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Breast cancer is a highly heterogeneous disease that can be classified into

multiple subtypes based on the tumor transcriptome. Most of the subtyp-

ing schemes used in clinics today are derived from analyses of microarray

data from thousands of different tumors together with clinical data for the

patients from which the tumors were isolated. However, RNA sequencing

(RNA-Seq) is gradually replacing microarrays as the preferred transcrip-

tomics platform, and although transcript abundances measured by the two

different technologies are largely compatible, subtyping methods developed

for probe-based microarray data are incompatible with RNA-Seq as input

data. Here, we present an RNA-Seq data processing pipeline, which relies

on the mapping of sequencing reads to the probe set target sequences

instead of the human reference genome, thereby enabling probe-based sub-

typing of breast cancer tumor tissue using sequencing-based transcrip-

tomics. By analyzing 66 breast cancer tumors for which gene expression

was measured using both microarrays and RNA-Seq, we show that RNA-

Seq data can be directly compared to microarray data using our pipeline.

Additionally, we demonstrate that the established subtyping method

CITBCMST (Guedj et al., 2012), which relies on a 375 probe set-signature

to classify samples into the six subtypes basL, lumA, lumB, lumC, mApo,

and normL, can be applied without further modifications. This pipeline

enables a seamless transition to sequencing-based transcriptomics for future

clinical purposes.

1. Introduction

Breast cancer is a highly heterogeneous disease with

several clinical subtypes defined by transcriptomic

expression profiles that correlate with pathogenesis,

clinical features, and prognosis (Goldhirsch et al.,

2013; Parker et al., 2009; Stratton et al., 2009). Multi-

ple studies have defined molecular classification

schemes for breast cancer (Cronin et al., 2007; Guedj

et al., 2012; Sorlie et al., 2003; van de Vijver et al.,

2002), most of which are based on transcript quantifi-

cation measured by bead- or probe-based microarrays.

The use of DNA microarrays has been pivotal to can-

cer research for the past decades, but transcriptomics

is moving toward RNA sequencing (RNA-Seq) as this

technique allows for quantification of previously

uncharacterized transcripts, as well as novel genetic

aberrations such as fusion genes and alternative
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splicing (Soneson and Delorenzi, 2013; Vitting-Seerup

and Sandelin, 2017; Zwiener et al., 2014). However,

due to the abundance of useful and widely employed

probe-based subtyping tools, the implementation of

RNA-Seq in clinical settings is falling behind the

implementation in the general research community

(Thompson et al., 2016).

Comparisons of microarray and RNA-Seq transcrip-

tomics have shown that the results of the two tech-

niques are comparable in a general sense and yield

similar results in nonparametric analyses (Chen et al.,

2017; Fumagalli et al., 2014; Marioni et al., 2008;

Uziela and Honkela, 2015), indicating potential for

RNA-Seq to eventually replace microarrays for molec-

ular subtyping. The primary obstacle for the transition

to RNA-Seq transcript quantification in microarray-

based subtyping schemes is the fact that the nature of

the data from these two methods differs vastly.

Because most classification algorithms assume that

training and test data are drawn from the same distri-

bution, a so-called dataset shift occurs when the RNA-

Seq data are submitted directly to algorithms trained

on probe-based expression data. For RNA-Seq data to

be useful for subtyping using algorithms trained on

microarray data, it is therefore necessary that the data

are made comparable in the strictest sense. In order to

facilitate a shift toward sequencing-based transcrip-

tomics in our clinic, we developed an RNA-Seq data

processing pipeline that makes these data compatible

with existing probe-based subtyping methods. We

compared our method to three previously reported

methods for comparing RNA-Seq-based transcrip-

tomics data to microarray-based transcriptomics data:

(a) direct comparison of fragments per kilobase per

million (FPKM) with probe intensities summarized to

transcript level (Chen et al., 2017; Fumagalli et al.,

2014), (b) Training Distribution Matching (TDM)

(Thompson et al., 2016), and (c) Probe Region Expres-

sion estimation Based on Sequencing (PREBS) (Uziela

and Honkela, 2015). We show that our method out-

performs existing methods and enables direct applica-

tion of RNA-Seq data for molecular subtyping of

breast cancer. The method is, in principle, compatible

with all microarray-based cancer subtyping methods.

