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a b s t r a c t

The repair of bone defects, especially for the large segment of bone defects, has always been an urgent
problem in orthopedic clinic and attracted researchers’ attention. Nowadays, the application of tissue
engineering bone in the repair of bone defects has become the research hotspot. With the rapid
development of tissue engineering, the novel and functional scaffold materials for bone repair have
emerged. In this review, we have summarized the multi-functional roles of osteoclasts in bone
remodeling. The development of matrix-based tissue engineering bone has laid a theoretical foundation
for further investigation about the novel bone regeneration materials which could perform high
bioactivity. From the point of view on preserving pre-osteoclasts and targeting mature osteoclasts, this
review introduced the novel matrix-based tissue engineering bone based on osteoclasts in the field of
bone tissue engineering, which provides a potential direction for the development of novel scaffold
materials for the treatment of bone defects.
© 2021 Production and hosting by Elsevier B.V. on behalf of Chinese Medical Association. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Bone defects refer to the loss of partial bones, which is a com-
mon disease in clinical orthopedics, especially the bone defects of
extremities. Bone with a small size of defects can repair itself, but
the length of the defect more than 1.5 times of the transverse
diameter of the defective bone will cause delayed healing of bone.1

There are many elements which could lead to bone defects such as
trauma, infection and tumour. Traditional bone defect treatment
methods have shortcomings, such as long treatment cycle, high
cost, uncontrollable curative effect and complications (infection
and nonunion), which bring a great burden to patients.2,3 At pre-
sent, autogenous bone transplantation is the gold standard for the
treatment of bone defects, but it has a series of problems, such as
limited bone mass in donor areas, postoperative infection and bone
defects.4 In recent years, the rapid development of tissue engi-
neering bone technology andmaterials has brought novel ideas and
strategies for the treatment of bone defects.
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According to the traditional theory, tissue engineering bone
plays the role of osteogenesis directly through modulating seed
cells.5 Interestingly, the latest researches have put forward a novel
conception of "bone remodeling in matrix microenvironment" and
expanded the classical theory that the activated osteogenesis role
of tissue engineering bone depends on seed cells directly. It has laid
a theoretical foundation for the development of highly bioactive
bone regenerative materials.6 The critical factor of osteogenic effect
of tissue engineering bone is the extracellular matrix secreted by
seed cells. The extracellular matrix secreted by seed cells in vitro
can promote the involvements of the host cells in the matrix
microenvironment during bone regeneration, so as to provide sig-
nificant osteogenic activities for scaffold.7 This kind of scaffold
material is constructed by removing the activity of seed cells in
tissue engineering bone and retaining a variety of cytokines
secreted by the cells. Then it is called "matrix-based tissue engi-
neering bone (M-TEB)". It effectively overcomes the difficulties of
traditional tissue engineered bones such as long production time,
high cost, and unstable state of autologous stem cells in patients.8,9

Tissue engineering bone based on extracellular matrix performs
a promising method for repairing bone defects, in which the seed
cells are mainly mesenchymal stem cells (MSCs).10 However, bone
remodeling is a complex biological process of coupling among os-
teoclasts and osteoblasts.11,12 Therefore, the important role of os-
teoclasts in M-TEB may be an effective strategy for bone
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regeneration. It is well known that osteoclasts are monocyte/
macrophage lineage cells differentiated from hematopoietic stem
cells, and the particularity of their origin determines the multi-
faceted roles of osteoclasts in the skeletal system.13,14 Different
from bone-resorbing osteoclasts, the interactions among pre-
osteoclasts (pOCs) with endothelial cells and MSCs are involved
in angiogenesis and osteogenesis during the process of bone
remodeling.15 We are struggled to develop a suitable method to
inhibit mature osteoclasts (mOCs) with effective bone resorption
activity and preserve pOCs with positive osteogenic function.
Therefore, from the point of view of preserving pOCs and targeting
mOCs, this review introduces the new M-TEB based on osteoclasts
in the field of bone tissue engineering, which provides a potential
direction for the research of scaffold materials for the treatment of
bone defects.

