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Abstract

on mapping coordinates can exhibit reduced sensitivity.

Background: Current popular variant calling pipelines rely on the mapping coordinates of each input read to a
reference genome in order to detect variants. Since reads deriving from variant loci that diverge in sequence
substantially from the reference are often assigned incorrect mapping coordinates, variant calling pipelines that rely

Results: In this work we present GeDj, a suffix array-based somatic single nucleotide variant (SNV) calling algorithm
that does not rely on read mapping coordinates to detect SNVs and is therefore capable of reference-free and
mapping-free SNV detection. GeDi executes with practical runtime and memory resource requirements, is capable of
SNV detection at very low allele frequency (<1%), and detects SNVs with high sensitivity at complex variant loci,
dramatically outperforming MuTect, a well-established pipeline.

Conclusion: By designing novel suffix-array based SNV calling methods, we have developed a practical SNV calling
software, GeDi, that can characterise SNVs at complex variant loci and at low allele frequency thus increasing the
repertoire of detectable SNVs in tumour genomes. We expect GeDi to find use cases in targeted-deep sequencing
analysis, and to serve as a replacement and improvement over previous suffix-array based SNV calling methods.

Keywords: Variant calling, SNV, Cancer, Genomics, Suffix array

Background

Raw NGS data consist of million of sequencing reads
derived from unknown genomic location. To detect SN'Vs
in paired tumour-control NGS datasets, SNV calling
pipelines must compare reads of the tumour dataset
against reads of the control dataset that derive from the
same genomic location. Accordingly, this requires organ-
ising the input data by genomic location. Current popular
somatic SNV calling pipelines organise the input data
by mapping tumour and control reads to a human ref-
erence genome prior to SNV detection. Once mapped,
a downstream somatic SNV caller utilises the mapping
coordinates to examine reads covering the same location
across the tumour and control datasets, and ultimately
detect SNVs. We categorise SNV callers that rely on
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mapping coordinates - and therefore a reference genome
- to detect SNVs as reference-based SNV callers. A con-
siderable drawback of reference-based SNV callers is the
reduced sensitivity they exhibit in the presence of incor-
rect mapping coordinates. This limits their ability to
characterise complex variant loci (variant loci other than
sparsely distributed SN'Vs) where incorrect mapping coor-
dinates arise frequently [1, 2].

The aforementioned drawback of reference-based SNV
callers motivated development of SMuFin [3], a somatic
SNV caller that utilises a generalised suffix array data-
structure (suffix array) to detect SNV both mapping-free
and reference-free; we call this approach suffix array-
based SNV detection, and we therefore classify SMuFin
as a suffix array-based SNV caller. Since suffix array-
based SNV detection is reference-free and mapping-free,
the approach is capable of detecting SNVs at complex
variant loci. Consequently, it has potential to increase
the repertoire of detectable SNVs in tumour genomes by
enabling characterisation of such loci.
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Although suffix array-based SNV detection has attrac-
tive features, its implementation in SMuFin suffers a num-
ber of shortcomings: Firstly, SMuFin’s available source
code is inoperative to any useful degree - despite con-
siderable effort from our group, SMuFin crashed with-
out output when analysing all but one dataset; a small-
scale simulated dataset available on SMuFin’s web-page.
Secondly, SMuFin shows poor runtime and memory
requirements, one group reporting a runtime of over
30 days to analyse a 30x whole genome dataset [4].
Finally, SMuFin’s recall for SNV detection is low, rank-
ing in 17th place among 18 popular SNV calling pipelines
when analysing a 30x Whole Genome Sequencing
dataset [5].

The work herein provides three major contributions:

e Firstly, we introduce Generalised Suffix Array-based
Direct SNV caller, or GeDi, pronounced ‘Jeh-dye’
(“Implementation” section): A C++ implementation
of a suffix array-based SNV caller. Like SMuFin, GeDi
does not rely on mapping coordinates to detect
SNVs, and can therefore detect SN'Vs both mapping-
and reference-free. Accordingly, our work
re-introduces an operative suffix-array based SNV
caller for use somatic variant calling pipelines.

® Secondly, we design a novel approach to suffix
array-based SNV detection and implement this in
GeDi. Our approach makes use of an optional
preprocessing filter to dramatically reduce GeDi’s
runtime and memory usage (“Preprocessing” section),
and a dual suffix array design that enables GeDi to
detect rare SNVs (SNVs occurring at an allele
frequency of < 5%) with high precision (“Suffix
array-based SNV detection” section).

e Finally, we extensively evaluate GeDi’s recall,
precision and resource requirements when analysing
real and simulated datasets (“Results” section). Our
findings show: GeDi’s runtime and memory resource
requirements are very practical, being lower than
those of SMuFin and MuTect - a popular
reference-based SNV caller [6] - in almost all test
cases; GeDi is capable of calling rare SNVs and SNVs
belonging to clustered hypermutations (loci with
densely packed SNVs) with high precision, in
contrast, MuTect grossly under-characterises these
events; when analysing a previously published WGS
dataset, GeDi detected a large number of previously
unpublished SNVs located in functional genomic
regions, many of which reveal putative sites of
clustered hypermutation.

The following sub-section describes suffix-array based
SNV detection as implemented in SMuFin, which forms
the basis of GeDi’s novel approach.
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Previous approach

We distinguish between SNV detection, where SNVs and
reads covering them are identified within tumour-control
NGS datasets, and SNV calling, where detected SNVs’
structure and reference genome coordinates are com-
puted and reported back to the user.

