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Cell type classification is an important problem in cancer research, especially with the advent of single
cell technologies. Correctly identifying cells within the tumor microenvironment can provide oncologists
with a snapshot of how a patient’s immune system reacts to the tumor. Wide and deep learning (WDL) is
an approach to construct a cell-classification prediction model that can learn patterns within high-
dimensional data (deep) and ensure that biologically relevant features (wide) remain in the final model.
In this paper, we demonstrate that regularization can prevent overfitting and adding a wide component
to a neural network can result in a model with better predictive performance. In particular, we observed
that a combination of dropout and ‘2 regularization can lead to a validation loss function that does not
depend on the number of training iterations and does not experience a significant decrease in prediction
accuracy compared to models with ‘1, dropout, or no regularization. Additionally, we showWDL can have
superior classification accuracy when the training and testing of a model are completed data on that arise
from the same cancer type but different platforms. More specifically, WDL compared to traditional deep
learning models can substantially increase the overall cell type prediction accuracy (36.5 to 86.9%) and T
cell subtypes (CD4: 2.4 to 59.1%, and CD8: 19.5 to 96.1%) when the models were trained using melanoma
data obtained from the 10X platform and tested on basal cell carcinoma data obtained using SMART-seq.
WDL obtains higher accuracy when compared to state-of-the-art cell classification algorithms CHETAH
(70.36%) and SingleR (70.59%).

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Immunology is quickly becoming a popular area of study in can-
cer research and offers an opportunity to expand our understand-
ing and ability to treat patients. Estimating the immune
composition of an individual’s tumor has been the focus of several
studies which have developed deconvolution methods [1,2] to esti-
mate the cellular composition of the tumor micro-environment
with bulk RNA expression data. Recently with the advent of single
cell sequencing researchers are now able to measure gene expres-
sion in individual cells within the tumor-microenvironment and
classify cells using hierarchical clustering and correlation-based
methods [3–5]. Cell type classification can be conducted by con-
structing visualizations such as t-Distributed Stochastic Neighbor
Embedding (t-SNE) [6] or Uniform Manifold Approximation and
Projection (UMAP) [7] plots to define clusters and assign these
clusters to different cell types based on enriched canonical mark-
ers. However, a major drawback of this canonical process is that
it heavily relies on the researchers’ knowledge on the cell-type-
specific signature genes, and it can become arbitrary when making
conclusions based on only a handful of genes. Also, the cell type
marker genes are cancer type-specific and may not generalize to
other datasets [8]. In addition, discriminating between fine
immune cell subtypes, such as exhausted CD8 T cells vs. activated
CD8 T cells, effector CD4 T cells vs. naive CD4 T cells, is a much
more challenging task due to the lack of universal marker genes.

Identification of highly specific cell types is now possible with
the development of single cell RNA-sequencing technology. How-
ever, a challenge in cell annotation in single cell RNA-sequencing
is that transcription profiles are difficult to transfer between differ-
ent platforms. Multiple platforms have been developed for single
cell RNA-sequencing including SMART-seq [9], CEL-seq [10],
Fluidigm C1 [11], SMART-seq2 [12], and more advanced droplet-
based platforms including Drop-seq [13] and 10X Genomics
Chromium system [14], etc. The two most commonly used
platforms are SMART-seq/SMART-seq2 and 10X. The 10X platform
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is a droplet-based approach that generates a unique molecular
identifier (UMI) at 50 or 30 ends to diminish the sequencing reads
representation biases due to library amplification. On the other
hand, SMART-seq and SMART-seq2 are designed to generate full-
length cDNA. Droplet-based 50 or 30-tag methods like 10X can cap-
ture much more cells which in turn can give better overview of the
heterogeneity within population; while a full-length proposal like
SMART-seq is better suited for studies concerned with isoforms,
splicing, or gene fusion. Due to the differences in how they amplify
the mRNA transcripts, the data generated from these platforms are
not directly comparable, which presents a great challenge to the
integrated cell type identification in cross-platform datasets [15–
18]. Therefore, there is a great need for automatic cell identifica-
tion methods that be used across studies, single cell platforms,
and cancer types.

While there are many different single cell RNA-sequencing plat-
forms whose results are on different scales and not directly compa-
rable, the underlying gene to gene relationships should be
consistent and navigating these relationships may allow for bor-
rowing of information from different technologies. Deep learning
brings us the possibility to explore and summarize complex highly
non-linear relationships into high-level features from high
throughput data sources. Deep learning is a powerful machine
learning technique that is often used in visual recognition[19,20],
natural language processing [21,22], and starting to infiltrate the
realm of cancer research [23–25]. Deep learning detects patterns
in data by using neural networks with many layers of nodes by
transforming the output model of the nodes from the previous
layer with non-linear functions. The coefficients output from each
node are augmented using gradient descent in order to optimize
the prediction error of the network.

