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Abstract

Objective—To determine the impact of progressive anemia of prematurity on cerebral regional 

saturation (C-rSO2) in preterm infants and identify the hemoglobin threshold below which a 

critical decrease (>2 SD below the mean) in C-rSO2 occurs.

Study design—In a cohort of infants born ≤30 weeks EGA, weekly C-rSO2 data were 

prospectively collected from the second week of life through 36 weeks post-menstrual age (PMA). 

Clinically-obtained hemoglobin values were noted at the time of recording. Recordings were 

excluded if they were of insufficient duration (<1 hour) or if the hemoglobin was not measured 

within 7 days. Statistical analysis was performed using a linear mixed effects-model and ROC 

analysis. ROC analysis was used to determine the threshold of anemia where C-rSO2 critically 

decreased >2 SD below the mean normative value (<55%) in preterm infants.

Results—253 recordings from 68 infants (mean EGA 26.9±2.1 weeks, BW 1025±287g, 49% 

male) were included. 29/68 infants (43%) were transfused during hospitalization. Mixed-model 

statistical analysis adjusting for EGA, BW, and PMA revealed a significant association between 

decreasing hemoglobin and C-rSO2 (p<0.01) in transfusion-naïve infants but not in transfused 

infants. In the transfusion naïve group, using ROC analysis demonstrated a threshold hemoglobin 

of 9.5g/dL (AUC 0.81, p<0.01) for critical cerebral desaturation in preterm infants.

Conclusions—In transfusion-naïve preterm infants, worsening anemia was associated with a 

progressive decrease in cerebral saturations. Analysis identified a threshold hemoglobin of 9.5g/dL 

below which C-rSO2 dropped >2 SD below the mean.
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Introduction

Anemia of prematurity is a pervasive problem in the NICU, but its management remains an 

ongoing source of controversy.1, 2, 3, 4 Resulting from low circulating erythropoietin, the 

lack of third trimester iron stores, decreased red blood cell lifespan, and phlebotomy losses, 

anemia of prematurity represents the intersection of transitional physiology and the sequelae 

of prematurity, with an even greater impact for critically-ill infants.2, 5, 6 As a result of these 

factors, an estimated 85% of very low birth weight infants will receive a packed red blood 

cell (PRBC) transfusion during their hospitalization for treatment of their anemia.7 

Significant variation exists in transfusion practices and trials, such as the PINT trial, which 

have attempted to better define transfusion thresholds have yielded inconclusive results.
1, 3, 6, 8, 9, 10, 11, 12, 13 Existing data suggest no difference in short-term outcomes between 

liberal and restrictive transfusion practices and data on long-term outcomes are limited and 

conflicting.1, 2, 3, 14, 15, 16 Post-hoc analysis of PINT study outcomes data demonstrate 

significantly better long-term cognitive outcomes in the liberal group and meta-analyses of 

neurologic outcomes favor liberal transfusion protocols, making it difficult to assume 

restrictive protocols are equivalent.1, 3, 14

As a result, clinicians currently lack evidence to guide them in their decision to transfuse a 

particular patient.2, 3, 4, 16 Until further randomized control trial data become available, 

objective assessments of the impact of anemia on an individual infant’s physiology are 

needed. Currently available clinical trials that evaluate low versus high thresholds for 

transfusing premature infants have largely ignored physiologic compensatory responses to 

progressive anemia. These responses are likely patient specific. Hence, establishing 

thresholds for PRBC transfusion needs to account for these patient specific compensatory 

responses and rely on measurement of end-organ tissue saturations. While data on the 

adaptation of preterm infants to anemia are limited, they have demonstrated higher cardiac 

output, higher oxygen extraction, and lower cerebral saturations in the setting of anemia, 

which improve with transfusion.17, 18, 19, 20, 21

Existing data also raise concerns about the impact of anemia on cerebral oxygen delivery 

and, therefore, on neurodevelopment.1, 3, 14, 22 Current data estimate the incidence of 

neurodevelopmental impairment in extremely preterm infants at 25–50%.23, 24, 25, 26 The 

underlying mechanisms for this injury are multifactorial and incompletely understood, but 

known causative factors include chronic hypoxia, hypoxia-ischemia, inflammation, and 

oxidative injury.23, 27, 28, 29, 30 Abnormal neurodevelopment and white matter injury/loss are 

the most common pathologic and neuroimaging findings.23, 27, 29 Animal models of chronic 

hypoxia have shown white matter injury patterns similar to those of preterm infants.28, 30, 31 