Unlike reference-based SNV callers that rely on map-
ping to organise input reads by genomic location, SMuFin
uses a (generalised) suffix array constructed from the
input reads [3]. This suffix array, being a lexicograph-
ically sorted array of the input read’s suffixes, imparts
the property that all suffixes sharing a common pre-
fix are contiguous within the array. Once constructed,
this property allows splitting of the suffix array into
sections: intervals containing suffixes with a common pre-
fix of length > 30. Suffixes within a section are con-
sidered to derive from the same genomic location due
to the presence of the common prefix [3]. Hence, con-
structing a suffix array and splitting it into sections
organises the information contained within the input
reads by genomic location without use of a reference
or mapping; the organisation is achieved during suffix
array construction where the data is compared directly
to itself.

Once the suffix array is split into sections, SN'Vs are
detected by inspecting each section. SMuFin keeps track
of each suffix’s derivation, either tumour- or control-
read-derived, within the array, enabling the two types
to be quantified within a section (Fig. 1). SNV detec-
tion is based on the inference that sections enriched for
tumour-read-derived suffixes are likely to cover SNVs
since, barring contamination, SNVs are exclusive to the
tumour-read-derived NGS dataset. SMuFin considers a
section enriched for tumour-read-derived suffixes if two
conditions are satisfied: First, within the section, the num-
ber of tumour-read-derived suffixes divided by the total
number of suffixes is greater than e_cont; a user-defined
parameter that allows for the presence of tumour-cell
contamination in control tissue. Second, the number of
tumour suffixes within the section is at least Minimum
Suffix Size (MSS = 4); a constraint imposed to avoid mis-
classification of sequencing errors (unique to the tumour-
tissue derived dataset) as SN'Vs. Once enriched sections
are identified (e.g middle section, Fig. 1), tumour reads
containing suffixes within enriched sections are extracted.
After this stage, SN'Vs and reads covering them have been
identified within the tumour-control NGS datasets, thus
completing SNV detection.

Implementation

In this section we introduce GeDi, describing its archi-
tecture as five stages of execution: Preprocessing, suffix
array-based SNV detection, consensus pair construc-
tion, consensus pair filtering, and SNV calling. Figure 2
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Fig. 1 Left column shows the unique read identifier from which each suffix within the shown interval derives. Red and blue suffixes derive from the
tumour and control datasets respectively. Three sections are shown, each bounded by a curly brace. Red and blue numbers next to each section
represent the quantity of tumour- and control-read-derived suffixes within it respectively. The middle section (red curly brace) is enriched for
tumour-read-derived suffixes and contains > MSS reads. Accordingly, tumour reads containing a suffix within this section are extracted for
downstream SNV calling

provides a simplified graphical overview of GeDi’s
architecture.

Preprocessing
In this stage, GeDi reduces the input data size and
removes ‘N’ characters (Fig. 2a).

Suffix array construction is the most resource inten-
sive computation of suffix array-based SNV detection. To
combat this, we developed a preprocessing filter, emfilter,
and apply emfilter immediately after GeDi begins execu-
tion. Emfilter maps input tumour reads to the reference
genome with bowtie2 [7] and outputs reads that fail to
align with an exact match, i.e reads with no mismatches
to the reference. Exact matching reads are discarded.
We found approximately 70% of tumour reads are exact
matches in our simulated datasets. Since this simulated
data is built with a tool that utilizes an emperical error
profile [8], we anticipate this percentage to be similar
in real data. Consequently, emfilter reduces the tumour
dataset to the set of tumour reads covering germline
variants, somatic variants, and sequencing errors. Once
emfilter has been applied, the control and filtered tumour
reads provide input for suffix array construction in the
following stage. Since the space and time complexity of
suffix array construction increases with input text size,
emfilter’s reduction of the input tumour reads reduces
the runtime- and memory-resource requirements of suffix

array constructing in GeDi, and ultimately, GeDi itself.
Although emfilter uses alignment, GeDi is a suffix array-
based SNV caller and therefore does not use the map-
ping coordinates produced by emfilter to detect SN'Vs.
Accordingly, emfilter does not induce the reduced sen-
sitivity for SNV detection at complex variant loci that
afflicts reference-based SNV callers (shown in Addi-
tional file 1: Figure S7). Consequently, GeDi can detect
SNVs reference-free and mapping-free (Additional file 1:
Figure S7). “Runtime and memory evaluation” section
shows the reduction in resource utilisation gained by
applying emfilter. We leave the application of emfilter
optional to the user at the cost of increase runtime and
memory usage.

After emfilter has been applied, the remaining reads are
split at ‘N* characters and all ‘N'-less strings of length > 30
are kept for downstream processing. This completes the
preprocessing stage of GeDi.

Suffix array-based SNV detection
Next, GeDi detects SN'Vs using a novel suffix array-based
approach that utilises two suffix arrays; in contrast to the
single-suffix-array-based approach developed in SMuFin
(Fig. 2b).

