four and at least one of themmust be greater that xmax. With the
parameter values in the example, there are only two changes of sign, only two positive
roots and we know that precisely one is less than xmax. By continuity the number of
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roots in (0, xmax) counting multiplicity is odd. It can only be one or three and we have
already seen an example of parameters where it is one. In that case the system (1)–(6)
admits precisely one positive steady state.

We will show that there also exist parameter values such that the system has three
positive steady states. One approach would be to show that there are parameters for
which there is a triple root in the desired interval and then perturb. In fact, we will
show directly that there are parameters for which there are three roots in that interval,
since that approach is simpler.

Theorem 4 There is a choice of parameters for which the system (1)–(6) with k8 = 0
has three positive steady states.

Proof Due to Lemma 2, it suffices to find parameter values for which the polynomial
has three roots in the interval (0, xmax). It follows from the preceding discussion that it
is enough to show that the interval contains at least two roots. It turns out that it suffices
to choose A = 6, B = 20, C = 2, ki = 1 for all i �= 5 and k5 sufficiently large.
With these choices, it follows that we get the following asymptotics for k5 → ∞.
a6 = k25 +· · · , a5 = k25 +· · · , a4 = −20k25 +· · · a3 = 18k25 +· · · , a2 = −4k25 +· · ·
where the terms not written explicitly are o(k25), as are the coefficients a1 and a0. It
follows that k−2

5 x−2 p(x) = q(x) + o(1), where q(x) = x4 + x3 − 20x2 + 18x − 4.
In the limit the inequalities defining the admissible interval become x2 < 18 and
x + x2 < 2. By continuity it suffices to show that q has two roots in the interval (0, 1).
This is true because q(0) < 0, q(1/2) > 0 and q(1) < 0. ��

5 Analysis of a Model for Wild-Type Lck

The results of the previous sections were related to situations in which one of the two
key regulatory phosphorylation sites in a Src family kinase such as Lck is mutated.
In the present section, we move to the case where both sites are present. The starting
point for the discussion is the model introduced in Kaimachnikov and Kholodenko
(2009). There four phosphorylation states of the kinase are included in the description.
The first, denoted by Si , is that where the inhibitory site is phosphorylated, while
the activatory site is not. This form of the kinase shows no catalytic activity. S, Sa1
and Sa2 are the forms where neither site is phosphorylated, only the activatory site
is phosphorylated and both sites are phosphorylated, respectively. All of these are
catalytically active to some extent and can catalyse the transition S → Sa1. The
transitions S → Si and Sa1 → Sa2 are catalysed by Csk. The transitions Si → S
and Sa2 → Sa1 are catalysed by one phosphatase, and the transitions Sa1 → S and
Sa2 → Si are catalysed by another phosphatase. Experimental results obtained in Hui
and Vale (2014) indicate that some modifications of these assumptions may be needed
to obtain a biologically correct model. In particular, it was found that Y505 in Lck
undergoes autophosphorylation in trans, albeit with a much lower rate than Y394.
The variants of the model of Kaimachnikov and Kholodenko (2009) which would be
needed to take this into account will not be considered further in the present paper—the
aim here is rather to see the variety of dynamical behaviour which this type of system
can produce.
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Let us introduce the following neutral notation for the quantities involved in the
model, denoting the concentrations of S, Si , Sa1 and Sa2 by x1, x2, x3 and x4, respec-
tively. Then, X = x1 + x2 + x3 + x4 is a conserved quantity. The reaction rate for the
autophosphorylation is bilinear, the dephosphorylation of S1a is given by Michaelis–
Menten kinetics, and the other reactions are assumed to be linear. Using the notations
of Kaimachnikov and Kholodenko (2009) for the rate constants gives the system

ẋ1 = −k2x1 + k1x2 + k4
x3

β + x3
− k3x1(δx1 + x3 + x4), (38)

ẋ2 = k2x1 − k1x2 + k7x4, (39)

ẋ3 = k3x1(δx1 + x3 + x4) − k4
x3

β + x3
+ k6x4 − k5x3, (40)

ẋ4 = k5x3 − (k6 + k7)x4. (41)

Before considering this system in the general case note that setting x2, x4, k2 and
k5 to zero reduces this system to

ẋ1 = k4
x3

β + x3
− k3x1(δx1 + x3), (42)

ẋ3 = k3x1(δx1 + x3) − k4
x3

β + x3
. (43)

Either of the variables can be eliminated using the conserved quantity giving an
equation which is, up to a difference in notation, exactly the equation of Doherty et
al. discussed in previous sections. Only setting k2 and k5 to zero in (38)–(41) gives a
partially decoupled system which is the product of the system of Doherty et al. (2015)
with a hyperbolic saddle. It follows immediately from Theorem 1 that for suitable
values of the parameters the system (38)–(41) admits at least three positive steady
states, of which two are stable and hyperbolic and the third is a hyperbolic saddle.