2. Materials and methods

2.1. Assigning subtypes to samples using

CITBCMST

The CIT Breast Cancer Molecular SubTypes

(CITBCMST) subtyping method employed at our

clinic is a machine learning-based model constructed

on 355 selected samples from primary breast carcino-

mas, which were collected in France in the Cartes

d’Identit�e des Tumeurs (CIT) program and analyzed

on Affymetrix HG-U133 Plus 2.0 arrays (Guedj et al.,

2012). Using these data, the authors defined a 375

probe set-signature and six distinct molecular subtypes,

basL, lumA, lumB, lumC, mApo, and normL, and

provided a script to assign one of the six subtypes to

new samples profiled using a microarray (Affymetrix

HG-U133 Plus 2.0 or similar). The CITBCMST

method classifies samples based on the intensity of the

375 probe sets using a distance-to-centroid approach,

where each sample is assigned to the subtype with the

closest centroid (per default based on diagonal linear

discriminant analysis). Alternatively, CITBCMST can

classify samples using a 256 HUGO gene symbol sig-

nature summarized from the 375 probes, in which case

the distance to each centroid is calculated as (1—Pear-

son correlation coefficient). No co-normalization or

batch correction is implemented in the CITBCMST

algorithm, but we routinely include these transforma-

tions before classification in clinical practice (Rossing

et al., 2018).

In several parts of the data processing in this study,

we applied the CITBCMST training dataset; the full

dataset (537 CEL files) was downloaded from

ArrayExpress (accession: E-MTAB-365), preprocessed

as described by the authors, and reduced to the 355

core samples used to train the model. We also

removed the AFFX control probe sets before any fur-

ther application.

In order to visualize the subtype calls, CITBCMST

produces two principal component analysis (PCA)

plots of PCs 1 and 2: one for the training data and

one for the test samples. In this study, PCA plots have

been generated using a slightly modified version of the

CITBCMST source code, producing a single plot con-

taining both the training data and the classified sam-

ples. Furthermore, we modified the CITBCMST script

to perform the PCA on the training data and then

subsequently projecting new data into this PC space

by scaling and multiplying the vectors with the rota-

tion, in order to produce comparable PCA plots for

each run of the script.

2.2. Patients, tumor samples and RNA isolation

The test data for this study are comprised of two data-

sets: one generated at the Breast Cancer Translational

Research Laboratory, Institut Jules Bordet, in Brus-

sels, Belgium, published in Fumagalli et al. (2014) con-

sisting of paired microarray and RNA-Seq data

measured in tumors from 57 breast cancer patients,
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and one set consisting of nine tumors for which paired

microarray and RNA-Seq data were generated at

Rigshospitalet (RH), Copenhagen University Hospital,

Denmark.

In the former dataset (henceforth referred to as the

‘Bordet’ dataset), the samples comprise a balanced mix

of the four IHC breast cancer subtypes: 17 triple nega-

tive, 14 HER2 positive, 16 luminal A, and 10 luminal

B patients. In this work, we reclassified the Bordet

samples using the CITBCMST six-class subtyping

scheme (Guedj et al., 2012).

