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The image analysis of the brain with machine learning continues to be a relevant work for the detection of different characteristics
of this complex organ. Recent research has observed that there are differences in the structure of the brain, specifically in white
matter, when learning and using a second language. This work focuses on knowing the brain from the classification of Magnetic
Resonance Images (MRIs) of bilingual and monolingual people who have English as their common language. Different artificial
neural networks of a hidden layer were tested until reaching two neurons in that layer. The number of entries used was nine
hundred and the classifier registered a high percentage of effectiveness. The training was supervised which could be improved in a
future investigation. This task is usually carried out by an expert human with Tract-Based Spatial Statistics analysis and fractional
anisotropy expressed in different colors on a screen. So, this proposal presents another option to quantitatively analyse this type of
phenomena which allows to contribute to neuroscience by automatically detecting bilingual people of monolinguals by using

machine learning from MRIs. This reinforces what is reported in manual detections and the way that a machine can do it.

1. Introduction

The use of Magnetic Resonance Imaging (MRI) has reached
a high degree of sophistication because it is useful for
analysing the brain and detecting its diseases; however, the
structure quantification and tissues has not yet been com-
pletely solved [1, 2]. Several machine learning (ML) tech-
niques have been implemented to classify brain activity,
diseases, and behaviours and have achieved approximate
solutions from this discipline [3-6]. Even due to the re-
markable results of these techniques, dedicated hardware is
currently being created for ML tasks [7-9]. An interesting
example of ML applied to MRIs is presented by [10]; in their
study, they investigated deep learning framework algorithms
for predicting the Soil Organic Matter (SOM) content by
VIS-NIR spectroscopy. Based on fractional-order derivative
(1.5) spectral variation, they compared Backpropagation
Neural Network (BPN), Multilayer Perceptron (MLP), and
Convolutional Neural Network (CNN), including LeNet5
and DenseNet10 with full-spectrum data (203 variables) and