We now return to the general system (38)–(41). In Kaimachnikov and Kholodenko
(2009), the authors find a remarkable variety of dynamic behaviour in the system
above which, after fixing a value of the conserved quantity, is of dimension three.
They remark that there is a limiting case which gives rise to a system of dimension
two which already exhibits a lot of this dynamics. To investigate this possibility, we
define a new variable by y = x3+ x4 and use it to replace x3. In addition, we introduce
rescaled parameters satisfying k̃5 = εk5 and k̃6 = εk6. Making these substitutions
and discarding the tildes leads to the system

ẋ1 = −k2x1 + k1x2 + k4
y − x4

β + y − x4
− k3x1(δx1 + y), (44)

ẋ2 = k2x1 − k1x2 + k7x4, (45)

ẏ = k3x1(δx1 + y) − k4
y − x4

β + y − x4
− k7x4, (46)

ε ẋ4 = k5(y − x4) − (k6 + εk7)x4. (47)
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This is a fast-slow system with one fast and three slow variables. We have the
conserved quantity X = x1 + x2 + y. In the limiting case ε = 0 Eq. (47) reduces to
y − x4 = ξ x4, where ξ = k6

k5
. It follows that x4 = 1

1+ξ
y. Substituting this in (44) and

(45) and using the conserved quantity give the following system of two equations:

ẋ1 = −k2x1 + k1x2 + k4
ξ(X − x1 − x2)

β(ξ + 1) + ξ(X − x1 − x2)

− k3x1[(X − x1 − x2) + δx1], (48)

ẋ2 = k2x1 − k1x2 + k7
1

ξ + 1
(X − x1 − x2). (49)

In the terminology of GSPT, this is the restriction of the system to the critical
manifold. This critical manifold is normally hyperbolic and stable since the partial
derivative of the right-hand side of (47)with respect to x4 evaluated at ε = 0 is negative.
This allows us to transport information about stability and bifurcations from steady
states of the two-dimensional system to steady states of the full system. Positive steady
states of the full systemwith a given value of X are in one-to-one correspondence with
positive steady states of (48)–(49) with x1 + x2 < X . At steady state equation (49)
can be used to express x2 in terms of x1 and substituting this in (48) shows that x1 is
a root of a cubic polynomial which is not identically zero. Thus, the system (48)–(49)
has at most three steady states.

It will be shown that the system (48)–(49) admits periodic solutions which arise in a
Hopf bifurcation and homoclinic orbits. In order to do this it suffices to show that this
system admits a generic Bogdanov–Takens bifurcation (Kuznetsov 2010). By saying
that the bifurcation is generic, wemean that it satisfies the conditions BT.0, BT.1, BT.2
and BT.3 of Kuznetsov (2010). Then, the desired results follow from Theorem 8.5 of
Kuznetsov (2010) and the analysis of the normal form of the bifurcation preceding
that theorem. Let J (x1, x2) be the linearization of the system (48)–(49) about the
point (x1, x2). Finding a bifurcation point where the condition BT.0 is satisfied means
finding a point (x1, x2) and a choice of the parameters of the system so that J (x1, x2)
has a double zero eigenvalue but is not itself zero. If the right-hand sides of equations
(48) and (49) are denoted by f1 and f2, this means solving the system of four equations
given by the vanishing of f1, f2, trJ and det J . The general strategy is to choose all
but four of the parameters and use the four equations to solve for the rest. An obstacle
to this is that the quantities resulting from this process might fail to be positive. This
obstacle was overcome by trial and error.

The equations for steady states can be written in the following form:

k4 = [k2x1 − k1x2 + k3x1(X − x1 − x2 + δx1)][β(ξ + 1) + ξ(X − x1 − x2)]
ξ(X − x1 − x2)

,

(50)

k7 = (ξ + 1)(−k2x1 + k1x2)

X − x1 − x2
. (51)
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The linearization is

J =
[−k2 − φ(β) − k3(X − 2x1 − x2 + 2δx1) k1 − φ(β) + k3x1

η −ω

]
(52)

Here, we have introduced the auxiliary quantities η = k2 − k7
ξ+1 , ω = k1 + k7

ξ+1 and

φ(β) = k4ξ(ξ+1)β
[β(ξ+1)+ξ(X−x1−x2)]2 . Suppose that we have a Bogdanov–Takens bifurcation.