In the latter dataset (henceforth referred to as the

‘RH’ dataset), tumor specimens originated from nine

women diagnosed with breast cancer undergoing pri-

mary surgical procedures (during 2015 and 2016) at

RH. The study was approved by The Danish Data

Protection Agency (jr. no.: 2012-58-0004) and Danish

Breast Cancer Group (jr. no.: DBCG-2015-14),

meaning that tumor material was obtained with the

informed consent of the patients and the study con-

forms to the standards established by the Declara-

tion of Helsinki. Following surgical resection, fresh

tumor specimens were evaluated by designated

pathologists and tumor biopsies (~ 100 mg) were

stored in RNAlater (Thermo Fisher Scientific,

Waltham, MA, USA). RNA was isolated using the

AllPrep DNA/RNA purification kit (Qiagen, Hilden,

Germany) and the QIACube workstation according

to the manufacturer’s instructions. The integrity of

the RNA was measured using the Agilent RNA

6000 Nano Kit on an Agilent 2100 Bioanalyzer

(Agilent Technologies, Inc., Santa Clara, CA, USA).

2.3. Microarray analysis

For the Bordet dataset, the transcriptomic profiles were

obtained using the Affymetrix HG-U133 Plus 2.0

microarray. The raw Affymetrix cell intensity files (.CEL

files) files are available on the NCBI Gene Expression

Omnibus under accession number GSE43358.

To generate the RH dataset, RNA was reverse

transcribed and used for cRNA synthesis, and label-

ing and hybridization with the Affymetrix HG U133

Plus 2.0 microarray were carried out according to

the manufacturer’s protocol. The arrays were washed

and stained with phycoerythrin-conjugated strepta-

vidin using the Affymetrix Fluidics Station 450, and

arrays were scanned in the Affymetrix GeneArray

3000 7G scanner. CEL files were generated in the

GeneChip Command Console Software (AGCC;

Affymetrix, Thermo Fisher Scientific). For both

datasets, quality control (QC) was performed using

the R/Bioconductor package affyQCReport. After

passing QC, the raw. CEL-files were processed using

robust multi-array average (RMA) from the R/Bio-

conductor package affy (Gautier et al., 2004) unless

otherwise indicated. Finally, the data were reduced

to contain only the 54 613 noncontrol probe sets.

2.4. RNA sequencing

The Bordet dataset was sequenced on the Illumina HiSeq

2000 (Illumina, Inc., San Diego, CA, USA) as described

in (Fumagalli et al., 2014) and was archived at the Euro-

pean Genome-phenome Archive (EGA) under accession

number EGAD00001000627.

RNA sequencing for the RH dataset was done using

TruSeq Stranded Total RNA Library Prep Kit, and

RNA was paired-end sequenced on a NextSeq500

(Illumina, Inc.) to gain an average output of 50–100 M

reads. Raw sequencing data from the Illumina

sequencing platforms were processed with CASAVA-

1.8.2. FastQC (Andrews, 2010) was run on all samples

to ensure a proper quality before further processing

(Conesa et al., 2016).

2.5. Estimating target sequence abundance from

RNA sequencing reads

2.5.1. Fragments per kilobase per million

Raw reads were trimmed using Trimmomatic (Bolger

et al., 2014) with settings LEADING:3 TRAILING:3

SLIDINGWINDOW:4:15 MINLEN:36. The trimmed

reads were mapped to the human reference genome hg19

using TopHat2 (v. 2.1.1) (Kim et al., 2013), and Cuf-

flinks (v. 2.2.1) (Trapnell et al., 2010) was used for gene

expression quantification. Both processes used the anno-

tation file (.GTF) from Ensembl (Zerbino et al., 2018).

FPKM values for all genes were extracted from the

genes.fpkm_tracking files and merged to a table for all

samples, and FPKMs for duplicate genes were summed

using ddply from the R package plyr (Wickham, 2011).

This resulted in a total of 63 657 transcripts, for which

the FPKM values were log-transformed using the for-

mula FPKM
0
= log2(FPKM + 1).

2.5.2. Transcripts per million

Reads were mapped using kallisto (Bray et al., 2016),

which produces transcripts per million (TPM) as units

of abundance, by estimating the proportion of reads

mapping to the target sequence. Briefly, kallisto uti-

lizes so-called pseudoalignment, which is based on

exact matching of k-mers derived from reads, rather

than traditional sequence alignment. This speeds up
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read mapping significantly and in some cases provides

more accurate mapping than traditional approaches.