Anemia and the resultant decrease in oxygen carrying capacity presumably increase the 

burden of cerebral hypoxia in preterm infants, but currently data on the impact of 

progressive anemia on cerebral oxygenation are lacking.

Currently, the standard of care in preterm infants includes continuous measurement of 

peripheral arterial oxygenation by pulse oximetry, but does not include monitoring of 

regional tissue saturations. Pulse oximetry provides data on oxygen supply to the tissues, but 

not on tissue oxygen demand and utilization. Near-Infrared Spectroscopy (NIRS), a non-
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invasive measure of mixed (predominantly venous) tissue saturation, provides a tool to 

assess patient-specific cerebral oxygenation at the bedside and identify anemic infants 

whose compensatory physiologic mechanisms have been overwhelmed resulting in a drop in 

cerebral oxygenation below the normative range.19, 32, 33, 34, 35 Existing data from the first 

two weeks of life in premature infants suggest that the normative range of cerebral regional 

saturations (C-rSO2) is 70 ± 15%.21, 36

In this study, we sought to examine the longitudinal impact of anemia of prematurity on 

cerebral regional oxygen saturation (C-rSO2) in preterm infants and identify the threshold of 

hemoglobin below which a critical (defined as >2SD below mean for premature infants) 

decrease in C-rSO2 occurs. Using NIRS, we prospectively evaluated the impact of increasing 

anemia on C-rSO2 in a cohort of preterm infants less than 30 completed weeks estimated 

gestational age (EGA) through 36 weeks post-menstrual age (PMA).

Methods

Patient selection

In this prospective observational study, preterm infants born at or before 30 weeks 

completed gestation were recruited in the first 14 days of life from the St. Louis Children’s 

Hospital NICU, a level IV unit serving an urban, suburban, and rural population. Infants 

were excluded if they had known congenital or chromosomal anomalies or they were 

clinically unstable and not expected to survive the first week of life. Informed written 

consent was obtained from parents for all participants. The study protocol and procedures 

were reviewed and approved by the Institutional Review Board of the Human Subjects 

Research Protection Office at Washington University.

Sample characteristics

Comprehensive sample characteristics were collected for all infants in our cohort. Antenatal 

characteristics included mode of delivery, antenatal corticosteroid exposure, and the five-

minute Apgar score. Patient characteristics included EGA in completed weeks, birth weight, 

small for gestational age (SGA) status (defined as birth weight <10th centile), gender, and 

race/ethnicity. Clinical factors included Clinical Risk Index for Babies II (CRIB-II) score 

(using the algorithm developed by Parry et al.37), intraventricular hemorrhage (IVH [based 

on cranial ultrasound, graded using the Papile scoring system38]), respiratory support type 

and duration, medication administration, patent ductus arteriosus (PDA [based on 

echocardiographic diagnosis]), hemoglobin measurements, transfusions, and mortality. All 

hemoglobin values were obtained at clinical provider discretion.

Institutional practices and guidelines

Cerebral NIRS is not part of routine clinical monitoring of preterm infants at our institution. 