Wide and deep learning (WDL) combines a deep neural network
with a generalized linear model (GLM) based on a small set of fea-
tures. Deep learning tends to generalize patterns in the data, while
in contrast GLMsmay only memorize the patterns in the data. WDL
has been shown to be an effective tool in recommender systems
[26]. Specifically, we propose utilizing a deep learning model
which can leverage large dimensional data (deep), as well as incor-
porate a few known biologically relevant genes in the last hidden
layer of a neural network to emphasize their biological importance
(wide). The wide part of the model allows us to make cell type clas-
sification more precise and fine-tuned to classify more specific
immune cell subtypes such as distinguishing activated from
exhausted CD8 T cells.

This paper serves three purposes. First, we illustrate a deep
learning framework to automatically classify cells, which can
greatly reduce the burden of manually identifying clusters of cells
and then annotating them based on cluster-specific genes. This is
particularly useful for more specialized cell subtypes which lack
the universal canonical marker genes that can distinguish them
from similar cell types. For example, well-known markers of
exhausted T cells, such as LAG3, PDCD1, and HAVCR2, are also
highly expressed in activated T cells. Therefore, it is hard to dis-
criminate these similar cell types using a single or a handful of
markers. Second, it provides some background information about
deep learning, specifically focusing on regularization methods to
avoid overfitting the model. Models are trained, validated, and sub-
sequently used to classify cells from the same dataset. This sce-
nario is realistic since it is possible that some hospitals may not
have the resources needed for generating large amounts of data
to build their own model. In addition, in many clinical studies
the patients’ tumor samples are collected over a fairly long period
of time (years) in several batches. Waiting till sample collection is
finished before single cell RNA-sequencing data analysis is not
realistic. It will be extremely helpful to train a deep learning model
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using samples collected at earlier time points and subsequently
apply it to later samples. Lastly, this paper provides an illustration
of how incorporating known biologically relevant biomarkers can
be used to transfer knowledge. In this scenario, we explore the pos-
sibility to transfer cell type annotations across different single cell
RNA-sequencing platforms, which can help make full use of the
enormous publicly available single cell RNA-seq data that are gen-
erated by different technologies.

In the methods section, we will describe the data single cell
RNA-seq datasets used in study, provide background about deep
learning, and wide and deep learning. Then in the results section,
we will present results from training and testing the models in
the two scenarios. Finally, we make some concluding comments
and discussion in the discussion section.

2. Methods

2.1. Yost data

Yost et al. [8] conducted droplet-based 10X 5’ single-cell RNA-
sequencing on 79,046 cells from primary tumors of 11 patients
with advanced basal cell carcinoma before and after anti-PD-1
treatment. In total, RNA profiles from 53,030 malignant, immune
and stromal cells, and 33,106 T cells were obtained from single cell
RNA-sequencing. The cell types of interest were T cells, B cells, nat-
ure killer (NK) cells, macrophages, cancer-associated fibroblasts
(CAFs), endothelial cells, plasma cells, melanocytes, and tumor
cells. The T cells were further classified into regulatory (Tregs), fol-
licular helpers (TFH), T helper 17 (Th17), naive T cells, activated
CD8, exhausted CD8, effector CD8, and memory CD8 T cells (Sup-
plementary Fig. 1). We downloaded the raw gene count for single
cells from Gene Expression Omnibus (GEO) under accession
GSE123814, and normalized the data following Methods in Yost
et al. using Seurat[27]. Specifically, the raw counts were normal-
ized by the total expression of each cell, with the cell cycle effects
accounted for. The resulting normalized gene expressions were
used subsequently in the Wide and Deep Learning models. The
UMAP projections and cell type classification provided by Yost
et al. were used to visualize the data. The cell type classification
was also used as cell type for each cell when assessing the Wide
and Deep Learning models.

2.2. Tirosh data

Tirosh et al. [28] applied SMART-seq to 4,645 single cells iso-
lated from 19 freshly procured human melanoma tumors, profiling
T cells, B cells, NK cells, macrophages, endothelial cells, CAFs, and
melanoma cells. To further analyze the T cell subtypes, we down-
loaded the log-transformed TPM (Transcripts per Million reads)
gene expression values provided by the study and imported them
to Seurat [27]. S and G2/M cell cycle phase scores were assigned to
cells based on previously defined gene sets using CellCycleScoring
function to qualitatively evaluate the cell cycle variations in each
cell. Scaled z-scores for each gene were then calculated using Sca-
leData function by regressing against the S and G2/M phases scores
to remove the cell-specific cell cycle variations. Shared nearest
neighbor (SNN) based clustering method was used to identify clus-
ters based on the first 30 principle components computed from
scaled data with resolution = 1. UMAPs were generated using
the same principle components with perplexity = 30 and used
for all visualization. A total of 15 distinctive clusters were identi-
fied and annotated by identifying differentially expressed marker
genes for each cluster and comparing them to known cell type
markers and markers reported by Tirosh et al. From this analysis,
we confirmed the cell annotation provided by Tirosh et al. and
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were able to further identify CD4 T cells and CD8 T cells. The nor-
malized and scaled z-scores were used as gene expression values in
the deep learning models.
2.3. Background for classification problems with deep learning