The applied reference was the HG-U133 Plus 2.0 Tar-

get Sequences, originally retrieved from www.affyme

trix.com (a copy of this file as well as the mapping

index file is available on https://bitbucket.org/cbligaa

rd/rnabc/downloads). Each target sequence represents

a probe set on the microarray, and individual probes

in a given probe set are selected as subsequences of the

target sequence.

2.6. Comparing microarray and RNA sequencing

data

According to the CITBCMST classification protocol,

the optimal data input is RMA normalized microar-

ray data from an Affymetrix platform. However, the

consensus on best practices handling of microarray

data suggests normalization of intensity distributions

and correction of batch effects between runs from dif-

ferent instruments, times, or operators (Johnson

et al., 2007). In clinical practice, we routinely include

these transformations before classification (Rossing

et al., 2018). In this study, we compared four differ-

ent processing pipelines for making subtyping results

from the microarray and RNA-Seq platforms compa-

rable—three of these were previously published, and

in those cases, the processing described by the origi-

nal authors was followed as closely as possible,

despite this meaning that microarray data were not

always processed according to the described best

practices.

2.6.1. Direct comparison of transcript-summarized probe

intensities with transcript FPKM (Fumagalli)

Both data types were processed as described by

Fumagalli et al. (2014). For microarray data, frozen

RMA was applied using the R/Bioconductor package

frma (McCall et al., 2010). To allow for direct com-

parison to RNA-Seq expression levels, jetset (Li

et al., 2011) was used to map between HUGO sym-

bols and probe set IDs. If multiple probe sets mapped

to the same gene, the one with the highest jetset score

was chosen. For RNA-Seq, starting with log-trans-

formed FPKM values, a translation of Ensembl gene

IDs to HUGO symbols was performed using BioMart

(Durinck et al., 2005). If a single HUGO symbol

matched more than one Ensembl gene ID, the sum of

the values for the corresponding gene was used. The

CITBCMST classifier was then applied on the HUGO

symbols (238/256 HUGO symbols were accepted by

CITBCMST).

2.6.2. Training Distribution Matching (TDM)

The TDM algorithm (Thompson et al., 2016) was

developed to enable comparison of sequencing-based

and probe-based transcriptomics data. Briefly, TDM

leaves between-sample relationships intact, but trans-

forms the distribution to be similar to that of the

training data. The rank order of most genes remains

the same in order to not affect any biological signifi-

cance found herein. The distribution is adjusted for an

entire test dataset, in order to avoid overnormalization

from adjusting per sample, and it includes a log2 trans-

formation as microarray data are typically trans-

formed as such.

The RNA-Seq data were processed as described

above, except that we utilized untransformed FPKM

values as described by Thompson et al. (2016). We

used the same HUGO translation from the Ensembl

IDs and then used jetset on the full CITBCMST train-

ing dataset and the Bordet arrays to get corresponding

genes before running TDM against the translated ‘full’

CITBCMST training dataset (18 734 genes included).

We then performed CITBCMST classification on the

RNA-Seq data using 234 HUGO symbols and directly

on RMA normalized microarray data. The correlation

of transcript abundance was calculated using the full

set of matching genes with the Bordet data.

2.6.3. Probe Region Expression estimation Based on

Sequencing (PREBS)

Briefly, the PREBS pipeline utilizes the mapped reads

from each file stored in BAM format generated by

standard alignment algorithms such as TopHat.

PREBS then counts the number of reads overlapping

transcript regions corresponding to probe sequences in

order to estimate probe region expression (Uziela and

Honkela, 2015). Microarray data were simply RMA

normalized before subtyping.