Since the trace is zero, we have that the first element in the first row of the Jacobian
must be equal to ω. Hence,

φ(β) + ω + k2 = −k3[X − 2(1 − δ)x1 − x2]. (53)

It follows that

k1 − φ(β) + k3x1 = ω + k1 + k2 + k3[X − (1 − 2δ)x1 − x2]. (54)

Since the determinant is zero, we have

ω2 + η[ω + k1 + k2 + k3(X − x1 − x2 + 2δx1)] = 0. (55)

Choose X = 3
2 , x1 = 1, x2 = 1

4 , k1 = 8, k2 = 1, δ = 1
6 , ξ = 1. It follows

from (51) that k7 = 8. Putting this into (55) gives k3 = 324
7 . It then follows from (53)

that φ(β) = 44
7 . On the other hand, (50) implies that k4 = 128

7 (8β + 1). Combining
this with the definition of φ shows that β = 11

936 . Finally, we compute k4 = 16384
819 .

The conclusion is that with the given choices, there is exactly one solution for the
remaining parameters (k7, k3, β, k4) such that the system satisfies the condition BT.0
for a Bogdanov–Takens bifurcation at the chosen point with coordinates (x1, x2) =(
1, 1

4

)
. At this point the linearization is of the form:

J =
[
12 48
−3 −12

]
. (56)

When talking about a Bogdanov–Takens bifurcation, we need a system depending on
two parameters. In our example, we choose these to be δ and k3 and consider all other
parameters in the system as fixed

As will now be explained, a calculation shows that conditions BT.1, BT.2 and
BT.3 are also satisfied so that this is a generic Bogdanov–Takens bifurcation. For this
purpose, it is convenient to transform to coordinates y1 = − 1

3 x2 + 1
12 and y2 = x1 +

4x2−2 adapted to the eigenvectors of J . Then, ẏi = (J0y)i +Qi (y)+O(|y|3), where
J0 is in Jordan form and the Qi are quadratic. In the notation of Kuznetsov (2010),
the elements of Q1 and Q2 are denoted by ai j and bi j , respectively. In the present
example, it turns out that a20 = 0 and in that case BT.1 and BT.2 are the conditions that
b11 �= 0 and b20 �= 0. A lengthy calculation shows that b20 = −81W +168k3 > 0 and
b11 = −9W+7k3 > 0, whereW = 256βk4

(8β+1)3
. Here, we use the values of the parameters

at the bifurcation point. The condition BT.3 is that the linearization JT of the mapping
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(x1, x2, δ, k3) 	→ ( f1, f2, trJ , det J ) at the bifurcation point is non-singular. This
matrix is

JT =

⎡
⎢⎢⎣

12 48 −k3 − 5
12−3 −12 0 0

−W + 5
3k3 −W + k3 −2k3 5

12
9W − 17k3 9W − 12k3 24k3 −2

⎤
⎥⎥⎦ (57)

and det JT = −6k23 − 27Wk3
4 �= 0.

When a generic Bogdanov–Takens bifurcation is present in a dynamical system,
then there are always generic Hopf bifurcations nearby. The periodic solutions which
arise in these Hopf bifurcations are hyperbolic and may be stable (supercritical case)
or unstable (subcritical case). We may correspondingly call the Bogdanov–Takens
bifurcation super- or subcritical, and it turns out that these two cases are distinguished
by the relative sign of b20 and b11. In the present case, the signs of these two coefficients
are equal and the bifurcation is subcritical. Hence, the periodic solutions are unstable.
In comparison with the phase portrait given in Kuznetsov (2010), which corresponds
to the supercritical case, the direction of the flow is reversed. For the parameter values
for which the bifurcation takes place, the cubic polynomial for x1 has a double root
at x1 = 1 and must therefore have a factor (x1 − 1)2. Carrying out this factorization
allows a third root to be calculated explicitly. The result is

p(x1) = 3

728
(2457x1 − 2924)(x1 − 1)2. (58)

The additional root is x1 = 2924
2457 and at the corresponding steady state x2 = 995

4914 . At
that point the trace of the linearization is negative and the determinant positive. Hence,
this steady state is stable.