Institutional transfusion guidelines for premature infants recommend PRBC transfusion for 

hemoglobin ≤10 g/dL in critically-ill infants (defined as being intubated and ventilator 

dependent) and for hemoglobin ≤8 g/dL in stable, non-intubated infants. To reduce donor 

exposure, transfusions occur, whenever possible, from single-donor split units, administered 

in 15 mL/kg aliquots. All transfusions occur at clinician discretion.
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Data collection

C-rSO2 data were collected using NIRS via the INVOS 5100C oximeter with the OxyAlert 

Infant/Neonatal Sensor (Covidien, Mansfield, MA). The device utilizes a two-wavelength 

(730 and 810 nm) LED-based emitter and two optical detectors located 30 and 40 mm from 

the emitter, sampled at a rate of 0.2 Hz. The sensor was placed on the left frontoparietal 

scalp. Weekly cerebral NIRS recordings were conducted from the second week of life 

through 36 weeks PMA.

Recording analysis

Prior to analysis, all recordings were visually evaluated for quality and were eliminated if 

they were corrupted, of insufficient duration (<1 hour), or if a hemoglobin measurement was 

not obtained within 1 week of the recording. The 1-hour threshold for sufficiency of data 

duration was empirically determined by examining the duration of C-rSO2 data required to 

obtain a stabilized mean within 10% of the value for a recording 8 hours in length (Figure 

1). A mean C-rSO2 value was computed for each recording.

Statistical Approach

Statistical analysis was performed using the software program IBM SPSS (IBM 

Corporation, Armonk, NY). Clinical characteristics of the transfused and non-transfused 

infants were compared in univariate analysis by the Mann–Whitney U-test for continuous 

variables and the Fisher’s Exact test (two-sided) for categorical variables. To determine the 

effects of hemoglobin and other clinical variables on the C-rSO2, we used the linear mixed-

effects model procedure in SPSS.39 The autoregressive covariance matrix (with 

heterogeneous variances) was used as the dependent variables were anticipated to diverge 

with time. Best-fitting models were identified for lowest values of the −2 log likelihood, 

Akaike’s information criterion, and Schwarz’s Bayesian criterion.40 Due to the limited 

number of subjects in the study cohort and concern about model overfitting, multivariable 

analyses were limited to biologically plausible associations, to main effects for baseline 

measures, and time-dependent covariates for longitudinal measures. To ensure stability/

reliability of estimates, 95% confidence intervals (CI) were re-estimated by bootstrapping 

(n=1000). To determine the hemoglobin threshold where the C-rSO2 dropped >2SD below 

the normative mean for preterm infants (<55%), we computed receiver-operating 

characteristics (ROC) of hemoglobin values by plotting sensitivity vs. 1 – specificity.41 To 

identify the hemoglobin value that best correlated with C-rSO2 <55%, we selected the point 

with the highest sum of sensitivity and specificity (Youden’s J statistic).42 All statistical tests 

were two-tailed and considered significant at p<0.05.

Results

Demographic, perinatal, and delivery characteristics

This study included 68 infants with a mean±SD EGA of 26.9±2.1 weeks and mean±SD birth 

weight of 1025±287 grams. 29/68 (43%) of infants received at least one PRBC transfusion 

during hospitalization. The remaining 39 infants never received a transfusion. In general, the 

transfused infants were less mature (25.3 vs. 28.1 weeks, p<0.01), smaller (822 vs. 1175 
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grams, p<0.01), and sicker, with higher median CRIB-II scores (12 vs. 8, p<0.01), more 

inotrope therapy (28% vs. 0%, p<0.01), and higher mortality (14% vs. 0%, p=0.03) than 

their non-transfused counterparts. Full sample characteristics for both the transfused and 

non-transfused groups are listed in Tables 1 and 2.

Clinical and transfusion characteristics

During monitoring, 34% and 68% of all infants had a measured hemoglobin ≤8 and 10 g/dL 

respectively. The transfused group had a significantly higher proportion of patients with both 

hemoglobin ≤8 g/dL (52% vs. 21%, p=0.01) during monitoring. Of the 29 infants in the 

cohort who ever received transfusions, 26 (90%) received a transfusion after 7 days of life.

Data quality

A total of 312 C-rSO2 recordings were obtained from the 68 infants included in the study. 