2.6.4. Mapping RNA-Seq reads directly to microarray

probe sequences (RNABC)

Reference transcripts are commonly extracted from a

reference genome such as hg19, but instead, we used

the target sequences of the Affymetrix HG-U133 Plus

2.0 array as reference, such that the abundance esti-

mates from RNA-Seq data can be compared directly

to the intensities from specific probes on the microar-

ray platform. After removing control probe sets, ‘nor-

malize.quantiles.target’ from the R/Bioconductor

package ‘preprocessCore’ was used to quantile normal-

ize the probe set sequence-aligned TPM units using the
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distribution of the mean intensity of all probes in the

full CITBCMST training dataset as the target distribu-

tion. After quantile normalization, ‘ComBat’ (Johnson

et al., 2007) (from the R/Bioconductor package ‘sva’)

was applied to remove batch effects between the

CITBCMST training dataset and the test data. We

named our pipeline RNA Breast Cancer (‘RNABC’).

This pipeline was followed by CITBCMST subtyping

on the probe set-level. For consistency, we treated the

microarray data in the exact same manner.

2.7. Performance metrics

The CITBCMST predictor produces a confidence score

for each sample assignment: If a sample is close to sev-

eral centroids, that is, the difference in distance from a

sample to two or more of the centroids is smaller than

the tenth percentile of the distances between the cen-

troids in the training dataset, the score is set to

‘mixed’. If this is not the case, the score is set to either

‘core’ or ‘outlier’ depending on the distance to the

closest centroid. If the distance is n times larger than

the median absolute deviation (MAD) between the

training data and the centroid for the given sub-

type, the sample is classified as an ‘outlier’. n is calcu-

lated as the maximum between the six subtypes of the

value (maxdistances to centroid - meddistances to centroid)/

maddistances to centroid (Guedj et al., 2012).

Performance was assessed by the number of perfect

matches between the microarray predicted subtypes

and the RNA-Seq predicted subtypes, and the number

of mismatches. We consider two types of mismatches:

confidence mismatch (between ‘core’, ‘outlier’, or

‘mixed’ confidence label) and class mismatch (between

either one of the subtypes)—the latter of course being

the more severe error.

Additionally, we calculated the R2 value for the least

squares regression for microarray probe set intensities

vs. RNA-seq FPKM/TPM and the Spearman’s Rho

for a rank-based measure of correlation, as we cannot

expect probe set intensities and FPKM/TPM to corre-

late linearly for all preprocessing methods.

3. Results

3.1. Transformation of RNA sequencing data for

use with the CITBCMST classifier

In order to define the most accurate processing proce-

dure, we tested multiple combinations of RNA-Seq

metrics, normalization, and batch correction—includ-

ing existing methods for RNA-Seq and microarray

data comparison. We found that mapping RNA-Seq

reads to the array probe set sequences (rather than a

reference transcriptome), followed by quantile normal-

ization to a target distribution consisting of the mean

probe intensities in the microarray training data, fol-

lowed by batch correction with the microarray training

data (Fig. 1) resulted in a very high correlation

between microarray- and RNA-Seq-based abundances

(R2 = 0.9445 and Spearman’s q = 0.9638) and highly

similar subtyping (identical for 51 of the 57 samples)

compared with the subtyping on the corresponding

microarray data. The RNABC pipeline is implemented

in the R programing language (R Core Team, 2018)

and available at https://bitbucket.org/cbligaard/rnabc/.

3.2. Validation of the RNABC pipeline on the

Bordet dataset

The RNABC pipeline resulted in 51 out of the 57 paired

samples matching on predicted CITBCMST subtype,

while the remaining six samples were mismatches. For

the six discordant samples, additional analyses were per-

formed to examine the reason for the mismatch. A

CITBCMST prediction for each of six samples was per-

formed and the results visualized (Fig. 2). In the case of

‘HER2-15’, ‘HER2-19’, ‘LUMA-26’, ‘LUMA-31’, and

‘LUMB-03’, the errors are very small since the samples

are predicted to be mixed using one of the data types and

core using the other data type (confidence mismatches).