Some of these results will now be collected in a theorem.

Theorem 5 There are parameter values for which the system (48)–(49) has a generic
Bogdanov–Takens bifurcation. In particular, there are nearby parameter values for
which it has an unstable periodic solution and ones for which it has a homoclinic
orbit. In the case where there is an unstable periodic solution with parameter values
sufficiently close to those at the bifurcation point, there are also two stable steady
states and one saddle point.

The structural stability of the bifurcation and the fact that the limit used to obtain
this system is normally hyperbolic imply that these features can be lifted to the system
(38)–(41). In more detail, note first that this system is equivalent by rescaling to the
system (44)–(47). Moreover, we can concentrate on a fixed value of the conserved
quantity X . Thus, it remains to consider a limit from a three-dimensional system to a
two-dimensional one. Restricting to the slow manifold we get a regular limit of two-
dimensional systems. For ε = 0 the mapping (x1, x2, δ, k3) 	→ ( f1, f2, trJ , det J )

has full rank and a zero at the bifurcation point. It follows from the implicit function
theorem that it has a unique zero near the bifurcation point for ε small. This is a point
where BT.0 is satisfied. By continuity BT.1, BT.2 and BT.3 remain satisfied for ε

sufficiently small and the bifurcation remains subcritical. Thus, the features listed in
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Fig. 2 Phase diagram for σ = 1, τ = −0.02 (Color figure online)

Theorem 5 are also seen in the system on the slowmanifold. This implies immediately
that there is a homoclinic orbit in the full system. The hyperbolic periodic solution in
the slow manifold is also hyperbolic as a solution of the full system. It is of saddle
type with there being both solutions which converge to it for t → +∞ and solutions
which converge to it for t → −∞. If it could be shown that the limiting system admits
a stable periodic solution for some values of the parameters, it could be concluded
that the full system does so too. We have not been able to prove the existence of stable
periodic solutions of the limiting system. To see how such a stable solution might
occur, consider the predator–prey model of Bazykin discussed in Kuznetsov (2010).
It has two subcritical Bogdanov–Takens bifurcations and a stable periodic solution in
a distant part of the phase space.

It turns out that it is possible to find an extension of the explicit Bogdanov–Takens
point to an explicit two-parameter family of steady states, including a one-parameter
family of points where the eigenvalue condition for a Hopf bifurcation is satisfied.
The parameters are the determinant σ and the trace τ of J at the steady state. This
family is obtained by fixing the same quantities as in the original case, including the
coordinates (x1, x2) of the steady state and computing the parameters

k3 = 324 + 4σ + 36τ

7
, β = 132 + 5σ + 24τ

11232 + 120σ + 1248τ
(59)

and

k4 = (384 + 5σ + 45τ)(1536 + 20σ + 180τ)

21(1404 + 15σ + 156τ)
. (60)

The Hopf points are those with σ > 0 and τ = 0. These formulae are helpful in
finding parameter values for which the system admits an unstable periodic solution.
A solution of this type is illustrated in Fig. 2 in red for the case σ = 1, τ = −0.02.
In Fig. 2a, we show neighbouring solutions of the unstable periodic solution which
move away from it (inward and outward spirals). A larger part of the phase space is
shown in Fig. 2b where the Bogdanov–Takens point and the distant stable steady state
are shown.
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6 Comparison with SomeMore Elaborate Models

In this section, the results of this paper will be put into a wider context by comparing
the models analysed here with some more complicated models in the literature which
arise when studying specific biological phenomena. One of the most exciting recent
developments in medicine is immune checkpoint therapies for cancer (Robert 2020).
Immune checkpoint molecules such as CTLA4 and PD-1 can result in the deactivation
of T cells under certain circumstances, and this is exploited by cancer cells to evade
attacks by the immune system. Antibodies to the immune checkpoint molecules can
prevent this and thus be used in cancer therapies. This type of therapy has had remark-
able success in curing some cancers. On the other hand, although these therapies could
in principle work for all types of cancer, in practice they only work for some cancers,
notably metastatic melanoma, and even in the most favourable cases for only a certain
percentage of patients. It is important to obtain a better understanding of the molecular
mechanisms of these therapies, so as to explain in which cases they are effective and,
hopefully, to improve them so as to increase the range of their efficacy.