253 recordings (81%) were included in the final analysis. The remaining 59 recordings were 

excluded due to missing/corrupted data (n=10), insufficient recording length (n=3), or 

absence of a hemoglobin measurement within 7 days (n=46). For the included recordings, 

the mean time differential between hemoglobin measurement and C-rSO2 recording was 

2.0±1.7 days. The median length of usable data in the included recordings was 3.6 hours 

(range 1.3–8.0 hours).

Mixed-effects model and ROC analysis

Linear modeling of the two groups revealed a weak statistically-significant correlation 

between hemoglobin and C-rSO2 in the transfused group (r2=0.04, p=0.02). There was a 

moderate statistically-significant correlation in the non-transfused group (r2=0.24, p<0.01). 

Scatter plots of the hemoglobin and C-rSO2 for both groups are illustrated in Figure 2.

Mixed-model statistical analysis adjusting for EGA, BW and PMA was used to examine the 

relationship between hemoglobin and C-rSO2 in all infants. This analysis revealed a 

significant association between decreasing hemoglobin levels and C-rSO2 (p<0.01) in the 

non-transfused group, but not in the transfused group. ROC analysis for all infants 

(transfused and non-transfused) demonstrated marginal discrimination (AUC 0.70, p<0.01), 

and a threshold hemoglobin of 9.2g/dL for critical cerebral desaturation (C-rSO2< 55%).
36, 43 In the non-transfused group, ROC analysis demonstrated good discrimination (AUC 

0.81, p<0.01), with a threshold hemoglobin of 9.5g/dL (Figure 3). In the transfused group, 

ROC analysis was not significant (AUC 0.57, p=0.17, Figure 3). The two groups were 

significantly different (p<0.001). The selected hemoglobin threshold represents the optimal 

combination of sensitivity and specificity (Youden’s J statistic). The Youden’s J statistic, 

sensitivity, and specificity used to select the hemoglobin threshold for the non-transfused 

infants are illustrated in Figure 4.

Discussion

These results demonstrate an association between an increasing degree of anemia and 

decreasing cerebral saturations in transfusion-naïve infants. This finding is consistent with 

prior investigation into physiologic adaptations to anemia in preterm infants, particularly that 
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anemic infants have lower cerebral saturations and higher oxygen extraction than non-

anemic infants.19, 35 Such a relationship was not seen in transfused infants, which is 

consistent with prior cross-sectional studies. A 2010 cross-sectional study by Bailey et al.19 

found no relationship between hemoglobin and C-rSO2 in preterm infants with symptomatic 

anemia pre-transfusion, while a 2011 study from McNeill et al.44 found a modest correlation 

between hemoglobin and C-rSO2 in a small cohort of transfusion-naïve preterm infants in 

the first 21 days of life. One potential explanation for this difference is the cross-sectional 

nature of these studies whereas this study is a longitudinal one. Another variable is the 

introduction of adult hemoglobin following a transfusion, which has a different oxygen 

affinity than fetal hemoglobin, and may alter oxygen delivery in transfused infants.

Additionally, we found that the threshold for critical cerebral desaturation in non-transfused 

infants is approximately 9.5g/dL, implying a loss of physiologic compensation to anemia at 

a higher hemoglobin than previously thought. This threshold is significantly higher than that 

set by the PINT trial in both the low (≤8.5g/dL with respiratory support and ≤ 7.5g/dL 

without) and high (≤ 10g/dL with respiratory support and ≤ 8.5g/dL without) threshold 

groups after the first 2 weeks of life.8 This raises the possibility that, outside of the post-hoc 

analysis, the PINT study’s results were equivocal because the threshold for infants in both 

transfusion groups was set below the point of physiologic compromise.8, 14 Infants in both 

groups may have experienced prolonged compromise of cerebral oxygen saturation (not 

measured as part of the trial) without reaching protocol transfusion thresholds, thus 

confounding the results.