A brief introduction of osteoclasts

Different from other bone cells, osteoclasts are derived from
hematopoietic stem cells belonging to the monocyte/macrophage
lineage. Receptor activator of NF-kB ligand (RANKL) and macro-
phage colony-stimulating factor (M-CSF) play important roles in all
stages of osteoclasts differentiation.16 mOCs are defined as multi-
nucleated giant cells (more than 3 nuclei), and the process of dif-
ferentiation andmaturation can be described as follows. Monocytes
proliferate massively under the stimulation of M-CSF and differ-
entiate into mononuclear pOCs under the combined action of
RANKL and M-CSF. Successively, pOCs fuse to form multinucleated
osteoclasts under the continuous action of RANKL. Finally, over-
activated osteoclasts perform high osteolytic efficiency but display
a short lifespan.17 Moreover, pOCs and mOCs are all derived from
monocytes. In addition, they have shown the differences of the
function. pOCs always play an essential role in the vasculargenesis
during bone remodeling through secreting the cytokines such as
platelet-derived growth factor-BB (PDGF-BB), TGF-b and any
others, wherever mOCs always make effects on bone erosion so as
to initiate the bone matrix turnover.

The particularity of the origin of osteoclasts determines the
multifaceted roles of osteoclasts in the skeletal system. In addition
to their effective bone resorption activity, osteoclasts also play
crucial roles in angiogenesis, osteoimmunology and hematopoietic
niche formation.18e21 The coupling among bone-resorbing osteo-
clasts and bone-forming osteoblasts acts as the basis of bone
remodeling, which maintains the balance of calcium/phosphate
ratio and bone homeostasis.22e24 Abnormal osteoclast function can
lead to various diseases. The most common primary type I osteo-
porosis (postmenopausal osteoporosis) is caused by the disap-
pearance of the inhibitory effect of estrogen on osteoclasts in
postmenopausal women, which underlies overactivated function of
osteoclasts contributes to an increase in bone resorption and a
decrease in bone mineral density.25e27 The reduction of osteoclast
bone erosion activity may result in some congenital diseases, such
as bone dysplasia and osteopetrosis.28 In addition, osteoclasts also
play a critical role in bone metastasis of tumors. It is shown the
malignant osteolysis is caused by overactivated osteoclastic bone
resorption.29

Interaction between osteoclasts and various cells in bone
remodeling

In the process of bone remodeling, osteoclasts interact with
various kinds of cells in the skeletal system, and the balance of
these interactions finally completes bone repair. These cells
involved in this process include osteoblasts, MSCs, endothelial cells,
and so on.
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Interaction among osteoclasts and osteoblasts

The interaction between osteoclasts and osteoblasts has been
studied most deeply, and they played essential roles in the process
of bone remodeling and repair. The process of bone remodeling
could be roughly divided into three stages: initiation phase, tran-
sition phase and termination phase.30 In the initiation phase, he-
matopoietic progenitor cells are recruited, and osteoblasts secrete
RANKL and M-CSF to promote their osteoclast differentiation and
subsequent bone resorption. The transition phase is characterized
by inactivation of bone resorption activity and a bias towards
activation of bone formation activity through the crosstalk among
osteoclasts and osteoblasts. Finally, bone remodeling is completed
in the termination phase.31

Various cytokines play important roles in different stages during
bone remodeling. In the initiation phase, osteoblasts recruit
monocytes by secreting monocyte chemoattractant protein (MCP)-
1.32 In addition, CXC chemokine ligand 12 (CXCL12) is also
considered to be as an important cytokine for recruiting osteoclast
progenitor cells.33 CXCL12 binds to its receptor CXC chemokine
receptor 4 (CXCR4) on osteoclast progenitor cells and promotes the
expression of osteoclastic resorption marker gene such as matrix
metalloproteinase-9.34,35 In the transition phase, the inhibition of
osteoclasts may occur due to the apoptosis of osteoclasts. At this
time, the apoptosis of osteoclast involves three pathways: Bim/
caspase-3-dependent apoptosis,36 estrogen-induced activation of
Fas ligand37 and increased extracellular calcium concentration due
to the process of bone resorption.38 The coupling relationship
among osteoclasts and osteoblasts is carried out not only by cyto-
kines, but also by direct communication. The most important
pathway in direct contact is the interaction of ephrinB2/EphB4.39 In
the termination phase, the classical Wnt pathway activates the
expression of osteoprotegerin through b-catenin, which further
inhibits osteoclast differentiation and promotes osteogenesis.40 In
addition, osteoclasts express Notch1 and Notch3 receptors, which
inhibit the function of osteoclasts through Notch signalling.41

Interaction among osteoclasts and mesenchymal stem cells

MSCs have been proved to regulate the differentiation of mac-
rophages, but the research on their roles in osteoclast differentia-
tion is limited. Several studies have confirmed that MSCs inhibited
the differentiation and maturation of osteoclasts in humans.42,43