Deep neural networks (DNN) are able to learn and condense
highly non-linear features (genes) into a high level summary
through the use of composition of functions. These functions are
dot products that undergo a non-linear transformation and are
then passed into another function in the next layer. There are three
types of layers in a DNN which are input, hidden, and output lay-
ers. Each node in the input layer corresponds to the expression
of a single gene. Information from the input layer is passed to each
node in a hidden layer which optimizes the weights in a dot pro-
duct to minimize the cell type classification loss. The nodes in
the output layer produce the probability that a cell is classified
Fig. 1. Depiction of a generic wide and deep learning neural network where the wide com
the turquoise lines. The deep component is equivalent to a traditional deep learning mo
genes that are used in the wide part of the WDL model in Section 3.2.
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as a specific type. The architecture of a generic DNN with two hid-
den layers is seen in Fig. 1. For multi-class classification the objec-
tive function to be minimized is so called cross-entropy function,
HðQÞ,

HðQÞ ¼ �1
n

Xn

i¼1

Xm

j¼1

1ðXi ¼ jÞ logðQðXi ¼ jÞÞ; ð1Þ

where m is the number of cell types, n is the sample size, 1ðXi ¼ jÞ is
1 if the ith cell is type j and 0 otherwise, and Q is the predicted cell
type probability distribution for cell i. Note that each cell can have a
different predicted probability distribution. This function is mini-
mized by gradient descent which is computed by iterating the chain
rule over all layers of the model. A DNN is updated using stochastic
gradient descent (SGD), which at every iteration computes an gradi-
ent with a random subset of cells instead of using all of the data and
then updates the model weights. SGD greatly reduces the computa-
tional burden but requires many iterations due random sampling.
ponent is surrounded by the red lines and the deep component is encompassed by
del described in Sections 2.2 and 3.1. The gene names in yellow correspond to the



C.M. Wilson, B.L. Fridley, José R. Conejo-Garcia et al. Computational and Structural Biotechnology Journal 19 (2021) 1052–1062
The architecture of a DNN is complex and requires careful tuning.
Some examples of tuning parameters are batch size, iterations to
train the model, and nodes in each layer [29,30].

The metrics we used to analyze the predictive capability of a
particular model were accuracy and area under the curve (AUC).
Accuracy was defined as the percentage of cells that were classified
as the correct type of cell by the DNN. AUC, for binary classification,
is computed by determining the area under of receiver operator
curve, which is the curve generated by plotting the false positive
rate (x-axis) versus the true positive rate (y-axis) at varying prob-
ability thresholds. There are two ways to compute AUC for multi-
class classification, the first is one versus the rest [31,32], and the
second is one versus one, which computes all pairwise AUCs
[33]. The average over all computed AUCs is then reported as the
final AUC. One versus rest AUC is not reliable when there is an
imbalance in the classes, which is often the case in cell classifica-
tion, therefore in this study we report one versus one AUC to access
the overall predictive capability of models.

A challenge to training a deep learning model is to ensure that
the results can be generalized to new data sets. One of the simplest
ways to prevent overfitting is to reduce the number of hidden lay-
ers or nodes which in turn decreases the number of parameters
estimated by the model. Another technique is dropout which ran-
domly deletes a specified proportion of nodes from each layer in
the neural network. By deleting different sets of nodes in each iter-
ation the model is trained on different sub-networks and becomes
less sensitive to the specific weights of nodes. Dropout can speed
up the training of a DNN, however, it may require more iterations
to train the network. It is recommended that the percentage of
nodes to delete from each layer should be between 20–50% [34]
Lastly, constraints can be imposed on the weight vector of each
node, requiring the norm to be small. The regularizers work in a
similar way to lasso or ridge penalization in a regression setting
where there is an additional parameter which changes the influ-
ence of the penalization term. The aim is either to keep the value
of the weights small or push as many as possible to zero (lasso).
Elastic net penalization has also been used which allows for a bal-
ance between the ‘1 (lasso) and ‘2 (ridge) penalty [30,35,36].