When the entire cohort is considered, the threshold for critical cerebral desaturation appears 

to be 9.2g/dL. This is consistent with a prior cross-sectional study of 33 preterm infants 

undergoing transfusion which found a pre-transfusion hemoglobin of 9.7g/dL to be the 

threshold for cerebral desaturation and elevated FTOE in those infants.45 However, since 

tissue oxygen delivery is dependent on cardiac output along with the oxygen carrying 

capacity of blood, the exact hemoglobin threshold is likely different for each individual 

infant. Routine longitudinal monitoring of cerebral oxygenation provides the opportunity to 

assess whether a particular degree of anemia has compromised cerebral oxygenation, aiding 

clinicians in deciding if a transfusion is needed in a particular patient.32, 33, 35, 46 Regular 

surveillance, prior to reaching this threshold, offers a patient-specific bedside tool to 

determine when compensatory mechanisms for anemia have been overwhelmed, potentially 

putting the infant at risk of hypoxia-related white matter injury and adverse neurologic 

outcomes such as cerebral palsy. NIRS may provide a tool for determining individualized 

transfusion thresholds in a patient population where conclusive randomized control trial data 

are currently lacking and where evidence exists that severe anemia may be harmful to the 

developing brain.

This study has a few important limitations. First, the data collection for this cohort did not 

include pulse oximetry data. As a result, we were unable to exclude periods where the SpO2 

was less than 85% when C-rSO2 values are considered less reliable. From review of 

monitoring data in other studies conducted by our group, and the NICU guidelines for target 

saturations in this population (90–95%), we know that preterm infants in our NICU spend 

the overwhelming majority of their time with SpO2 greater than 90%, but we do not have 
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time-linked data in the present study.47 Future study should include simultaneous capture of 

pulse oximetry data. Second, as our study was observational, our data relied on clinically-

obtained hemoglobin measurements, which led to recordings without a recent hemoglobin 

being excluded from the analysis. While this deliberately conservative approach meant a 

15% exclusion of recording data, it was aimed at ensuring accuracy of the analysis and 

avoiding spurious results from outdated hemoglobin values. This laboratory methodology is 

shared with the PINT study where hemoglobin measurement also occurred clinician 

discretion.8 Finally, we had intentionally strict inclusion criteria for NIRS recordings to 

ensure that only good quality data representative of actual patient C-rSO2 values were 

included. The 1-hour recording length criterion was based on empiric investigation, 

demonstrating that the mean value of C-rSO2 derived from a 60-minute recording, closely 

approximated (no more than 10% deviation) the mean C-rSO2 of a 6 to 8-hour recording. In 

this manner, we avoided inaccurate values from short, discontinuous recordings which only 

represented 1% of the overall recorded data.

Future directions for this research will include use of pulse oximetry to determine cerebral 

fractional tissue oxygen extraction (cFTOE). Utilizing, SpO2 and C-rSO2, calculation of 

cFTOE will allow for assessment of the balance between oxygen delivery and consumption 

in preterm infants. Increased cFTOE is a known adaptation to anemia that reverses with 

transfusion.20, 21 Elevated cFTOE (≥0.4) has been associated with an increased risk of brain 

injury in infants ≤30 weeks, like those in our cohort.48

In conclusion, cerebral oximetry using NIRS provides a tool to assess for compromised 

cerebral oxygenation from anemia in transfusion naïve preterm infants. An increasing degree 

of anemia was associated with a progressive decrease in C-rSO2, with a stronger correlation 

in transfusion-naïve infants. For infants who had never been transfused, the hemoglobin 

threshold for critical cerebral desaturation (C-rSO2 <55%) was 9.5g/dL. Cerebral NIRS 

surveillance in these infants prior to reaching this threshold could aid in determining 

whether a transfusion is required.
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Figure 1. 
A graphical illustration of the rolling average computation used to empirically derive the 1 

hour (3,600 sample) minimum for recording length. Stabilization of the mean C-rSO2 value 

of the above 7 hour (25,000 sample) recording occurs within the first hour (indicated by the 

dashed line). This was a consistent finding, demonstrating that 1 hour of data is sufficient to 

compute a mean C-rSO2 value that is reflective of that of a 6–8 hour recording.
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Figure 2. 
Scatter plots illustrating the correlation between hemoglobin and C-rSO2 in transfused (left) 

and non-transfused infants. Both groups exhibit statistically-significant positive correlations 

indicating that C-rSO2 decreases with worsening anemia. The correlation is weak in the 

transfused group (r2=0.04, p=0.02) and moderate in the non-transfused group (r2=0.24, 

p<0.01).