Suffix array-based SNV detection in GeDi proceeds
as follows: GeDi constructs a primary suffix array from
the preprocessed reads, and then searches for sections
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Fig. 2 Overview of GeDi algorithm. pGSA and aGSA denote GeDi's primary and auxiliary suffix arrays respectively. Data derived from tumour and
control NGS datasets are given red and blue colouration respectively. a First, preprocessing filters out tumour reads that exactly match the reference
and removes ‘N’ characters from the input tumour and control data (red T and blue C files respectively). b Second, suffix array-based SNV detection
uses a dual suffix array design to detect SNVs, including those at low allele frequency. Variant blocks are constructed. € Third, consensus pairs
(labelled T,C-pairs in diagram) are constructed from variant blocks and from control reads covering the same genomic location. False positives are
removed by consensus pair filtering. d Finally, SNVs are called using control consensus pairs as proxies to compute SNV genome coordinates

enriched for tumour-read-derived suffixes. Once found,
GeDi then extracts tumour reads that contain suffixes
within enriched sections. Like SMuFin a section is con-
sidered enriched for tumour-read-derived suffixes if two
conditions are satisfied:

Firstly, identically to SMuFin, a section is considered to
be enriched if the proportion of such suffixes within a
section is greater than e_cont; e_cont has a default value of
0 in GeDi. Secondly, unlike SMuFin and crucial to GeDi’s
sensitivity, the number of tumour-read-derived suffixes
within a section must be at least pMSS = 2; rather than
the value of MSS = 4 used in SMuFin. pMSS’s default
value is 2. This relaxation enables GeDi to detect rare
SNVs (< 5% allele frequency) with high sensitivity. Once
tumour reads are extracted, GeDi constructs a second,
auxiliary suffix array from the extracted tumour reads
and their reverse complements; hence, the auxiliary suf-
fix array consists entirely of tumour-read-derived suffixes.
This auxiliary suffix array is searched for sections with
size > aMSS = 4; aMSS’s default value is four. Once
these sections are identified, tumour reads containing suf-
fixes with these sections are extracted and organised into
variant blocks: a group of reads aligned to one another

that cover a genomic location containing one or more
SNVs (Additional file 1: Figure S1). Note that the local
alignment of reads in a variant block can be determined
directly from their suffix’s offsets in the auxiliary suf-
fix array. Construction of variant blocks completes suffix
array-based SNV detection in GeDi.

The motivation for GeDi’s dual suffix array design is the
overly-restrictive MSS = 4 constraint used by SMuFin
to avoid extraction of reads containing sequencing errors
when searching for tumour-suffix enriched sections. This
constraint can render SNVs undetectable despite suffi-
cient coverage: Namely, when the SNVs sum total cover-
age is > MSS for both DNA strands, but < MSS on each
strand. In GeDi, by relaxing this constraint to pMSS such
SNVs remain detectable: reads covering these SNVs in
both orientations will be extracted from the primary suf-
fix array, and grouped together into a single section in the
auxiliary suffix array due to the inclusion of reverse com-
plements (Additional file 1: Figure S1 provides a graphical
example). Since, GeDi reintroduces the same constraint as
SMuFin on its auxiliary suffix array (aMSS = MSS = 4),
extraction of reads harbouring sequencing errors are still
avoided. We note that, an alternative solution to a dual
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suffix array design is to construct a single suffix array from
each input read and its reverse complement. However,
due to the space complexity of suffix array construction
and size of tumour-normal paired NGS datasets, such an
approach would be very costly with respect to memory
resource usage; which is already at a problematic scale in
SMuFin. In contrast, the dual suffix array design imple-
mented in GeDi solves the problem of detecting SNVs
with a sum total coverage > MSS for both DNA strands
but < MSS on each strand whilst simultaneously reduc-
ing extraction of reads containing sequencing errors and
avoiding increasing the memory requirement of primary
suffix array construction. “GeDi can detect SN'Vs at allelic
frequencies of <1%” section provides evidence of GeDi’s
dual-suffix array design retaining high sensitivity and pre-
cision for rare SNV detection with respect to SMuFin’s
single-suffix array design; SN'Vs with a sum total coverage
> MSS for both DNA strands but < MSS on each strand
typically have low allele frequency.

Consensus sequence construction

After suffix array-based SNV detection, GeDi holds a set
of variant blocks. Since the auxiliary suffix array contains
the multiple suffixes of each input read, many extracted
variant blocks contain identical - and therefore redun-
dant - information. Accordingly, to remove unnecessary
downstream computation GeDi removes redundant vari-
ant blocks, keeping only one variant block from a set of
blocks that each contain the same reads.

Once redundant variant blocks are removed, for each
remaining variant block GeDi now constructs a (7T, C)-
pair Fig. (2c); a pair of consensus sequences, one derived
from tumour-derived reads, 7, the other from control-
derived reads, C. The following method is used to con-
struct a (7, C)-pair from a variant block: First we consider
each variant block as an alignment of reads, ¢; recall that
a variant block is group of locally-aligned tumour reads
covering the same genomic location. T is constructed
directly from the alignment ¢ as a phred-filtered con-
sensus string (the method to construct a phred-filtered
consensus string is described below). Once T is con-
structed, the primary suffix array is then searched to
identify control-read derived suffixes that cover the same
genomic location as T; all control-read derived suffixes
that share a 30-character exact match with T are con-
sidered to cover the same genomic location as 7. Once
such suffixes are identified, the control-tissue derived
reads they belong to are arranged into an alignment c.
Similar to the variant block alignment ¢, the local align-
ment of the control-tissue derived reads is computed from
their suffix’s offset in the primary suffix array. Align-
ment c is then used to construct C as a phred-filtered
consensus string. The construction of C completes the
(T, C)-pair.
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T and C are constructed from alignments ¢ and c respec-
tively as phred-filtered consensus strings. The method of
construction is now described for a general alignment of
reads a and phred-filtered consensus string S.