Understanding which genes were influential to a successful cell
type classification model is important for validating the results and
can lead to the detection of novel genes for future research. Despite
many machine learning techniques being seen as ‘black boxes’,
there have been efforts to interpret the results. One simple
approach to evaluate the importance of a feature is calculating
the dot product of consecutive nodes [37]. This was originally pro-
posed for neural networks with a single hidden layer, but we
extend this work to a neural work with two hidden layers.

wi ¼ jHð1Þj � jHð2Þj � jOj ð2Þ

where HðkÞ corresponds to the hk � hkþ1 matrix that contains the
coefficients. By ranking these weights of each gene we can gain
some notion of variable importance in the final classification.

2.4. Emphasizing important genes for improved cell type classifiers

Wide and deep learning (WDL) involves merging a set of fea-
tures, a wide component, with the last hidden layer in a DNN, a
deep component. Adding these features in the final step will ensure
that they are emphasized in the model, since they may be lost due
to dropout or assigned with small weights. The wide component is
a generalized linear model where the input is a set of original fea-
tures. Wide components tend to memorize the patterns of the data,
while deep components can generalize non-linear patterns. The
architecture of a WDL model is shown in Fig. 1. In this study, speci-
fic genes exclusively expressed by a particular cell type are added
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to the last hidden layer forcing the model to emphasize themmore.
This may allow a DNN to produce a more accurate model than a
model constructed with only a deep part, especially in scenarios
where the data are obtained from different platforms or cancer
types. Markers were selected based on literature and prior knowl-
edge of surface markers for each cell type.
3. Results

3.1. Neural network tuning

In this section, we want to describe how the hyperparameters
(number of nodes, type of regularization) were selected. Tradi-
tional deep learning models with two hidden layers were con-
structed with no regularization (No Dropout), 20% dropout for
both hidden layers (Dropout Only), 20% dropout and an ‘1 regular-
izer for both hidden layers (Dropout + ‘1), and lastly 20% dropout
and an ‘2 regularizer for both hidden layers (Dropout + ‘2). A grid
search was employed where the first hidden layer could have 1,
5, 10, 25, 50, 75, 100, 500, 1000 nodes and the second hidden layer
could have 1, 5, 10, 25, 50, 75, 100, 500 nodes with a batch size of
128. Each neural network was optimized with the Adam optimizer
[38] with a learning rate of 0.01. The activation function for each
hidden layer was the rectified linear units (ReLU),
f ðxÞ ¼ maxð0; xÞ, and the softmax activation function was used for
the output layer. To enforce the ‘1 and ‘2; a kernel regularizer
was used with a 0.01 regularization factor to reduce the weights,
W, of the activation function, f ðxÞ ¼ Wxþ b. The weights of each
layer were initialized using Glorot uniform initializer which ran-
dom selects values between � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6=ðnþmÞp
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=ðnþmÞp

, where
n and m are the number of input and output nodes, respectively.

In order to determine which DNN architecture leads to good
results, we split the data into training, testing, and validation sets.
This was conducted by randomly splitting the total dataset into a
training and testing (75%) and testing (25%) set, and then further
splitting the first set into a training (80% of the first set or 60% of
the total dataset) and validation (20% of the first set or 15% of
the total dataset) set. A z-transformation was applied to each fea-
ture in the combined training and validation sets, and then these
summary statistics were used to conduct the analogous transfor-
mation on the testing set. In this section, the training, testing,
and validation sets were all from the Yost data.

Fig. 2 shows the training and validation accuracy (left) and loss
(right) using the same architecture for each model, and a numerical
summary is provided in Table 1 for the architecture leading to the
best validation accuracy. Notice that with No Dropout, Dropout
Only, and Dropout + ‘1 the validation loss increased as the model
is trained. On the other hand, the validation accuracy and valida-
tion loss remained consistent with the training loss as epochs
increase for Dropout + ‘2, suggesting that even if the model is
trained with an excessive number of iterations, the model perfor-
mance will not suffer heavily from overtraining. While the No
Dropout and Dropout only models had the lowest validation loss
and nearly 100% training accuracy, they are undoubtedly over-
trained and will likely not generalize well for future data.

The overall accuracy of the Dropout + ‘2 model is 93.8%, with
the prediction accuracy of individual cell types ranging from 85%
to 100% (Fig. 3A). T cell subtypes are similar in gene expression
profiles and are difficult to distinguish. T cell subtype classification
is commonly done as a second stage of classification where only
the T cells are considered [8]. Fig. 3A shows that using a deep
learning framework, each T cell subtype is classified with at least
85% accuracy, and 5 out of the 7 T cell subtypes had greater than
90% percent accuracy, and the misclassified cells were classified
as another type of T cell. In single cell RNA-sequencing, the separa-



Fig. 2. Comparison of the accuracy (A) and categorical cross-entropy loss (B) defined in Eq. (1) for a single replicate of four models from Section 3.1 with varying methods of
regularization and drop out. The red and turquoise lines correspond to the performance on the training and validation set, respectively.