In these five cases, the Spearman’s Rho values for the

two data types are above 0.95 and the points are very

close in the PC space as shown in Fig. 2. In the final case,

‘LUMA-04’, the distance between the two points in PC

space is more substantial (class mismatch). When investi-

gating this further, there were no signs of poor data qual-

ity on either the microarray or RNA-Seq level; however,

the Spearman’s Rho between the microarray and RNA-

Seq data is 0.9152, which is the lowest correlation of all

the paired samples. Furthermore, for the 375 probes

actually included in CITBCMST classification, the Spear-

man correlation is only 0.8337. The problem with a lower

Spearman correlation for the 375 probes is not a general

trend across the samples, so it would appear that this

sample is an outlier case, in which concordance between

the two data types is low for reasons unexplained by

standard QC measures.

3.3. Validation of the RNABC pipeline on the RH

dataset

To ensure more general applicability, a second dataset

of nine samples was used to validate the performance

of the pipeline. Beyond these being data generated at

our clinic, validating on a smaller dataset is relevant
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since in clinical settings data are typically submitted in

smaller batches of samples, which may affect the

results of the batch correction step. For the RH data,

the Spearman’s Rho between the data types after

RNABC transformation was 0.9734 (0.5722 before

running the RNABC pipeline) and seven out the nine

samples were predicted to be of the same subtype for

both data types (Fig. 3). The two mismatches are both

confidence mismatches: one sample was classified as

lumA using microarray data and lumAB mixed based

on RNA-Seq data, and the other case is a switch from

basL core to basL-mApo mixed. Such minor discrep-

ancies between data types in the subtyping of border-

line cases can arise from minor variations, and we

categorize the mixed cases as inconclusive for down-

stream clinical decision-making regardless.

3.4. Comparison with other methods

The performance of the three other methods for compar-

ing microarray data and RNA-Seq data was also assessed

on the Bordet dataset. The results of three methods and

Fig. 1. Pipelines for using CITBCMST classifier using (A) microarray data and (B) RNA-Seq data with the RNABC pipeline. For microarray

data, processed samples are submitted to the CITBCMST R package and the resulting subtype predictions are returned. In the RNABC

pipeline, raw RNA-Seq data are submitted, reads are mapped to probe target sequences using kallisto, read counts are quantile normalized

and batch corrected using the CITBCMST training data (n = 355) as comparison, and classification is done on transformed counts.
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the RNABC pipeline are summarized in Fig. 4. The

Spearman’s rank correlation is fairly good in all cases

with values of 0.9638, 0.8191, 0.8206, and 0.7306 for the

RNABC, Fumagalli, TDM, and PREBS methods,

respectively, which means that the data are comparable

in a general sense, but as evident from Fig. 4, using

RNA-Seq data without further processing as input to a

prediction algorithm trained on microarray probe

intensities yields suboptimal results. In terms of R2,

Spearman’s Rho, and subtype matches, the RNABC

pipeline proved superior to all other tested methods.

Also worth noting is that the runtime of the

RNABC pipeline is a fraction of the other three tested

methods, mostly owing to the speed of the kallisto

algorithm. Not only does kallisto eliminate the need

for traditional read mapping algorithms in the pipeline

as reads are pseudoaligned directly against the probe

sequences, but postprocessing (normalization and

batch correction) is also near-instantaneous, bringing

the runtime down from hours to minutes per sample

on a standard laptop computer.

4. Discussion

4.1. Discordance between subtyping using

microarray and transformed RNA sequencing

data

Some of the samples are almost equally close to two sub-

types. Because of this uncertainty, these borderline cases

receive a less meaningful class assignment than the core

samples clearly belonging in a single subtype. Even minor

differences in true and estimated probe abundance can

contribute to class switching in the mixed cases, and clini-

cally speaking, these classifications are not used. Samples

that do not fit well into any of the subtypes also represent

classifications without clinical utility. Both the outlier

and the mixed cases point out a weakness of the entire

subtyping paradigm in precision medicine. Every cancer

patient is unique and even two patients that are predicted

to be of the exact same subtype may be quite different on

a molecular level. This lack of robustness should certainly

be improved on, but this should be addressed by improv-

ing subtyping methods as well as patient stratification

and treatment in general.