Whitehead et al. Page 12

J Perinatol. Author manuscript; available in PMC 2018 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
ROC curves for all infants (left), transfused infants (middle), and non-transfused infants 

(right). ROC analysis was significant for all infants and the non-transfused group, but not for 

the transfused group (AUC 0.57, p=0.17). For all infants, there was marginal discrimination 

(AUC 0.70, p<0.01). For the non-transfused group, there was good discrimination (AUC 

0.81, p<0.01).
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Figure 4. 
The graph on the left displays the Youden’s J statistic for each hemoglobin level in the non-

transfused infants. The arrow indicates the point associated with the hemoglobin threshold 

of 9.5g/dL. The table on the right displays the sensitivity, specificity, and Youden’s J statistic 

for each hemoglobin value with the chosen threshold, which maximizes sensitivity and 

Youden’s J, highlighted in gray.
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Table 1

Demographic and perinatal characteristics of transfused and non-transfused infants.

Transfused (n=29) Non-Transfused (n=39) P value

EGA (weeks), mean (SD) 25.3 (1.6) 28.1 (1.6) <0.01*

BW (g), mean (SD) 822 (208) 1175 (240) <0.01*

Male sex, n (%) 16 (55%) 17 (44%) 0.46

Race/ethnicity, n (%)

 Caucasian 15 (52%) 16 (41%)

0.61 African-American 14 (48%) 22 (56%)

 Hispanic 0 (0%) 1 (3%)

Antenatal steroids, n (%)

 Any 25 (86%) 30 (77%) 0.37

 Complete 21 (72%) 23 (59%) 0.31

Cesarean delivery, n (%) 23 (79%) 32 (82%) 1.00

5-min Apgar, median (range) 5 (0–8) 7 (1–9) <0.01*

CRIB-II score, median (range) 12 (3–15) 8 (7–18) <0.01*

SGAa, n (%) 4 (14%) 4 (10%) 0.72

Footnote:

*
denotes statistical significance (p<0.05).

a
SGA, small for gestational age, defined as BW <10th percentile.
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Table 2

Clinical characteristics of transfused and non-transfused infants.

Transfused (n=29) Non-Transfused (n=39) P value

Transfusion >7 days of life, n (%) 26 (90%) - -

Anemia during monitoring, n (%)

 Hemoglobin ≤ 10 g/dL 27 (93%) 19 (49%) <0.01*

 Hemoglobin ≤ 8 g/dL 15 (52%) 8 (21%) 0.01*

IVH, n (%)

 Any IVH 9 (31%) 9 (23%) 0.58

 Grade III/IV IVH 2 (7%) 0 (0%) 0.18

Inotropic medication, n (%)

 During hospitalization 8 (28%) 0 (0%) <0.01*

 < 7 days of life 5 (17%) 0 (0%) 0.01*

BPDa, n (%) 21 (81%) 10 (26%) <0.01*

Home oxygen, n (%) 7 (28%) 4 (10%) 0.09

PDA treatment, n (%)

 No treatment 21 (41%) 7 (18%) 0.06

 Medical treatment only 5 (17%) 6 (15%) 1.0

 Surgical treatment only 1 (3%) 0 (0%) 0.43

 Medical & surgical treatment 3 (10%) 0 (0%) 0.07

Necrotizing enterocolitis, n (%) 7 (24%) 0 (0%) <0.01*

Discharge Z-score, mean (SD) −0.76 (1.3) −0.67 (1.1) 0.67

Mortality, n (%) 4 (14%) 0 (0%) 0.03

Footnote:

*
denotes statistical significance (p<0.05).

a
BPD, bronchopulmonary dysplasia, defined as persistent oxygen requirement at 36 weeks PMA.
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