Table 1
Summary of the number of nodes in each layer, validation, and testing accuracy. The architecture was selected based on the model that highest accuracy when classifying cells in
the validation data set. The testing accuracy arises from training a model with the specified architecture with training + validation datasets and testing on previously unused test
set. The mean (standard deviation) of 10 replications of each model is presented for accuracy and area under curve (AUC).

Validation First Second Testing Testing
Accuracy Layer Layer Accuracy AUC

No 94.8 100 50 94.9 0.999
Dropout (0.457) (0.248) (1.28e�4)

Dropout 93.5 100 75 94.1 0.996
Only (0.259) (0.312) (3.74e�4)

Dropout + 92.6 75 100 92.4 0.998
‘1 (0.461) (0.517) (2.13e�4)

Dropout + 93.9 100 75 93.4 0.999
‘2 (0.450) (0.244) (1.28e�4)
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tion between activated and exhausted CD8 T cells is particularly
difficult. The exhausted cells are considered chronically activated,
and they also highly express the activation markers such as TNF
and IFNG. The subtle difference between activated and exhausted
CD8 T cells is the overexpression of exhaustion markers such as
TIGIT and HAVCR2. Our deep learning model with Dropout+ ‘2 set-
ting was able to capture these genes and ranked their importance

as 15th and 28th in a total of 22,890 genes (Fig. 3B, Supplementary
Table 1). In addition, the model puts high emphasis on the genes
that are typically over-expressed in tissue-resident memory cells,
such as LAYN and CXCL13 (Fig. 3B), which is consistent with Yost
et al. original findings. The cell type classification accuracies for
No Dropout, Dropout only, and Dropout + ‘1 are included in Sup-
plementary Fig. 2.

We conducted a series of experiments to explore the impact of
the number of hidden layers of deep learning models. First, we
constructed DNNs with one hidden layer with 100 nodes for
Dropout + ‘1 model, and 25 nodes for No Dropout, Dropout Only,
and Dropout + ‘2 models. These configurations were selected by
conducting a grid search using the values 1, 10, 25, 50, 100, 150,
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200, 250, 500, and 1000 (10 replications for each value was con-
ducted). We found that the number of nodes that yield the best
validation accuracy was 25 nodes for No Dropout, Dropout only,
and Dropout + ‘2, and 100 nodes for Dropout + ‘1. Second, we
constructed DNNs with three hidden layers with 100, 50, and
25 nodes, respectively. The accuracy and AUC of these models
are shown in Supplementary Table 2. These experiments are dis-
played in Supplementary Table 2 and are very similar to those in
Table 1. Also, note that a single layer DNN is only exploring the
correlation structure, while a DNN with more layers can leverage
more complex relationships in the data. The overall accuracy for a
DNN with three hidden layers is only 0.3% more than the overall
accuracy of a model with two hidden layers which is not practi-
cally different. Thus we will proceed with the model with two
layers since it is more simple and maybe easier to generalize to
different datasets.

There are many heuristics for selecting the number of nodes in
two-layer models. One heuristic is the so-called pyramid rule
heuristic, which uses following formula:

h1 ¼ r2 �m; and h2 ¼ r �m



Fig. 3. Heatmap of accuracy by cell type for a deep learning model (A), trained and tested on the Yost dataset, with two hidden layers with 100 and 75 nodes respectively, and
20% dropout and ‘2 regularization. Average expression of the top 20 most influential genes by cell type (B) where the size of the dot corresponds to the proportion of cells that
express this gene and color ranging from red to red, indicating low to high average expression. The accuracy for the heatmap represents the average accuracy for 10
replications.
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where n is the number of inputs, m is the number of outputs, and

r ¼ ðn=mÞ1=3 [39]. There were 22,890 genes input into the model
and 18 classes, hence we used 2,113 and 196 nodes. The accuracy
of the pyramid rule models is dramatically decreased (Supplemen-
1057
tary Table 2) when compared to the two-layer models (Table 1) for
all models except Dropout + ‘2. We illustrated that a model result-
ing from combining Dropout and ‘2 regularization is robust to over-
fitting, as this model has many more parameters than the models



C.M. Wilson, B.L. Fridley, José R. Conejo-Garcia et al. Computational and Structural Biotechnology Journal 19 (2021) 1052–1062
presented in Table 1. In each set of experiments in the section, we
see that Dropout + ‘2 may not always have the highest accuracy,
but based on the training plots it is the least sensitive to poorly
specified models. Based on these findings, all models discussed in
the remainder of this paper are constructed with dropout and ‘2
regularization, and is referred to as the naive model, especially since
there is not a significant difference between the testing accuracy of
the four methods.