4.2. Importance of pipeline components

The RNABC pipeline consists of three main components:

the mapping of RNA-Seq reads to probe set target

sequences, quantile normalization to the CITBCMST

training dataset, and batch correction to the CITBCMST

training dataset. The first step, the mapping of the RNA-

Seq reads directly to the probe set target sequences,

allows for subtyping including all the 375 probe sets used

as the original CITBCMST subtype signatures. This

makes the subtyping more robust, than applying the

CITBCMST classifier on the 256 HUGO symbol signa-

ture. With the goal of reproducing the microarray-based

subtyping from the RNA-Seq data, both quantile nor-

malization and batch correction are essential components

of the pipeline. Probe set mapping alone results in no

Fig. 2. PCA plot of the CITBCMST training data (circles) and the six discordantly classified samples of the Bordet dataset from both

microarray (squares) and RNA-Seq (triangles) data. Each sample point is labeled by the original sample name from Fumagalli et al. (2014) to

allow for direct comparisons between sample pairs.
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matches, as a result of poor correlation between microar-

ray and RNA-Seq data (R2 = 0.0119, SCC = 0.6982),

while quantile normalization alone following probe set

mapping results in five matches (R2 = 0.5540) in the

CITBCMST subtyping for the Bordet dataset, and batch

correction following probe set mapping yields only mis-

matches (R2 = 0.0118). These results indicate that the

application of mapping and both postmapping steps is

necessary to ensure high accuracy of the classification.

Interestingly, each of the two postmapping steps alone

yields Spearman’s rank correlation coefficients (SCC) of

0.6977 and 0.8796, respectively, which corresponds well

to the observation in section 3.4 that a near-identity

relation is necessary to reproduce microarray-based

subtyping results. Finally, it should be emphasized that

high-quality data are paramount for obtaining accurate

subtyping results, meaning that thorough QC is recom-

mended before running this (or any other) pipeline.

4.3. Data transformation and batch correction

In this study, we transform RNA-Seq data to match

the distribution of the entire CITBCMST training

dataset, which contains 355 samples of six different

subtypes. This means that transforming the test data

to the entire CITBCMST training data distribution

can potentially introduce errors if the test data do not

contain all six subtypes. Additionally, considering that

samples in the clinical setting might be run individu-

ally, there is an even higher risk of transforming the

data incorrectly. We recommend that samples always

be run in batches for clinical applications. Alterna-

tively, if it is not possible to obtain a balanced sample

cohort, an option is to run the ComBat batch correc-

tion while accounting for covariates such as receptor

status. The receptor status for all samples in the

CITBCMST training dataset is available in the

RNABC Bitbucket repository.

4.4. CITBCMST subtyping

The CITBCMST subtyping algorithm is only one of

numerous breast cancer subtyping algorithms, and

additional algorithms exist for other cancer types. This

microarray-based subtyping scheme was implemented

in our laboratory and enabled consecutive molecular

subtyping for informing clinical decision-making, as

well as a full transcriptome for downstream explo-

rative analyses. There is, however, room for improve-

ment of the algorithm, and we tweaked several

methodological steps in this study. Most notably, the

standard implementation does not perform batch cor-

rection, which we and others have shown drastically

improves the ability to compare datasets. The recalcu-

lation of the PCA with the test set is also somewhat

suboptimal (although strictly an aesthetic parameter)

as each run will produce a different plot. Instead, we

suggest projecting new samples in to a PC space pre-

calculated on the training data, in order to ensure con-

sistency in the output. In general, the robustness of the

algorithm could also be improved upon. For this, a

complete reworking of the subtyping scheme is proba-

bly necessary—preferably using RNA-Seq data as a

starting point. Until such time, our RNABC pipeline

enables the utility of legacy microarray-based subtyp-

ing methods.