However, it has been reported that MSCs promoted the differenti-
ation and maturation of osteoclasts by increasing the expression of
RANKL and M-CSF in mice.44 In the regulation of osteoclasts by
MSCs, the role of CD200-CD200R axis is very important. MSCs
inhibit the differentiation of osteoclasts through the expression of
CD200 on the surface.42 During bone remodeling, pOCs secrete
PDGF-BB to recruit osteoprogenitor cells from the type H vessels to
the bone remodeling site for the differentiation into bone-forming
osteoblasts.45

Interaction among osteoclasts and endothelial cells

The interaction among endothelial cells and osteoclasts regu-
lates differentiation, maturation and bone-phagocytic ability of
osteoclasts. In turn, osteoclasts modulate the angiogenic ability of
endothelial cells. It has been reported that Netrin-4 secreted by
endothelial cells inhibited the differentiation of osteoclasts and
ameliorated bone loss in vivo.46 However, vascular endothelial
growth factor (VEGF)-C and VEGF-D produced by endothelial cells
promote the differentiation of peripheral blood monocyte into os-
teoclasts.47 Xie et al.48 confirmed that PDGF-BB derived from
immature non-resorbing pOCs binds to its receptor PDGFRb, and
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triggers the downstream cascades of phosphatidylinositol 3-
kinase/protein kinase B and mitogen-activated protein kinases
signal pathways to promote the migration and differentiation of
bone marrow-derived endothelial progenitor cells and angiogen-
esis during bone remodeling in response to mechanical loading.

M-TEB with osteoclasts

A brief description of M-TEB

The treatment of bone defects has always been one of the dif-
ficulties in orthopedic clinic. Autogenous bone transplantation
serves as the gold standard of bone graft, but it belongs to invasive
repair mode and the source of autogenous bone is limited. There
are increasing cases of patients with bone defects per year.49

However, at present, the development of bone graft materials
which comply with the existing standards only meets 6% of the
demand, causing a huge gap.50 Fortunately, the therapeutic strategy
based on tissue engineering technology for bone reconstruction has
a broad application prospect. MSCs, which can differentiate into
osteoblasts, plays a decisive role in bone repair in traditional tissue
engineered bone. However, this kind of tissue engineering bone has
the following disadvantages. Firstly, the autologous cells cannot be
supplied on a large scale, and the process of preparation is complex.
In addition, the living cell-dependent model leads to a valid period
of only a few days, and harsh conditions of storage and trans-
portation.10,51 The concept of M-TEB has been put forward by our
group in recent years. M-TEB can solve the bottleneck problems
encountered in traditional tissue engineering bone, which was
constructed by establishing the bank of stem cell derived from
umbilical cord blood, removing seed cell activity and retaining a
variety of cytokines secreted by these cells in tissue engineering
bone.52 In this construction technique, although the cell activity is
removed, the cytokines and matrix proteins wrapped on the scaf-
fold material by autocrine are still retained. After in vivo trans-
plantation, the cytokines and proteins wrapped in thematrix under
the action of enzymes are slowly released at the site of injury and
participate in bone remodeling. Further chip detection has indi-
cated that M-TEB was rich in recruitment factors (such as gran-
ulocyte chemotactic protein-2, macrophage inflammatory protein-
3a, MCP-3 and urokinase-type plasminogen activator receptor),
growth factors (such as insulin-like growth factor binding protein-3
and VEGF), and osteogenic factors (such as basic fibroblast growth
factor, insulin-like growth factor-1 and osteoprotegerin).6,52

The critical role of osteoclasts in M-TEB

Osteoclasts are initially thought to be harmful to bone regen-
eration. With the gradual elucidation of the mechanism of osteo-
clast differentiation, the role of osteoclasts in bone regeneration is
essential. PDGF-BB derived from tartrate resistant acid
phosphatase-positive pOCs are capable of coordinating osteo-
genesis accompanied by angiogenesis during bone remodeling.53

Based on this conclusion, accumulative studies have added osteo-
clasts as seed cells to the scaffolds of tissue engineering bone.54,55 It
has been reported that the lack of osteoclasts will lead to abnormal
bone formation in vitro.56 As we all know, the process of bone
remodeling depends on the cooperation of a variety of cells in bone
tissue.57 Recent studies have shown that the coupling of osteoblasts
and osteoclasts plays an important role in bone remodeling and
regeneration. The extracellular matrix secreted by MSCs alone
cannot simulate the complex microenvironment of bone repair.13