Up to now the most effective types of immune checkpoint monotherapy are those
involving PD-1. In this context, it is important to understand how the activation of
PD-1 leads to suppression of T cell activity. This has been studied experimentally in
Hui et al. (2017). The main conclusion of that work is that the inhibition of T cell
activity caused by PD-1 is due less to a decrease in signalling via the T cell receptor
than to a decrease in the second signal coming from CD28. This leads to a certain
mechanisticmodel of how the influence of PD-1 is exerted. In an effort to obtain a better
understanding of the mechanisms involved, a mathematical model was introduced in
Arulraj and Barik (2018). Simulations of that model gave results agreeing well with
the results of Hui et al. (2017) and at the same time suggesting an additional path
by which PD-1 can influence T cell signalling. In the path highlighted in Hui et al.
(2017), activation of Lck plays an important role. The suggestion in Arulraj and Barik
(2018) is that this change in the activation state of Lck could have an indirect influence
via phosphorylation of molecules downstream of the T cell receptor and CD28. The
model of Arulraj and Barik (2018) consists of several modules. One of these describes
the activation of Lck and plays a central role.

In the context of their model of Lck, regulation Arulraj and Barik (2018) cite a
model given in Rohrs et al. (2016). The latter includes complexes which are inter-
mediates in the autophosphorylation reactions. This would correspond in the case
with one phosphorylation site to replacing the reaction 2X→X+Y by the reactions
2X→X2→X+Y, where X2 is the complex formed when two molecules of X bind to
each other. It also includes certain complexes of Lck with Csk which are analogous
to XF in the basic model introduced in Sect. 2. According to Rohrs et al. (2016), the
inclusion of these complexes was necessary to obtain a good agreement between the
results of simulations and the experimental data of Hui and Vale (2014). The model
of Rohrs et al. (2016) includes no phosphatases and so it is clear that in that case the
evolution must converge to the state where only the unique maximally phosphorylated
state is present. The non-trivial characteristics of the evolution have to do with the
way in which the solution approaches that state.
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One difference of the model of Arulraj and Barik (2018) compared to that of
Kaimachnikov and Kholodenko (2009) is that it includes five forms of Lck rather
than four. The model contains two different forms of doubly phosphorylated Lck
which are supposed to differ by the order in which the two sites were phosphorylated.
The issue of the order of phosphorylation is mentioned in Hui and Vale (2014), but we
are not aware of any justification for including the fifth form in the model. It is stated
in Arulraj and Barik (2018) that the model includes autophosphorylation of Lck, but
in the equations the dependence on the concentrations of the different forms of Lck is
everywhere linear and this does not seem to be consistent.

In Schulze (2014), the author discusses the model of Kaimachnikov and Kholo-
denko (2009) and the alternative where the Michaelis–Menten term in that model is
replaced by a linear one. When that simplification is made, bistability is eliminated.
The author presents unpublished data of Acuto and Nika which addresses the issue of
bistability in Lck experimentally. The idea is that if bistability was present, the distri-
bution of the measurements of certain quantities in a population should be bimodal,
i.e. the graph should exhibit twomaxima. In these data, most (but not all) of the graphs
have a unique maximum and this is taken as evidence that there is no bistability in
the system. However, no detailed justification for this conclusion is given. The signifi-
cance of this conclusion is that if bistability were present in the biological system, this
would mean that the simplified model would not be sufficient. In Schulze (2014), the
simplified model is used. The advantage is that there are fewer parameters in the sim-
plified model and that their values can be more strongly constrained by experimental
data.

Another biological phenomenon where Lck plays a central role is that of T cell
activation. It will now be discussed how Lck has been modelled in the literature
on that subject. One of the first and most important steps in T cell activation is the
phosphorylation of the ITAMs (immunoreceptor tyrosine-based activation motifs) of
theT cell receptor complex. Themost important kinase carrying out this process is Lck.
In one successful model of early T cell activation (François et al. 2013), Lck is not one
of the chemical species included in themodel. In the process of ITAMphosphorylation,
Lck is treated as an external kinase whose activity is represented by a rate constant.
It was proved in Rendall and Sontag (2017) that this model can exhibit more than
one steady state. The model of (François et al. 2013) is a radical simplification of
a more extensive one introduced in Altan-Bonnet and Germain (2005). In the latter
model, activated Lck is one of the chemical species included. It takes part in many
reactions where it binds to a complex X containing the T cell receptor and some
other molecules and then phosphorylates some element of the complex. The kinetics
of these reactions is extended Michaelis–Menten. Other forms of Lck play a role in
mechanisms represented in thismodel, but theydonot appear explicitly.Anothermodel
implementing some of the same mechanisms was presented in Lipniacki et al. (2008).
It includes four forms of Lck arising from phosphorylation at Y394 and the serine S59.
The serine phosphorylation may have an important role to play in T cell activation but
will not be considered further here. The tyrosine phosphorylation is supposed to occur
by autophosphorylation in trans, but the Lck molecules responsible for the catalysis
are supposed to belong to a different population to those being phosphorylated. The
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former population is treated as external and so no nonlinearity arises from this process.
The model of Lipniacki et al. (2008) exhibits bistability.

