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Alzheimer’s disease (AD) is an intractable and progressive neurodegenerative

disorder that can lead to severe cognitive decline, impaired speech, short-

term memory loss, and finally an inability to function in daily life. For

patients, their families, and even all of society, AD can impart great emotional

pressure and economic costs. Therefore, this study aimed to investigate

potential diagnostic biomarkers of AD. Using the Gene Expression Omnibus

(GEO) database, the expression profiles of genes were extracted from the

GSE5281, GSE28146, and GSE48350 microarray datasets. Then, immune-

related genes were identified by the intersections of differentially expressed

genes (DEGs). Functional enrichment analyses, including Gene Ontology,

Kyoto Encyclopedia of Genes and Genomes, Disease Ontology (DO), and

Gene Set Enrichment Analysis (GSEA), were performed. Subsequently, random

forest models and least absolute shrinkage and selection operator regression

were used to further screen hub genes, which were then validated using

receiver operating characteristic (ROC) curve analysis. Finally, 153 total

immune-related DEGs were identified in relation to AD. DO analysis of

these immune-related DEGs showed that they were enriched in “lung

disease,” “reproductive system disease,” and “atherosclerosis.” Single GSEA

of hub genes showed that they were particularly enriched in “oxidative

phosphorylation.” ROC analysis of AGAP3 yielded an area under the ROC

curve of 0.878 for GSE5281, 0.727 for GSE28146, and 0.635 for GSE48350.

Moreover, immune infiltration analysis demonstrated that AGAP3 was related

to follicular helper T cells, naïve CD4 T cells, naïve B cells, memory B

cells, macrophages M0, macrophages M1, macrophages M2, resting natural

killer (NK) cells, activated NK cells, monocytes, neutrophils, eosinophils, and

activated mast cells. These results indicate that identifying immune-related
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DEGs might enhance the current understanding of the development and

prognosis of AD. Furthermore, AGAP3 not only plays a vital role in AD

progression and diagnosis but could also serve as a valuable target for further

research on AD.

KEYWORDS

Alzheimer’s disease (AD), novel biomarker, integrated analysis, immune, hub gene,
AGAP3

Introduction

Alzheimer’s disease (AD) is the leading cause of
neurodegeneration and dementia; clinically, it manifests as
behavioral dysfunction, memory loss, and cognitive impairment
(Joe and Ringman, 2019; Li et al., 2021). More than 47 million
people are estimated to have dementia, and among them, AD
cases account for 60–80% (Anand et al., 2017). The pathological
features of AD are synaptic dysfunction, tau-containing
neurofibrillary tangles, amyloid plaques [mainly amyloid-β
(Aβ)], and neuronal loss (Knopman et al., 2021). However,
to date no effective biomarkers or mechanisms have been
identified for the prediction, diagnosis, or treatment of AD.

Many strategies, such as stimulating cognition, exercise,
and lifestyle changes, can prevent AD and help improve or
maintain cognitive functions in elderly people, who are at a
high risk of AD (Ngandu et al., 2015). Unfortunately, to date,
no effective treatment for AD has been developed. Currently,
patients with AD are treated through pharmacotherapy,
such as N-methyl-D-aspartate (NMDA) receptor antagonists,
memantine, and cholinesterase inhibitors. Patients with AD
often suffer from comorbidities. (Patients with complications
can undergo pharmacological interventions, including lower
doses or more suitable instruments), but there is currently
no comprehensive therapeutic intervention for AD. Immune
cells at different stages of AD can lead to serious dynamic
damage and might have many heterogeneous functions (Jevtic
et al., 2017). Innate immune cells in peripheral blood, including
neutrophils, monocytes, or natural killer (NK) cells, can be
recruited into the central nervous system (CNS) to participate
in the development of AD (Prinz and Priller, 2017; Castellani
and Schwartz, 2020; Wu et al., 2021). Therefore, to improve
the diagnosis and treatment of AD while enhancing the
patients’ immune system, there is an urgent need to explore
and identify novel biomarkers and therapeutic targets related
to immune cells. This can be achieved by screening genes
and gene-networks for changes related to AD onset and
development.

The metabolism of immune cells also changes in
patients with AD; this change could be related to disease
pathology (Butterfield and Halliwell, 2019). Furthermore,
autoimmunity has been shown to have an effect on these

patients (Lim et al., 2021). In this study, therefore, AD datasets
collected from the Gene Expression Omnibus (GEO) database
were used to conduct systemic analyses (Barrett et al., 2013).
First, transcript-level differential analysis was conducted to
obtain differentially expressed genes (DEGs). Second, hub
genes were identified using the least absolute shrinkage and
selection operator (LASSO) and random forest analysis to
more rigorously screen biomarkers in a standardized manner.
Correlations between identified theoretical biomarker(s) and
immune infiltrating cells were then analyzed with CIBERSORT
to reveal their diagnostic value regarding AD.