With the refinement of 3D structure of scaffold materials and the
improvement of 3D printing technology, the coculture of MSCs and
osteoclasts as the seed system to construct tissue engineering bone
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repair materials has been becoming a new research trend. Our
group put forward the idea of adding pOCs as seed cells to construct
M-TEB on the basis of MSCs. It has been found that 10:1 of MSC:
pOC is the most suitable coculture ratio for bone repair and bone
formation, and this coculture mode of compound seed cells se-
cretes and accumulates more matrix protein than MSCs alone,
which has better physiological function and bone repair potential
in the rat model of femoral defect. Mechanistically, the isobaric tag
for relative and absolute quantitation-labeled mass spectrometry
showed that CXCL12 and insulin-like growth factor binding
protein-5 proteins mainly released from pOCs promoted the
migration and osteogenic differentiation of MSCs at the bone defect
site in hosts, respectively. Therefore, pOCs were introduced into
bone tissue engineering for the first time in our study, and an
emerging bone regenerationmaterial was constructed to treat bone
defects by using the strategy of extracellular M-TEB (Fig. 1).8

Regulating the function of osteoclast to realize "osteogenesis and
angiogenesis" for integral bone repair

Accumulating studies have revealed the key role and mecha-
nism of pOCs in bone repair and angiogenesis.12,58 Therefore,
effectively preserving pOCs to promote osteogenesis and angio-
genesis and specifically targeting mOCs may be a novel strategy to
promote bone regeneration and treat bone defects. The character-
istics and modification of scaffolds will have different effects on the
differentiation and bone resorption of osteoclasts. Studies have
shown that the proportion of osteoclast differentiation and matu-
ration increase with the roughness of materials.59 In addition, it is
worth noting that the difficulty of decalcification in the materials
also affect the biological characteristics of osteoclasts. Tricalcium
phosphate (TCP) is more easily absorbed by osteoclasts than hy-
droxyapatite to cause a high calcium concentration in osteoclast
interface, thus inhibiting the differentiation of osteoclasts and
promoting the apoptosis of osteoclasts.60 A recent study has
demonstrated that a scaffold loaded with Mn-TCP was designed to
inhibit osteoclast formation and function by Mn2þ release-
dependent elimination of reactive oxygen species and activation
of Nrf2 expression in osteoclasts (unpublished). In addition, the
establishment of polyethylenimine functionalized graphene oxide
complex loaded with miR-7b overexpression plasmid reduced the
expression of osteoclast target protein dendritic cell-specific
transmembrane protein, thus preventing the cell fusion of pOCs.
Osteoclasts without dendritic cell-specific transmembrane protein
cannot be fused into mOCs, and therefore bone regeneration is
promoted by increased osteogenesis and angiogenesis by the pro-
duction of PDGF-BB. All in all, bone repair scaffolds are modified to
regulate osteoclast differentiation and function in order to achieve
the effect of osteogenesis and angiogenesis for integral bone repair,
which provides new perspectives on bone tissue engineering
(Fig. 2).15

Conclusion

Although the treatment techniques of bone defects are
constantly improving, most of them cannot meet the demands of
patients with bone defects. With the development of biomaterials
and progress of medical technology, the emergence of tissue en-
gineering bone has performed novel ideas for the treatment of bone
defects. At present, the research direction of bone tissue engi-
neering mainly refers to the selection of ideal seed cells, the tech-
nology of seed cell culture in vitro, the selection of scaffold
materials and the solution of vascularization.61 However, this re-
view focuses on the M-TEB system and its application prospect in
the repair of bone defects. The establishment of this theory breaks



Fig. 1. The synthetic route and procedure of matrix-based tissue engineering bone with preosteoclasts and MSCs.

Fig. 2. The transplantation of M-TEB dependent on preosteoclasts realize "osteogenesis and angiogenesis" for integral bone repair at the site of bone defects.
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through the restriction of autologous construction mode and living
cell dependent mode of traditional tissue engineering bone.
Intriguingly, bioactive matrix proteins secreted by seed cells are the
crucial factor and start-up switch for the osteogenesis effect of
tissue engineering bone.

Osteoclasts, more than "bone eaters", play an important role in
bone remodeling, angiogenesis, osteoimmunology and hemato-
poietic niche formation.14 The repair of bone defects by M-TEB
depends on a variety of bioactive matrix proteins (such as recruit-
ment factors, growth factors and osteogenic factors) produced by
MSCs.51 However, bone remodeling is a complex biological process
in which osteoclasts are coupled with multiple types of cells.11
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Therefore, the important role of osteoclasts in M-TEB may be an
effective strategy for bone regeneration. Finally, the modification of
bone repair scaffolds effectively preserves the pOCs to promote
vascularization and osteogenesis and specifically target to elimi-
nate mOCs, which provides a potential direction for the research of
scaffold materials for the treatment of bone defects.
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