7 Conclusions and Outlook

In this paper, we proved that the model of Doherty et al. (2015) of an enzyme with a
single site subject to autophosphorylation in trans can exhibit bistability. This improves
on the simulations in Doherty et al. (2015) showing this type of behaviour for specific
parameter values by identifying a large part of parameter space where it occurs. We
also show that in the context of this model multiple steady states can only occur when
the phosphorylation increases the activity of the enzyme. It is shown that in a case
where phosphorylation decreases the activity of the enzyme multiple steady states can
also occur but this requires a more complicated model with an external kinase which
is operating well away from the Michaelis–Menten limit.

We related the models studied in this paper to other models involving Lck which
have been applied in the literature to describe particular biological phenomena. It is of
interest to consider the possible biologicalmeaningof the results of this paper. Switches
arising through bistability are a well-known phenomenon in biology and the bistability
found in the regulation of Lckmight be of importance for immunology as amechanism
bywhich the activity of immune cells is switched off or on in certain circumstances. As
discussed in the last section, it seems unclear on the basis of experimental evidence
whether bistability due to the properties of Lck occurs in biologically interesting
circumstances. We are not aware that oscillations in the activation of Lck have been
observed experimentally. The biological significance of those periodic solutionswhose
existence we proved is limited by their instability.

This paper is a preliminary exploration of dynamical features of models for Lck
involving autophosphorylation. At this point, it is appropriate to think about what
biological issues could be illuminated by continuing these investigations. A question
of great biological and medical interest, already mentioned in the last section, is that
of the mechanism by which ligation of the receptor PD-1 leads to the suppression of
the activity of T cells. (For a recent review of this topic, see Patsoukis et al. 2020.)
Normally the activation of a T cell requires both a signal from the T cell receptor and a
second signal from CD28. Both of these receptors get phosphorylated. (In the case of
the T cell receptor, it is rather the associated proteins CD3 and the ζ -chain which are
phosphorylated.) A questionwhich is apparently still controversial is whether themain
effect of PD-1 activation is dephosphorylation of the T cell receptor or that of CD28.
The conclusion of Hui et al. (2017) is that it is CD28, but this has been disputed in
Mizuno et al. (2019), where it has been suggested that this finding of Hui et al. (2017)
was an artefact of using a cell-free system and that in reality it is dephosphorylation of
the T cell receptor which is the most important consequence of the activation of PD-1.
This indicates that better understanding of these phenomena is necessary. Arulraj and
Barik (2018) claim that their model can reproduce the results of Hui et al. (2017).
Could that model, or a related one, reproduce the results of Mizuno et al. (2019)?

There is a wide consensus that, whatever the targets of dephosphorylation resulting
from the activation of PD-1, the phosphatasewhich carries it out is SHP-2. There is one
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caveat here since it was observed in Rota et al. (2018) that PD-1 can have an inhibitory
effect on T cells in the absence of SHP-2. This issue deserves further investigation.
Another interesting question is that of the way in which Lck interacts with SHP-
2 and PD-1. When PD-1 is fully activated, it is phosphorylated at two sites. These
provide binding sites for SHP-2. The phosphorylation of PD-1 is catalysed primarily
by Lck (Hui et al. 2017). SHP-2 can dephosphorylate PD-1 and thus promote its own
unbinding. This effect is opposed by Lck. Here, there is an incoherent feed-forward
loop (Alon 2006). On the one hand, Lck causes phosphorylation of PD-1 by a direct
route and on the other hand, it causes its dephosphorylation by an indirect route. These
interactions are described by one of the modules in the model of Arulraj and Barik
(2018). They are sufficiently complex that it would be desirable to carry out a deeper
mathematical analysis of their dynamics.
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