3.2. Testing on different datasets

Both naive and WDL learning models were constructed using
the basal cell carcinoma data generated by Yost et al. and tested
using melanoma data produced by Tirosh et al. Both models were
constructed with 100 and 75 nodes for the first and second layers
respectively. A comparison of the true cells types and the predicted
cell types from the WDL model are shown in Fig. 4A and B. The
naive model had an overall accuracy of 33% and did poorly on T cell
subtypes, B cells, and NK cells (Fig. 4C). Another discrepancy is that
Fig. 4. Comparison of the true cell types (A) and predicted cell types from aWDL model (B
the naive and WDL models (C).
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a large portion of cells were misclassified as CAFs. With the addi-
tion of the 11 markers listed in Fig. 1, the WDL model can better
discriminate subtypes of T cells, CD8 T cells and CD4 T cells, with
an accuracy of 96% and 59% respectively (Fig. 4B right) and
obtained an overall accuracy of 86.8% accuracy (Supplementary
Fig. 5). The classification accuracy for each cell types ranges from
55% for NK cells to 97% for melanoma and macrophages, with 6
of the 8 cell types having accuracy higher than 93% (Fig. 4B right).
A majority of misclassified CD4 T cells were classified as CD8 T cells
within the same major type. The largest increase of accuracy was
observed for B cells from 25% in the naive model to 93% in the
WDL model.

To understand why the models perform differently, we focus on
the differences between specific markers that were highly influen-
tial in each model. The importance of the top 20 markers and their
importance are displayed in the average expression profiles for
each cell type in Fig. 5A and B. A total of 11 markers were included
in the wide part of the WDL model, and these have by far the lar-
gest importance in the model. Five well-known T cell markers
). Side-by-side comparison of the average accuracy by cell type for 10 replications of



Fig. 5. Dot plots for the Tirosh data using both naive (A) and WDL (B) with average, based on 10 replications, gene importance weights increasing with brown color scale. The
gene names highlighted in red correspond to gene that were included in the wide part of the WDLmodel, and the red gene names correspond to the genes that were not in the
wide part yet were influential in both the naive and WDL models. Full list of genes and weights is included in Supplementary Table 3.
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(CD8A, CD8B, GZMK, CD4, and IL7R) were given large weights by
the model, which explains why the WDL model was able to better
classify CD4 and CD8 T cells.

To determine the impact of the location of the wide component,
we further appended the wide component onto the first hidden
layer; thus the number of nodes in the first hidden layer is
n1 ¼ h1 þ g, using notation from Fig. 1. The mean accuracy and
AUC for the 10 replicates were 79.74 and 4.85 respectively, which
were significantly lower than the proposed WDL model with wide
components on second layer (p-0.000472, t-test). The summary
statistics are shown in Supplementary Table 4.

Additionally, to better understand the applicability of the WDL
model across training sets from different platforms, we con-
structed 10 models by swapping the training and testing datasets.
The models were trained on Tirosh et al. data generated from
SMART-seq and tested on Yost el al. data generated from 10X.
For each model, there were 100 nodes in the first layer. 75 nodes
in the second layer, and the same genes shown in Fig. 1 are used
in the wide component. The mean overall accuracy for these repli-
cations was 40.53 and 81.04 for the naive and WDL. The summary
statistics are shown in Supplementary Table 4. WDL model dra-
matically improves the classification of all cell types except macro-
phages (Supplemental Fig. 5). Overall, the WDL model performed
well across cell types by using the SMART-seq data as training.
However, the accuracy was lower than WDL model using 10X as
testing. This can be explained by the fact that 10X is better at dis-
criminating cell types while SMART-seq is more suitable to detect
lowly expressed genes.