Let the number of columns in a4 from the start of left-
most read to the end of the right-most, i.e the length of
a, be |a|, where aj, 1 < j < |a, is the jth column of
a. Using a, we compute frequency matrix F* € Ngmxw’
where ¥ = {A,C,G, T}, |£| = 4. The jth column of F#
is F%; = (fA,j,fC,j,fG,j,fT,j)T, where each entry describes
the count of A, C, G, T characters in column a; with a
phred score > p respectively; p’s default value is 35. Using

F?, S is constructed as the string S; = consensus (F:i),

where S; € X is the jth symbol in S. consensus (F:j) iden-

tifies the numerically largest entry in F?,;, denoted f; j,
o € %, and returns symbol o. Counting in F# only the
characters with phred score > p stops characters with
phred score < p from contributing towards the consensus
sequence, S. This mitigates the propagation of sequenc-
ing errors into S, and ultimately mitigates false positive
SNV calls. Note that, ties for the most frequent base at
some column j of F# are resolved by picking the most fre-
quent base (amongst the tied bases) with any phred score.
If a tie still remains, the lexicographically smallest base is
chosen for S;.

Consensus sequence construction ends when a (7, C)-
pair is computed for each variant block.

Consensus sequence filtering

In the following SNV calling stage, GeDi will examine
aligned T'-C pairs and call single character mismatches as
SNVs. Accordingly, removal of false positives from these
pairs is critical to increasing GeDi’s precision. Although
many potential sequencing error-based false positives will
have been removed during 7-C pair construction, we
found three genomic features were commonly associated
with false positive calls. We therefore developed three fil-
ters designed to remove false positives arising from each
of these features. Each filter is applied after T-C pair
construction (Fig. 2¢).

Our first filter, indel filter, removes false positive SNV
calls caused by somatic indels. A complete description
of this filter and its effect is given in Additional file 1:
Method 3.

Our second filter, masking filter, was designed to
reduce false positives caused by SNPs. Using the previ-
ous section’s notation, SNPs cause false positives when the
most frequent allele differs across ¢ and c alignments. This
difference causes a sequence mismatch at the SNP site
which GeDi then reports as a false positive (Additional
file 1: Figure S2). To tackle this issue, we leverage the prop-
erty that the column of ¢ containing the SNP, cgyp, is likely
to contain both SNP alleles. Accordingly, in ¢’s frequency
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matrix column F¢,,, will contain more than one non-
zero entry. Let indicator function 1(k) return 1ifk > ¢, 0
otherwise; e’s default value is 0.1. We define masking filter
as follows: For 1 < j < |£|, replace T; with C; if:

Zae{A,T,C,G}]l(VU’f) > b
where,

fd,/'

= sum (Fsj) ’

}’(7,1'

and sum(Fy ) is the sum of the entry in F,j. Accordingly
at sites likely to contain SNPs, T characters are replaced
(masked) with C characters (Additional file 1: Figure S2
provides a graphical explanation). Parameter e in 1(n)
reduces sensitivity loss that arises from masking consen-
sus sequence positions containing sequencing errors and
SNVs in the same alignment column.

Our third filter, multi-locus filter, was designed to
reduce false positives caused by exact repeat genome
sequences. T-C pairs covering such sequences are often
invalid, since the ¢ and c¢ alignments used to construct
them contain reads from multiple genome locations. To
tackle this issue, multi-locus filter identifies and discards
these invalid pairs by exploiting the property that their F¢
and F! matrices often contain multiple columns with > 1
non-zero entry: A consequence of the reads of alignment
¢ or t deriving from multiple locations is that, beyond the
exact matching repeat, their sequences diverge. Conse-
quently, a column j of F¢ or F! that represents a position
¢ or ¢t outside the exact matching repeat is likely to con-
tain more than one entry with a large quantity; due to the
presence of multiple different bases in the alignment col-
umn. Formally, an entry, f; , has a large quantity if it has
1(ry;) = 1 for its corresponding r, j, and thus induces
a masking event. Accordingly, if a T-C pair’s frequency
matrices induce > 5 masking events (we found five allows
for some SNPs and sequencing errors to be present with-
out discarding) multi-locus filter will discard the pair. By
doing so, invalid pairs containing information from mul-
tiple genomic locations are discarded. Additional file 1:
Table S2 shows the dramatic reduction in false positives
reported by GeDi when masking and multi-locus filter are
applied.

After application of all filters to each T-C pair, consen-
sus sequence filtering is complete.

SNV calling

After consensus sequence filtering, GeDi calls SNVs,
determining and reporting each detect SNV’s genome
coordinate and structure back to the user (Fig. 2d). To
achieve this for a given consensus pair, the control consen-
sus sequence is mapped to the human reference genome
using Bowtie2. The chromosome to which the control
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sequence aligns and mapping coordinate, m, is recorded.
The tumour and control consensus sequences are then
aligned to one another and examined. Any single charac-
ter mismatches - now assumed to be genuine SN'Vs - are
identified. Each SNV’s index within the tumour consensus
sequence, i, is recorded along with its control and tumour
variant bases. Each SNV’s chromosome coordinate, u,
is then calculated using formula @ = m + i. Finally,
GeDi calls each SNV, reporting the chromosome in which
the SNV is located, u, the control base, and the tumour
variant base to the user. GeDi performs this calling pro-
cess for each consensus sequence pair and subsequently
terminates.

Results

Additional file 2 (raw_data.zip) contains raw data for gen-
erating the figures and tables presented in this section and
presented in Additional file 1 (SupplementaryData.pdf).