a subset of 67 variables highly correlated with the SOM
content (r2 values>0.4). Their results indicate that deep
learning methods including the MLP and CNN can be used
to predict the SOM content from VIS-NIR soil spectra, each
displaying state-of-the-art performance. In [11], a DL model
based on a CNN is proposed to classify different brain tumor
types using two publicly available datasets. The former one
classifies tumors into (meningioma, glioma, and pituitary
tumor). The other one differentiates between the three
glioma grades (Grade II, Grade III, and Grade IV). The
datasets include 233 and 73 patients with a total of 3064 and
516 images on Tl-weighted contrast-enhanced images for
the first and second datasets, respectively. The proposed
network structure achieves a significant performance. The
results indicate the ability of the model for brain tumor
multiclassification purposes. The authors of [12] propose a
novel framework for the classification of fetal brain at an
early age (before the fetus is born). This is a study to classify
fetuses’ brain abnormalities of widespread Gestational Ages
(GAs). The study incorporates several machine learning
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classifiers, such as Diagonal Quadratic Discriminates
Analysis (DQDA), K-Nearest Neighbour (K-NN), random
forest, naive Bayes, and Radial Basis Function (RBF) neural
network classifiers. Moreover, several bagging and Ada-
boosting ensemble models have been constructed using
random forest, naive Bayes, and RBF network classifiers. The
performances of these ensembles have been compared with
their individual models. Theirs results show that the ap-
proach can successfully identify and classify numerous types
of defects within MRI images of the fetal brain of various
GAs. Using the KNN classifier, it is able to achieve the
highest classification accuracy. In [13], the authors present
an intuitionistic fuzzy kernel clustering (IIFKC) method
using intuitionistic fuzzy set theory that encompasses a
kernel-based distance function. The proposed method
preserves the image information, insensitive to noise, and
free of prerequisites of fine-tuning parameters. The seg-
mentation results attained on the real and simulated MRI
brain image exhibits the efficiency of the IIFKC method and
enhances the performance in comparison with the existing
methods in terms of similarity index, Jaccard coefficients,
and execution time. Varuna-Shree and Kumar [14] present a
noise removal technique, extraction of Gray-Level Co-oc-
currence Matrix (GLCM) features, and Discrete Wavelet
Transformation- (DWT-) based brain tumor region growing
segmentation to reduce the complexity and improve the
performance. This was followed by morphological filtering
which removes the noise that can be formed after seg-
mentation. The probabilistic neural network classifier was
used to train and test the performance accuracy in the
detection of tumor location in brain MRI images. In [15], a
study of Berkeley Wavelet Transformation- (BWT-) based
brain tumor segmentation is shown. Furthermore, to im-
prove the accuracy and quality rate of the Support Vector
Machine- (SVM-) based classifier, relevant features are
extracted from each segmented tissue. The experimental
results of proposed technique have been evaluated and val-
idated for performance and quality analysis on magnetic
resonance brain images, based on accuracy, sensitivity,
specificity, and dice similarity index coefficient. The experi-
mental effectiveness of the proposed technique for identifying
normal and abnormal tissues from brain MRIs. The research
reported in [16] proposes a Probabilistic Neural Network-
Radial Basis Function method to increase the classification
accuracy in tumor functional brain images. The classification
is carried out by extracting the features by using multilevel
wavelet method. Then, the morphological filtering technique
is used in segmentation process where the Region of Interest
(ROI) areas of the brain functional images are compared with
the neighbourhood pixels. This technique yields a high ac-
curacy for the functional brain images. This procedure is
efficient to diagnose the tumor region in early stage itself.
On the contrary, current research studies indicate that
learning and using a Second Language (L2) can affect the
structure of the brain, White Matter (WM) tracts, and Gray
Matter (GM) tracts [17-19]. This observation comes from
research studies that analyse early and older bilingual people
who have been using their first and second languages for
several years [20-22]. This change caused by L2 is presumed
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positive because lifelong bilingualism contributes to the
cognitive reserve against decreasing the integrity of white
matter in aging [23, 24]. Sulpizio et al. affirm that “currently
no agreement on factor modulates most effectively and en-
duringly brain plasticity in bilingual individuals” [25]. They
consider that the classification of bilingualism versus
monolingualism can hide detailed changes in neurons,
derived from experience in language practice, thus leading to
variable and often conflicting findings. And they present the
effect of the Age of Acquisition (AoA). These findings shed
new light on the importance of modelling bilingualism as a
gradient measure rather than an all-or-none phenomenon.

In this work, we analysed the literature regarding the
classification of brain images with machine learning techniques
from magnetic resonance imaging. This is to review the
techniques that have been used for classification and to observe
the importance of the sensor to measure the variable that needs
to be analysed as well as the preprocessing necessary to feed the
classification system. This is in order to help the classifier in his
task. In this case, it has the hypothesis that you can classify
brain images by examining the corpus callosum bilaterally,
including the genu, the body, and the previous part of the
splenium from MRIs. In order to prove it, the work was or-
ganized as follows. In Section 2, the characteristics of the
database as well as the process to obtain the variation of data
that feeds information to the neural network are explained.
Section 3 presents the experimental outcomes of the classifi-
cation using different architectures of neural networks. Section
4 presents the author’s interpretation of the results. Finally, the
conclusions and future works are presented.

2. Materials and Methods

2.1. Database. The raw material for this work is the L2struc
database hosted in XNAT Central, freely available online
through the PNAS open access option. The share data was
approved by the University of Reading Research Ethics
Committee. All participants provided written informed
consent prior to participating [17]. It was used a 3.0-Tesla
Siemens MAGNETOM Trio MRI scanner with Syngo soft-
ware and 36-channel Head Matrix coil to acquire a whole-
brain diffusion-weighted Echo-Plannar Imaging image (two
averages, 30 directions, 60 axial slices; slice thickness, 2 mm,
no interslice gap; field of view, 256 x 256 mm; acquisition
matrix, 128 x128; voxel size, 2mm isotropic; echo time,
93 ms; repetition time, 8,200 ms; b-value, 1,000 s/mm?). A 3D
brain shot participant number 101 is presented in Figure 1. A
set of 60 cross sections can be observed at different heights of
the brain, arranged in rows from 1 to 8 and in columns from
A to H. For the implementation of the method, Matlab 2019
and its “dicomread” function were used to manipulate the
RMI files while the implementation of the Artificial Neural
Network (ANN) was carried out with Matlab’s “nprtool” tool.