Fig. 3. PCA plot of the CITBCMST training data (circles) and the nine samples of the RH dataset from both microarray (squares) and RNA-

Seq (triangles) data. Each sample point is labeled by a number to allow for direct comparisons between sample pairs.
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4.5. Future perspectives

It should be noted that many different breast cancer

subtyping schemes exist besides CITBCMST. The

choice of subtyping scheme is not standardized, and the

arguments for using one or the other may be based on

experience with different approaches in a particular

clinic. The lack of robustness of many existing subtyp-

ing methods calls for creating entirely new schemes for

cancer subtyping based on high-throughput sequencing,

Fig. 4. Comparison of RNABC and three other methods for comparing microarray data and RNA-Seq data applied on the Bordet dataset. All

plots represent the data after transformation. Each column represents a method, and the rows, from top to bottom, represent (A) a density

plot of the distribution of the two data types across all 57 patients including all available probe sets/genes, (B) a density scatter plot for

expression values for all available probe sets/genes, and (C) a density scatter plot for the probe sets/genes used in the actual subtyping

with CITBCMST. The black dashed lines in B and C represent the least squares regression line, and the R2 value for this line is printed in

the top corner along with SCC for the datasets. (D) Percentages of matches and mismatches when comparing the CITBCMST prediction for

microarray and RNA-Seq data. For RNABC and PREBS, the total number of probe sets was 54 613 (all probe sets from the Affymetrix HG-

U133 Plus 2.0 Array except for the control probe sets) and the number used for subtyping was 375. For Fumagalli and TDM, the total

number of genes was 18 734, and 238 and 234 were used in subtyping, respectively.

2144 Molecular Oncology 12 (2018) 2136–2146 ª 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Probe-based cancer subtyping using RNA-Seq data C. B. Pedersen et al.



possibly including biomarkers from other omics data

types, and ideally some form of patient immune profil-

ing as well. The subtypes of the future algorithms can of

course remain the same, and the training data could be

switched using paired samples of training data, possibly

with multiple replicates to ensure reliability. Having

clinics phase out microarray analysis altogether requires

strong scientific evidence that RNA-Seq-based subtyp-

ing can perform equally well or better than current

methodologies. Despite the current challenges, more

studies demonstrating the utility of RNA-Seq are con-

tinuously conducted indicating a promising future for

RNA-Seq in clinical medicine. Hopefully, the increasing

use of RNA-Seq and this contribution to its utility will

lead to new insights and inspire novel treatment

options.

5. Conclusion

Molecular subtyping of cancer for clinical decision-

making is common practice for many cancer types.

The majority of these tools are built from DNA

microarray profiling of large cohorts of patients—in

many cases through massive collaborative efforts—and

the resulting classifications serve as international clini-

cal standards. Gene expression profiling is to an

increasing degree being performed using RNA-Seq,

but while the two data types are comparable in non-

parametric analyses of transcript abundance, RNA-

Seq count data are not directly compatible with estab-

lished probe intensity-based subtyping methods.

We here present a method that enables fast and

accurate subtyping of tumor samples for which gene

expression is measured using RNA-Seq. We tested our

method on 66 breast cancer samples for which we have

measured transcript abundance using both microarrays

and RNA-Seq, and were able to achieve near-perfect

correlation between probe intensities from microarrays

and the probe-level expression inferred from RNA-Seq

data (R2 = 0.9445, Spearman’s q = 0.9638) and near

perfectly matched breast cancer subtype assignments

from the microarray data using the corresponding

RNA-Seq data. We compared our method to three

state-of-the-art methods for comparison of the two

data types and outperform them all significantly, as no

existing tool is able to generate data comparable

enough to enable accurate clinical subtyping. Further-

more, since we utilize pseudoalignment directly to the

probe sequences, we circumvent traditional read align-

ment and thereby cut the processing time down from

more than 3 h to < 3 min per sample on a standard

laptop. The tool is freely available at https://bitbucket.

org/cbligaard/rnabc/.
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