GeDi can detect SNVs at allelic frequencies of <1%

SNVs present with allele frequency of < 5% (rare SN'Vs)
occur frequently in genes commonly mutated during can-
cer (for example, EGFR, KRAS, PIK3CA, and BRAF),
and can provide insight into the dynamics of subclonal
tumour populations. Hence, accurate detection of rare
SNVs has important applications both clinically and fun-
damentally [9]. GeDi’s dual suffix array design enables
reference-free detection of rare SNVs with high preci-
sion. To evaluate GeDi’s design for rare SNV detection, we
generated simulated targeted deep-sequencing datasets
and analysed these datasets with GeDi and MuTect. To
generate these datasets, we selected five random 1 Mbp
target sequences from hgl9 chromosomes 1, 8, 9, 15
and 22, and for each target sequence, used ART NGS
simulator [8] to generate seven tumour-control paired tar-
geted deep-sequencing datasets with 1000x coverage, 200
SNVs, and each with a different average allele frequency
of either 50%, 25%, 10%, 5%, 2%, 1% or <1% (Additional
file 1: Method 1 provides a detailed description of dataset
construction).

Figure 3 shows the average precision and recall attained
by GeDi and MuTect for these datasets in response to
average allele frequency. Note that, in order to determine
the effect of GeDi’s relaxed pMSS constraint in its dual
suffix array design, we ran GeDi three times, setting pMSS
to four, two and one for each run. For input into MuTect,
bowtie2 was used to generate SAM files (Additional file 1:
Command 5 shows an example command) and Picard
Tools (http://broadinstitute.github.io/picard/) was used to
convert SAM files to bam [7]. We ran mutect with default
parameters. When pMSS = 4, suffix array-based SNV
detection in GeDi emulates the restrictive MSS constraint
applied in SMuFin’s approach. As expected, GeDi displays
greater recall for SNV detection at very low allele frequen-
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Fig. 3 Precision and recall of GeDi and MuTect for SNV detection at decreasing allele frequencies. We analysed the 35 simulated tumour-control
paired targeted deep-sequencing datasets with MuTect, once using default settings, and GeDi, three times each time setting pMSSto 1,2 and 4;in
the legend, GeDi_mss1, GeDi_mss2, GeDi_mss4 refer respectively to the three GeDi analyses. For each analysis we then calculated the precision and
recall attained by MuTect and GeDi. For each of the seven average allele frequencies, the arithmetic mean of the precision and recall attained by
MuTect and GeDi (in each mode) across the five datasets (generated from the target sequences of hg19 chromosomes 1, 8,9, 15, 22) are shown

cies (< 1%) when pMSS is relaxed to one or two rather
than four (Fig. 3), highlighting the superiority of GeDi’s
dual suffix array design for low frequency SNV detection
compared to SMuFin’s single suffix array approach. Fur-
thermore, as aMSS = 4 in all runs, despite recall increas-
ing when pMSS is relaxed, GeDi’s precision remains high
(~95%). Interestingly, we found that GeDi has higher recall
when detecting SNVs at > 2% when pMSS = 4 or 2 rather
than 1. We anticipate this is due to multi-locus filter dis-
carding additional variant blocks under the pMSS = 1
or 2 regime: Variant blocks containing reads derived from
one DNA strand only under a pMSS = 4 regime can con-
tain reads derived from the opposite DNA strand in the
pMSS = 1 or 2 regime. When applying the masking filter
to such blocks, the additional reads can increase the num-
ber of masking events if they contain sequencing errors.
This can trigger the multi-locus filter (applied when the
number of masking events increases above a threshold;
see Implementation).

In stark contrast to GeDi, MuTect is incapable of SNV
detection at allele frequencies < 1% and exhibits a large
drop in recall at 2% (Fig. 3), suggesting GeDi will outper-
form MuTect for SNV detection at very low allele frequen-
cies (~2%) on real datasets. GeDi’s ability to detect SN'Vs at
lower allele frequencies than MuTect is a consequence of

the different minimum number of tumour-derived reads
required to call SNVs between the two algorithms: GeDi
requires at least aMSS = 4 tumour-derived reads that
support the non-reference allele (with a phred score of
> p = 35), whilst MuTect requires 14 non-reference-
allele supporting tumour-derived reads (https://software.
broadinstitute.org/cancer/cga/mutect).

Given GeDi’s potential to detect SNVs at allele fre-
quencies far below MuTect, we analysed two real paired
tumour-blood targeted deep sequencing datasets target-
ing loci on chromosome 17 and chromosome 22 with
GeDi; datasets TSD:chr22 and TSD:chrl7 respectively
(data currently unpublished). These datasets were derived
from a fresh-frozen specimen appertaining to a female
ERa+ breast cancer patient treated 2 years with Aromatase
Inhibitors. We compared GeDi’s output to MuTect’s;
methods describing the preprocessing of this data and
MuTect analysis are given in Additional file 1: Method 5.

We ran GeDi in its default mode (pMSS = 2).
For TSD:chr22, MuTect made a total of nine SNV
calls. GeDi made all nine of the SNV calls made by
MuTect, plus four additional calls not made by MuTect
(Table 1). We inspected these four additional calls made
by GeDi in IGV (http://www.broadinstitute.org/igv). All
four occurred with a low allele frequency (range of 3.9%


https://software.broadinstitute.org/cancer/cga/mutect
https://software.broadinstitute.org/cancer/cga/mutect
http://www.broadinstitute.org/igv

Coleman et al. BMC Bioinformatics (2020) 21:45

Table 1 Number of GeDi and Mutect SNV calls for datasets
TSD:chr22, TSD:chr17

Dataset Mutect calls GeDi calls Intersection
TSD:chr22 9 13 9
TSD:chr17 40 73 36

Intersection describes the number of SNV calls MuTect and GeDi made in common

to 0.9%); for the four calls, Additional file 1: Figures S3—
6 shows IGV snapshots, whilst Additional file 1: Table
S3 provides allele frequencies and coverage counts. The
above results, the low allele frequency of the four calls,
and GeDi’s stringent criteria for SNV calling (at least
aMSS reads with a phred score > 35 must contain the
variant allele) suggest these additional calls are genuine
SNVs undetected by MuTect. Analogous results were
found when analysing TSD:chr17: MuTect made a total
of 40 SNV calls. GeDi called 36 of these, plus an addi-
tional 37 (Table 1). Since Fig. 3 suggested GeDi’s recall for
SNVs with allele frequency closer to 50% is greater when
pPMSS = 4, we took the union of GeDi’s output when
run with pMSS = 1 and 4 to determine if the intersec-
tion between the calls made by GeDi and MuTect could be
increased. Additional file 1: Table S4 provides the output
from this analysis, and shows the results are very similar to
those given in Table 1, where pMSS = 2; the intersection
increased by a single SN'V.