2.2. Data Variance. The cross-section variance for each
voxel was performed to locate the areas where major changes
exist in the same participant on different tomography. As an
example, in Figure 2, it has the level variance of 62
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FIGURE 1: Set of 60 images of cross sections of the brain of the volunteer 101.
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FIGURE 2: Set of 62 cross-section variance of brain images for the volunteer type L2.

tomography of the same brain slice, in order to observe what
are the interest areas regardless of whether they speak one or
two languages. It can see more changes in the frontal and
occipital lobes. And the same happens with the variances
presented in Figure 3.

The same procedure was performed for a Native Speaker
(NS) participant. The result is shown in Figure 3, where it
can be seen that the corpus callosum has higher variance
levels in NS participant than L2 participant. Both NS and L2
participants are male with PhD studies.

The literature indicates that the differences between
bilingual and monolingual are reflected in the corpus cal-
losum bilaterally, this is why that brain zone was selected to
classify between volunteers L2 and NS. Also, the 30 by 30
matrix form is to facilitate data acquisition, which could be
further optimized. Figure 4 shows the analysis slice (D4
respect to Figure 1) among the 60, existing for each to-
mography, of the 62 performed for each volunteer,
according to Figures 2 and 3, together with the analysis
performed in [17].

The 75% of the data were taken for training, 10% for
validation, and 15% for testing. Due to size defects in the
image of participant 105, it was removed from the experi-
ment. Therefore, the tomography of nineteen L2-type par-
ticipants and twenty-five NS-type participants was used. To
reinforce the training, the training dataset was repeated three
times and this significantly reduced the error. The 30 by 30
matrix was reshaped in an input vector of 900 elements
where each element was the normalized mean of 62 voxels of
each participant. Normalization was carried out with respect
to the maximum of each participant:

¢
Y max(xfj)’ (D
where i and j are the row and column indices, respectively,
and ¢ is the tomography index.

2.3. Machine Learning. In order to measure the ease or
complexity with which a machine learning system can
classify between L2 and NS speakers MRIs, different neural
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FIGURE 3: Set of 62 cross-section variance of brain images for the volunteer type NS.
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FIGURE 4: Selected data for the classification of brain images of only English speakers (NS) or two languages (L2). (a) Analysis slice and (b)

slice zone.

network architectures were tested until it reached a simple
perceptron, and one of them is shown in Figure 5. The tests
were carried out using single hidden layer neural networks,
varying its number of neurons. The feedforward architecture
of the neural networks used is shown as follows:

Output = logsig (W, * tansig(I * W, +b;) +b,),  (2)

where I is the inputs vector, W, is the weights vector from
inputs to the hidden layer, b, the first layer bias vector, W, is
the weights vector from the hidden layer to the output, b, the
output layer bias vector, tansig is the hyperbolic tangent
sigmoid transfer function, and logsig is the log-sigmoid
transfer function.

The experiment used the nprtool, and this data classi-
fication library only needs the input data, the targets in the
output, and the number of neurons in the hidden layer to

train a neural network. The pattern recognition network in
MATLAB wuses the default Scaled Conjugate Gradient
Backpropagation algorithm for training. The data were
randomly divided into 92, 20, and 20 samples for training,
validation, and testing, respectively.

3. Results

In order to measure the efficiency in the L2 and NS par-
ticipant detection using different quantity of neurons in the
hidden layer, three representative tests were realized and
reported in this section. Therefore, the error vs. epochs used
for the training, validation, and test performances were
plotted. And also, their Receiver Operating Characteristic
(ROC) curves for training, validation, testing, and three
together were constructed, which serve to evaluate the
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FIGURE 5: Architecture of the initial artificial neural network used to classify RMIs of L2 and NS participants.