Lastly, to study the impact of the number and the genes on the
accuracy of a wide and deep learning model, we constructed mod-
els using different sets of genes (Supplementary Table 5) as the
wide component with Yost et al. as training and Tirosh et al. as
testing. Gene set 1, which focused mostly on CD8 T cells, did a poor
job identifying CD4 T cells and melanocytes cells. By specifically
adding genes exclusively expressed in melanocytes, such as MIA,
PMEL, and MLANA, the accuracy was dramatically increased for
melanocytes. In addition, CSF1R (Gene Set 3) and PECAM1 (Gene
set 4) increased the accuracy of macrophages and endothelial cells
respectively when compared to Gene Set 2. Gene Set 6, which con-
sists of all genes in Gene Sets 1–5, led to a lower overall and B cell
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accuracy. Additionally, CAF and CD4 T cells had lower accuracy
than Gene Sets 3–5. Finally, with CD19 to target B cells, Gene Set
7 obtained higher accuracy for B cells, CAFs, and CD4 T cells. We
also noticed that targeting a single cell type may decrease the accu-
racy of another cell type. For example, the B cell classification accu-
racy dropped in Gene Set 4 when adding marker for endothelial
cells compared to Gene Set 2. In addition, although the overall
accuracies of Gene Sets 2–5 were similar, the accuracy of certain
cell types may vary depending on whether and how many of their
markers were specified as the wide components. The decision of
markers to include should be experiment specific and depends
on the focus of the study. In general, we have observed that the
accuracy of a cell type can be improved by adding markers exclu-
sively expressed by that cell type.

3.3. Comparison to other cell classification methods

To further assess the deep learning framework, we compared
the Dropout + ‘2 model to the state-of-art single cell type identifi-
cation methods, including (1) Garnett, a prior-knowledge method
that trains the classifier based on prior-known markers [40]; (2)
CHETAH, a hierarchical classifier which is based on correlation cal-
culated using the set of genes that best discriminates between cell
types [3]; (3) SingleR, a method that assigns cell types based on
correlation to annotated reference data using selected genes pro-
vided by users [4]. We evaluated the performance with two exper-
imental settings: (1) intra-dataset in which the training and testing
data were split from Yost et al. data as described in Results 3.1; (2)
inter-dataset in which the models were trained on Yost et al. data
generated with 10X and tested on Tirosh et al. data generated with
SMART-seq. All methods were run under their default settings. For
the prior-knowledge method Garnett that requires a marker gene
file as input to guide the training, we used the marker genes pro-
vided by Yost et al., and also specified parent–child relationships
among the cell types based on prior knowledge (Supplementary
Table 6). The cells classified as the parent type of their true cell
types by Garnett were considered as intermediate, for example, a
CD8 exhausted T cell was classified as a CD8 T cell. For the hierar-
chical classifier CHETAH, the algorithm automatically selected
genes that were distinctive enough between cell types, learned
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the hierarchical structures, and assigned cells into cell types with
intermediate categories. For the correlation-based method SingleR,
the genes used to calculate correlation were defined by differential
expression analysis. The top 100 most differentially expressed
genes for each cell type were selected. In all methods, cells classi-
fied as their true cell types were considered correct, while cells
classified other than their true cell types or intermediate types
are considered incorrect. Overall our naive DL model in the intra-
dataset and WDL model in the inter-dataset outperformed other
methods (Fig. 6). In general, all methods performed better in
intra-dataset compared to inter-dataset experiment, which is con-
sistent with the previous observation that the performance of clas-
sifiers is low when they are trained or tested on SMART-seq data
[41]. In intra-dataset setting, naive DL showsmuch higher accuracy
for CD8 T cell subtypes than the other three methods (Fig. 3A, Sup-
plementary Fig. 6 left). TheWDL model in inter-dataset setting also
performed significantly better to discriminate CD8 and CD4 cells
than all other methods (Fig. 4C, Supplementary Fig. 6 right).
4. Discussion

WDL presents an opportunity to use a small set of commonly
known biological markers for cell type classification to allow mod-
els to be slightly less data-driven. We have illustrated a substantial
increase in overall accuracy (36.5 to 86.9%) and for T cell subtypes
(CD4 increased from 2.4 to 59.1% and CD8 increased from 19.5 to
96.1%). We have demonstrated that this can allow for training
and testing models from data obtained from different platforms
and types of skin cancer. Further refinement for the classification
of fine T cell subtypes is needed to address questions such as
‘how strong is the CD8 T cell response to a tumor?’, i.e., determine
the proportion of exhausted CD8 T cells, which are very relevant in
cancer research. Additionally, there is a great need to develop sys-
tems to transfer knowledge across cancer types. WDL allows the
opportunity to address this by including general set of genes for
cell type classification and avoiding adding data/cancer specific
markers as shown in Section 3.2.
Fig. 6. Comparing deep learning models to other methods using intra-dataset (left) and
were shown in different colors. Note that naive DL and WDL are the average accuracy f
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In addition to adding a wide component to a DNN there is a
need for careful consideration for how a model is trained to avoid
the memorization of data. While dropout is a great tool for making
deep learning models more generalizable there are many applica-
tions where there is a need for additional steps to avoid overfitting.
Regularization is computationally intensive but makes deep learn-
ing models generalizable to test datasets. Models can very easily be
overtrained, but a combination of dropout and ‘2 regularization
can provide a loss function that is stable across the training itera-
tions. Another challenge for deep learning in general is that the
randomness in the initialization of node weights, dropout, and
batches can lead to dramatically different performances for models
that are tuned in the same manner and data. Studying an ensemble
of deep neural networks could help study the stability of the mod-
els and comparing the most important biomarkers in each model
can provide further confidence that the markers that are highly
influential. Identifying these genes can help clinicians understand
the commonality between immune cells behavior across cancer
types providing better insight and treatment of the cancers
themselves.