Somatic short range SNV cluster (sSRSC) detection

A major issue with reference-based SNV callers is the
reduced sensitivity they exhibit at complex variant loci
due to incorrect mapping coordinates [2]. Since GeDi is a
suffix array-based SNV caller, it does not rely on mapping
coordinates to detect SN'Vs, and therefore, should retain
sensitivity for SNV detection at complex variant loci.

Short Range SNP clusters (SRSC) are variant genomic
features formally defined as a genomic loci containing k
SNPs within window length W = 100 [1]. SRSC have been
shown to induce incorrect mapping coordinates for reads
covering them. Hence, reference-based variant callers are
likely to show insensitivity for SRSC detection [1]. We
define a somatic version of SRSC, the somatic Short Range
SNV Cluster (sSRSC), as genomic loci containing k >
2 SNVs within window length W = 100 occurring in
tumour genomes; we define, k-sSRSC as a sSSRSC contain-
ing k SNVs. Accordingly, sSRSC are a formalised subset
somatic clustered hypermutation.

As sSRSC are identical to SRSC apart from their occur-
rence in tumour genomes, they too will induce incorrect
mapping coordinates, and are therefore ideal features to
evaluate GeDi’s sensitivity for SNV detection at complex
variant loci. We generated five 30x simulated datasets
containing 500 sSRSC of size 2 < k < 20 of hgl9
chromosomes 1, 8, 15, 17 and 22 (randomly chosen) and
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calculated GeDi’s and MuTect’s precision and recall when
analysing these datasets. Our chosen size distribution 2 <
k < 20 reflects the known size distribution of SRSC within
the human genome [1]. As were not testing the effect of
allele frequency, average allele frequency kept at 50% for
all datasets. A full explanation of how these datasets were
generated is given in Additional file 1: Method 2.

Figure 4 shows the k-precision and k-recall attained by
GeDi and MuTect for sSSRSC as k increases. We define k —
recall = ,Z:’;L;Sl, where k — hits is the number of detected
SNVs residing in all k-sSRSC across all five datasets, and
k — total is the total number of SNVs residing in all k-
sSRSC across all five datasets. We define k — precision =
%, where k — fp is the total number of false pos-
itive calls made within all genuine k-sSRSC added to the
number of SNVs within reported k-sSRSCs that contain
entirely false positives.

As expected, GeDi shows superior recall for SNV
detection at sSSRSC than the reference-based SNV caller
MuTect. For sSRSC of size k > 3, GeDi’s k-recall
outperforms MuTect’s for sSSRSC detection; indeed, for
sizes k > 9, MuTect’s k-recall drops below 10%, whilst
GeDi’s remains above 60%. Furthermore, we find that as k
increases, GeDi’s k-precision increases, making GeDi very
precise at detecting large sSRSC (Fig. 4).

Whole genome sequencing evaluation

Dataset EGAD00001001859 is a high average coverage
(272x control, 314x tumour) medulloblastoma tumour-
control paired WGS dataset. It has an associated set of
1255 curated SNV calls (Gold Set), generated by analysing
all sequence data from EGAD00001001859 (which we
hereafter call MB) with six different popular SNV calling
pipelines and accepting calls made by at least three [5].
Accordingly, Golden Set’s SN'Vs are stereotypical what can
be identified by current SNV calling pipelines at high cov-
erage. MB contains a data subset, MB:L.A, with average
coverage more typical of standard WGS datasets (29.6x
control, 40.5x tumour). Combined with Gold Set, MB:L.A
can be used to benchmark SNV callers [5].

To evaluate GeDi’s performance on WGS datasets, we
analysed MB:L.A with GeDi when running in default
mode (pMSS = 2) and with pMSS = 4. To ensure fair
comparison with the SNV callers evaluated in [5], prior
to analysis of MB:L.A with GeDi we preprocessed the raw
sequencing reads of MB:L.A exactly following practices
given in [5]; practices, such as filtering and quality control,
are described in Additional file 1: Method 6. We calcu-
lated the precision and recall attained by GeDi against
Gold Set when analysing MB:L.A in the two aforemen-
tioned modes (Table 2, row one and two respectively). In
default mode, at 66%, GeDi’s recall against Gold Set ranks
above six of the 18 SNV calling pipelines benchmarked
in [5] including SMuFin. Although the recall achieved by
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Fig. 4 Precision and recall of GeDi and MuTect for sSSRSC detection
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GeDi is lower than we anticipated, it is only ~10% below
the most sensitive pipeline benchmarked in [5]. Further-
more, we find when run GeDi with pMSS = 4, GeDi’s
recall decreased significantly, and is almost identical to
that achieved by SMuFin [5]. This further highlights the
increased sensitivity afforded by GeDi’s dual suffix array
design relative to SMuFin’s design.