Best validation performance is 1.3534e — 07 at epoch 48
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FIGURE 6: (a) The error vs. epochs used for the training, validation, and test performances. (b) ROC (Receiver Operating Characteristic)
training, validation, and testing curves using one hundred hidden neurons.

classifiers performance. In the ROC curves, it is possible to
see which of the curves is nearby to the maximum value of
the vertical axis (True Positive Rate) and similarly for the
horizontal axis (False Positive Rate). Mathematically it can
be said that the classifier with more area under the ROC
curve has the best efficiency.

The first experiment used one hundred neurons, its error
for each epoch is shown in Figure 6(a), and its ROC curves in
Figure 6(b).

In the same way, the second experiment used one two
neurons, and its error for each epoch is shown in Figure 7(a),
and its ROC curves in Figure 7(b).

The last experiment used one neuron, and its error for
each epoch is shown in Figure 8(a), and its ROC curves in
Figure 8(b).

4. Discussion

According to the results, it can be confirmed from machine
learning what recent literature asserts regarding structural
changes in the brain was induced by speaking two languages.
In this work, it shows that also an ANN finds differences in
WM from bilingual people who learn their second language
(L2) and are active users of both languages. Lately, this RMI

analysis is carried out with Tract-Based Spatial Statistics,
which represents a dependence on the talent of the statistical
analyst. In contrast to artificial neural networks, the analysis
can be automated, which is demonstrated and contributed in
this work, and is relatively an easy task for a machine
learning system.

With only the central section of the brain, it was possible
to classify between L2 and NS participants with a high degree
of efficiency, as shown by the ROC curves of Figures 6 and 7.
This is very important to observe how machine learning
tools can help in the analysis of brain image, in this case of
the RMI type. And even more, it was observed that when
using the aforementioned RMI scanner, the analysis of
spatial statistics based on the tract and fractional anisotropy
requires 128 x128x 0 inputs, while the red neural uses
30x30x1 inputs to decide if a participant is of type L2 or
type NS, which represents a substantial reduction in in-
formation processing. Regarding the computational com-
plexity of the forward neural network, it is of type O (n),
where # is the number of inputs and the training method is
the classic backpropagation, and this is linear in the number
of training samples, that is, the operation to update the
weights for a single sample is constant.
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FIGURE 7: (a) The error vs. epochs used for the training, validation, and test performances. (b) ROC (Receiver Operating Characteristic)

training, validation, and testing curves using two hidden neurons.

Best validation performance is 0.29684 at epoch 19
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FIGURE 8: (a) The error vs. epochs used for the training, validation, and test performances. (b) ROC (Receiver Operating Characteristic)

training, validation, and testing curves using one hidden neuron.

5. Conclusions

The study of the brain continues to be very active due to its
complexity. Although there is a broad vision of its role
within the body, there are still many unknowns to solve. To
know more about it, this work developed a machine learning
system for brain image classification of two language
speakers. This is very relevant because it opens another
option to quantitatively know the brain from machine

learning, since the tool used par excellence for this type of
analysis is the Tract-Based Spatial Statistics.

The classification was applied to magnetic resonance
imaging of a group of 19 people who speak English as a
second language and who are 13 to 374 months using it, with
an average of 10.5 years of age in the English language
acquisition, and also, from a second group of 25 participants
who only speak one language and their native language is
English. For this task, different artificial neural networks of a
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hidden layer with 900 inputs were designed. It was
experimented with different amounts of hidden neurons
until reaching a neuron and obtaining good results, although
it was chosen to use two neurons to ensure 100% effec-
tiveness in the classification of images from the database
used.

The system can be extended with an investigation that
reduces the number of ANN entries by analysing the voxels
that provide more and better information for classification.
The way to describe language learning from the brain
structure in a gradual and quantitative manner could also be
sought.
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