There are significant challenges when applying models to data
from different platforms. In particular, SMART-seq and 10X are
fundamentally different in the way the RNA is processed to cDNA.
In addition, the 10X is a UMI-based method which largely reduces
the effects of PCR application bias. A previous study has shown the
cell classification methods generally had low performance on
SMART-seq data [41]. Despite the differences in training and test-
ing data structures, the WDL models performed well on both 10X
and SMART-seq platforms. Another challenge of processing
single-cell RNA sequencing data is normalization. Due to the high
prevalence of zero counts, cautions need to be taken when adjust-
ing for unwanted batch effects in single-cell RNA sequencing data.
A few deep learning-based methods have been developed to deal
with this problem, such as DESC [42]. The models proposed in this
study only take the processed single-cell RNA sequencing data,
which has been normalized and batch corrected. It will be of inter-
est to extend our work into a cell type classification method with
batch effect removal as a future direction.
inter-dataset (right) experiments. Percentages of cells classified into each category
or 10 models.
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An advantage of deep learning to correlation-based methods
such as CHETAH and SingleR is the use of multiple layers which
allows for the exploration of nonlinear relationships in the data.
Additionally, deep learning was employed using all genes, even
those that were not expressed in many cells. For instance, in the
intra-dataset experiment, Yost et al. identified EOMES to discrimi-
nate CD8 memory T cells, and TIGIT and CXCL13 to differentiate
CD8 T exhausted cells (Supplementary Fig. 4 and Supplementary
Table 3). However, these markers were not included in CHETAH
or SingleR correlation calculation, which led to poorer accuracy
for CD8 memory T cells and CD8 exhausted T cells (Supplementary
Fig. 6 left).

One reason that WDL, CHETAH, and SingleR are successful at
cell type classification in inter-datasets is that they are supervised
by training data, unlike Garnett where the classifier relies on a
handful of prior-knowledge genes. In particular, WDL learns the
weights of genes automatically from the data, while allowing
important genes to have higher weights; CHETAH and SingleR cal-
culate correlation on genes that are most discriminative between
cell populations in the training data, instead of using only a few
prior-known genes. The naive deep learning models, on the other
hand, performed well in the intra-data/platform experiment but
poorly in the inter-data/platform experiment. This is because it
does not utilize any prior knowledge and the model is left finding
patterns from the full set of genes. Also, the overall gene expression
patterns differ even for the same cell type due to different amplifi-
cation protocols and technologies. WDL model was able to obtain a
higher accuracy than the naive model for every cell type. However,
CHETAH and SingleR are able to classify some cell types better than
WDL. No markers were included for CAFs, myofibroblasts, or DCs in
the WDL model, because no markers have been shown exclusively
in these cell types across different platforms. Supplementary Fig. 4
illustrates that CST3 was given a large weight and highly expressed
in CAFs, macrophages, melanocytes, and myofibroblasts. This
explains why WDL had difficulty discriminating CAFs, macro-
phages, melanocytes, and myofibroblasts. With further research,
it will be possible to improve the WDL model by identifying better
markers for these cell types.

The true type of a cell is usually determined by in vivo study to
test the cell’s function, which is a laborious process and not appli-
cable in single-cell RNA sequencing experiments. Training of a
DNN can reduce this time and lead to a model that is able to be
applied to new samples directly. The training a DNN with the Yost
data took approximately 1.5 h, while it took 20 min to train a
model with the Tirosh data. From single-cell RNA sequencing data,
the researchers can only infer the cell type by intensively interro-
gating the gene expression profile and comparing it to known cell
types. Also, for groups of cells that do not match any known cell
types, it is difficult to annotate them. Therefore, in most single-
cell RNA sequencing studies, the term ‘‘cell clusters” is used to refer
to groups of cell with a distinctive expression profile, instead of
‘‘cell types”. Here, we use the ‘‘true cell type” to refer to the cell
annotation inferred by the original studies in Yost et al. and Tirosh
et al. just for the model assessment. Despite using ‘‘cell clusters” as
a surrogate for the true cell type it is still important to have algo-
rithms that can quickly analyze the cells for a patient to get an idea
of how the immune system is reacting to an illness such as cancer.
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