When analysing MB:L.A in default mode, 7289 of the
8118 SNV calls made by GeDi were not present within
Gold Set; we refer to these SNV calls as (non-Gold Set
SNV calls). Because of these calls, GeDi’s precision against
Gold Set ranks lowest out of the 18 tested pipelines
[5]. To determine whether non-Gold Set SNV calls con-
tain biological signal, we calculated the percentage of
these calls occurring within known cis-regulatory or tran-
scribed regions (See Additional file 1: Method 7 for details
on how these percentages were computed). Since these
regions are functional genomic regions, if non-Gold Set
calls contain biological signal, we expect the percentage of
non-Gold Set calls and Gold Set calls occurring in these
regions to be similar; as Gold Set calls are high-quality
curated calls and should therefore exhibit genuine biolog-
ical signal. We found 55% of non-Gold Set SNVs occur
in such regions. In contrast, only 51% of the 1255 SNV
calls comprising Gold Set occur in such regions (Table 3).
Hence, our result demonstrates that non-Gold Set SNV

Table 2 Precision, Recall and F-Score attained by GeDi when
analysing dataset MB:L.A

pMSS Total calls Precision Recall F-Score
2 8118 0.10 0.66 0.18
4 6519 0.11 0.58 0.19

calls show a bias towards cis-regulatory or transcribed
regions even stronger than the bias in Gold Set. Therefore,
given the acceptance of Gold Set as high quality, although
non-Gold Set SNV calls remain putative, this result sug-
gests non-Gold Set SNV calls are enriched for genuine
biological signals (i.e real SN'Vs).

Given GeDi’s high sensitivity for sSSRSC detection, we
used GeDi to characterise sSSRSC within MB:L.A. 3331 of
8118 SNV calls made by GeDi when analysing MB:L.A
in default mode occurred in sSRSCs (sSRSC-residing SNV
calls). The overwhelming majority of these were non-Gold
Set SN'Vs (only 16 out of 3331 were present in Gold Set)
and are therefore almost entirely absent from Gold Set.
Figure 5 shows the absolute frequency of sSSRSC-residing
SNV calls binned by their occurrence in sSRSC of size
k (red bars), and with SNPs filtered out (blue bars). We
found no sSRSC of size k > 25. Furthermore, compari-
son of blue and red bars show that some sSRSCs identified
by GeDi contain known SNPs amongst the SNV calls.
54% percent of the sSSRSC-residing SNV calls occur within

Table 3 Percentage of SNVs located in transcribed or functional
regions for Gold Set, all 8118 SNV calls output by GeDi in default
mode (All GeDi), 7289 non-Gold Set SNV calls, and 3331
sSRSC-residing SNV calls (sSRSC-residing)

Set Percent
Gold set 51
All GeDi 54
Non-Gold set 55
sSRSC-residing 54

Percents rounded to nearest whole percent
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Fig. 5 Frequency distribution of sSRSC identified by GeDi when analysing dataset MB:L.A in default mode. Once binned, we removed SNP calls by
filtering against http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/snp150.txt.gz. The y-axis is presented in log-scale. Accordingly, 1 has
been added to each sSRSC bin to avoid log(0), i.e undefined values, for bins which no sSRSC of that size were detected. Hence "Number of SNV calls
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known cis-regulatory or transcribed regions, which like
the total non-Gold Set SN'Vs, is above the percent attained
by Gold Set and is suggestive that these putative calls are
genuine SN'Vs (Table 3).

Runtime and memory evaluation.

SMukFin suffers from large runtime and memory resource
requirements. In GeDi, emfilter was designed to com-
bat these issues, reducing both runtime and memory
requirements for suffix array construction. Beyond emfil-
ter, we made extensive use of OpenMP [10] to further
reduce GeDi’s runtime, parallelising GeDi’s suffix array-
based SNV detection, consensus sequence construction
and filtering stages. Table 4 row one shows the runtime

and memory requirements of GeDi, MuTect and SMuFin
when analysing a simulated 30x dataset of hgl9 chromo-
some 22 (dataset SMuFin:chr22) downloaded from the
SMuFin website (http://cg.bsc.es/smufin/); despite signif-
icant effort we were unable to get SMuFin to execute suc-
cessfully on any other datasets. Results show that GeDi’s
runtime and memory resource requirements are signifi-
cantly reduced by emfilter, and both memory and runtime
resource requirements of GeDi are well below those of
MuTect and SMuFin.

Table 4 rows 2—4 show that GeDi’s runtime and mem-
ory requirements are well below those of MuTect when
analysing targeted deep-sequencing datasets making
GeDi a very practical algorithm for such analyses. For

Table 4 Runtime and memory (rss) evaluation of gedi, smufin and mutect

Dataset Size (Million reads / GB) ~ RSS (GB) Runtime (hours:minutes)

GeDi (no emfilter)  MuTect  SMuFin (256 thread)  GeDi (no emfilter)  MuTect  SMuFin (256 thread)
SMuFin:chr22 26 /4.40 16 (19) 67 22(107) 0:20 (0:30) 1:33 17:48 (3:47)
TSD:chr17 11/243 7 67 - 0:06 0:50 -
TSD:chr22 4/087 3 108 - 0:02 0:38 -
MB:L.A 2052/ 69.21 1017 97* - 71:39 1800% -

no emfilter (bracketed values for gedi) shows gedi's resource requirements when emfilter is off, for all other gedi runs, emfilter is on. 256 thread (bracketed values for smufin)
shows smufin’s resource requirements when run with suggested command at http://cg.bsc.es/smufin/, whilst values without brackets show SMuFin’s requirements when
run with 32 logical threads. GeDi and MuTect were always run with 32 logical threads, apart from analysis of MB:L.A where 64 logical threads were used for both callers. A full
description of the methods used to perform this benchmark are provided in Additional file 1: Method 4. All analyses were performed on the same computing system with
Xeon: E5-4650v2 CPUs. Runtime and RSS was recorded using GNU Time 1.7 (https://www.gnu.org/), where runtime is the elapsed wall clock time and RSS is the maximum
residency set size. Asterisk values: MuTect took 72 hours (maximum user runtime) on our system to analyse 4% of the human genome (percentage along genome is given in
MuTect output). Accordingly, assuming uniform coverage of MB:L.A data across the genome, we estimated MuTect's runtime in hours for analysis of the complete MB:L.A
dataset by multiplying 72 by 25
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~30x WGS datasets however, GeDi’s memory resource
requirements are large (Table 4 row 5), well above
MuTect’s. This is due to the large memory resources
required during GeDi’s primary suffix array construction.
Accordingly, GeDi requires a machine with large memory
resources when analysing WGS datasets.

Discussion

In this work we introduce GeDi, a suffix array-based
SNV caller capable of detecting SNVs reference-free and
mapping-free. GeDi’s design enables high sensitivity SNV
detection at complex variant loci such as sSRSC, a sub-
set of somatic clustered hypermutation. We found this in
stark contrast to MuTect, a reference-based SNV caller,
which exhibits greatly reduced sensitivity at such loci.
Accordingly, GeDi shows great potential for character-
ising SN'Vs at complex variant loci in tumour genomes
and will likely outperform other reference-based SNV
callers. Indeed, GeDi detected a large number of putative
SNVs occurring within complex variant loci (sSRSC) of
dataset MB:L.A, providing previously unreported insight
into somatic clustered hypermutation within tumour
genomes.

Not only is GeDi capable of detecting SN'Vs at complex
variant loci, it is also capable of detecting rare SN'Vs whilst
maintaining high precision. This feature of GeDi is well-
suited towards targeted deep sequencing analyses, where
detection of rare SN'Vs is a primary goal. Indeed, when
analysing a targeted deep sequencing dataset (TSD:chr22)
GeDi found four previously undetected putative SN'Vs.
Each of these SNVs occurred at very low allele frequency
(<0.04), which likely rendered them undetectable by the
previously utilised SNV caller (MuTect). Given GeDi’s
potential for rare SNV detection and its very practical
resource requirements, we expect GeDi to find fruitful
application in targeted deep sequencing analyses.

GeDi advances the suffix array-based approach to SNV
calling beyond the original approach outlined in SMuFin
[3]: Its dual suffix array design resolves SMuFin’s insen-
sitivity at low allele frequencies; its use of a preprocess-
ing filter to reduce resource requirements during suffix
array construction and its highly parallelised architec-
ture resolve SMuFin’s large memory and runtime issues;
and it performs favourably on both WGS and targeted
deep sequencing datasets, outperforming SMuFin for sen-
sitivity. However, future work still remains. First, GeDi’s
significant memory resource requirement when analysing
large WGS datasets motivates further work into mem-
ory reduction. Second, since GeDi can detect SN'Vs out-
side the realm of reference-based SNV callers, work is
needed to accurately determine GeDi’s precision on real
datasets by validation with Sanger sequencing. Third, if
shown necessary through Sanger sequencing validation,
GeDi’s SNV classification method could be improved by
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integration of statistical or deep-learning methods [6, 11].
Fourth, GeDi can be readily extended to detect short (<
read length) indel variants as both short indels and SNVs
will induce sections enriched for tumour-read-derived
suffixes with the primary suffix array. Extending GeDi
to detect indels reference-free will provide a method for
sensitive indel calling in complex variant regions that
may outperform reference-based indel callers in these
regions. Finally, coloured De Bruijn graph-based variant
callers (bubble callers) also detect SN'Vs reference-free
and mapping-free [12]. However, bubble callers often rely
on simple graph structure (such as the 2k + 2 bubble)
to detect SNVs. As a result, bubble callers often fail to
detect SN'Vs that induce more complex graph structures
[13]. Since GeDi does not rely on graph topology to detect
SNVs, in addition to reference-based SNV callers, it may
outperform many bubble callers at complex variant loci.
Therefore, a comparison of GeDi’s performance against
relevant bubble callers will be of value.

Conclusions

Despite the advance of reference-based SNV callers, these
algorithms are prone to reduced sensitivity at complex
variant loci where incorrect read mapping is common. It
is therefore likely that many complex variant loci remain
vastly under-characterised within tumour genomes. Our
work here shows that GeDi’s detection of SNVs with-
out reliance on mapping coordinates has the capacity to
increase the repertoire of detectable SN'Vs within tumour
genomes by enabling characterisation of SNVs at com-
plex variant loci with high sensitivity. Accordingly, we
expect GeDi to uncover novel biological insights previ-
ously undetected by the cancer genomics research com-
munity.

Availability and requirements

® Project name: GeDi

e DProject home page: https://github.com/izaak-
coleman/GeDi

e Operating system: Platform Independent.

e DProgramming language: C++

e Other requirements: g++ 4.8.1 or greater, cmake
(https://cmake.org/), and boost (https://www.boost.
org/) must be installed.

e License: MIT License

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/512859-020-3367-3.

Additional file 1: SupplementaryData.pdf is available online, and contains
all additional data referenced in the main text.

Additional file 2: raw_data.zip is available online and contains raw data
for generating the figures and tables presented in the main text and
SupplementaryData.pdf.
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