Materials and methods

Datasets

The primary data of three gene expression profile datasets,
GSE5281 (Liang et al., 2008a,b; Readhead et al., 2018), GSE28146
(Blalock et al., 2011), and GSE48350 (Berchtold et al., 2008;
Blair et al., 2013), were downloaded from the National Center
for Biotechnology Information (NCBI) GEO database1 (Barrett
et al., 2013). GSE5281 contains data from 87 AD tissues and
74 normal tissues, GSE28146 contains data from 22 AD tissues
and eight normal tissues, and GSE48350 contains data from
80 AD tissues and 173 normal tissues. The clinical data and
the tissue collection methods of the three datasets are showed
in Supplementary Tables 1, 2. In addition, the tissues of two
datasets (GSE5281, GSE28146), used for sequencing, are all
in terms of laser capture microdissection from Frozen and
fixed samples; the tissues of GSE48350, used for sequencing,
are in terms of extracting RNA from Frozen unfixed samples.
All the gene expression profile datasets were derived from
the GPL570 platform (HG-U-133_Plus_2) Affymetrix Human
Genome U133 Plus 2.0 Array. Moreover, hallmark gene sets
were downloaded from the MsigDB database2 (Subramanian
et al., 2005; Liberzon et al., 2015), whereas the immune-related

1 https://www.ncbi.nlm.nih.gov/geo/

2 https://www.gsea-msigdb.org/gsea/index.jsp
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genes of humans were downloaded from the Immport database3

(Bhattacharya et al., 2018).

Differentially expressed genes

To analyze the DEGs between the AD and normal groups,
the DealGPL570 package was used to process the primary data
of the three datasets (GSE5281, GSE28146, and GSE48350).
DEGs were screened by setting the fold-change (FC) threshold
to | log FC| > 0.5 and adjusting the significance to P < 0.05
using the R package “limma” (Ritchie et al., 2015; Phipson
et al., 2016). Each gene (e.g., g) was assigned vector of gene
expression values (yg) and a design matrix X that related
these values to some coefficients of interest (βg). The limma
package includes statistical methods that facilitate information
borrowing using empirical Bayes methods to obtain posterior
variance estimators (sg2∗), incorporate observation weights
(wgj, where j refers to the sample) to allow for variations in
data quality, and facilitate variance modeling to accommodate
technical or biological heterogeneity that could be present, as
well as pre-processing methods such as variance stabilization
to reduce noise (Ritchie et al., 2015). We used Benjamin
and Hochberg’s method (BH) to control the false discovery
rate (Hochberg, 1995). The statistical methods we used were
moderate t-statistics, ordinary t-statistics, empirical Bayesian,
the BH method, and B- and F-statistics (Hochberg, 1995; Smyth,
2004; Phipson et al., 2016). The DEGs were then visualized
using a heatmap. Next, immune-related genes were intersected
with the DEGs of each of the three datasets separately,
thereby obtaining immune-related DEGs; these are shown using
a volcano plot.

Construction of protein–protein
interaction networks of immune
differentially expressed genes

The immune DEGs of each of the three datasets were utilized
to build three co-expression networks using the STRING
database4 (Szklarczyk et al., 2019). Cytoscape v3.8.2 (Shannon
et al., 2003) was then used to construct all three protein–protein
interaction (PPI) networks, and the NetworkAnalyst plug-in
was used to calculate the node degrees and to demonstrate
the PPI networks. The immune DEGs of the three databases
were then intersected to identify the hub genes. Furthermore,
a competing endogenous ribonucleic acid (ceRNA) network
[messenger RNA (mRNA)–micro RNA (miRNA)–long non-
coding RNA (lncRNA)] was constructed for every hub gene

3 https://www.immport.org/shared/home

4 https://cn.string-db.org/

using starBase5 (Li et al., 2014), miRDB6 (Chen and Wang,
2020), and miRWalk7 (Sticht et al., 2018).

Enrichment analysis

As few hub genes were identified, all immune DEGs of
the three datasets were combined to conduct Gene Ontology
[GO, including molecular function (MF), biological process
(BP), and cellular component (CC)], Kyoto Encyclopedia
of Genes and Genomes (KEGG) and Disease Ontology
(DO) enrichment analyses. Furthermore, single-gene Gene set
enrichment analysis (GSEA) was conducted for each hub
gene. The normalized enrichment score and the nominal
P-value were used to calculate and sort the enriched pathways
for each hub gene. C2.all.v6.2.symbols.gmt was used as the
reference gene set, and 1,000 permutations of the gene set were
created. The clusterProfilter package was used to perform all
enrichment analyses.

Immune infiltration

CIBERSORT, which quantifies cell fractions based on tissue
gene expression profiles, is a universal computational method.
CIBERSORT is an analytical tool from the Alizadeh Lab
developed by Newman et al. (2015, 2019) to provide an
estimation of the abundances of member cell types in a mixed
cell population, using gene expression data. Through the use
of the linear support vector regression, CIBERSORT could
estimate the abundance of immune cells through deconvolution
of the expression matrix of immune cell sub types. In addition,
CIBERSORT provides 22 frequent immune infiltrating cells,
including immune cells of different cell types and cell functions
(Chen et al., 2018). Immune infiltration was assessed based on
the three datasets using the CIBERSORT algorithm to identify
differences in immune cell infiltration between the AD and
normal groups. The R package “ggplot2” was used to visualize
the data through bar charts, correlation heat maps, heat maps,
and violin plots.

Identification and validation of
diagnostic biomarkers

To identify diagnostic biomarkers related to AD, random
forest models and LASSO regression analysis were used to filter
the GSE5281 dataset. The R package “glmnet” (Friedman et al.,
2010) was used to implement the LASSO regression analysis,

5 http://starbase.sysu.edu.cn/

6 http://mirdb.org/

7 http://mirwalk.umm.uni-heidelberg.de/
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and the R package “Random Forest” (Wiener, 2002) was used
to implement the random forest models. Glmnet is a package
that fits generalized linear and similar models via penalized
maximum likelihood. The stability of the LASSO models was
assessed by creating 1,000 models using the same training set
but different seeds during the 10-fold cross-validation for the
optimum lambda. In addition, random forest models were
constructed based on the full data set. The number of trees
was selected to minimize the out-of-bag error rate, and the
number of random variables used in each tree was optimized
using the tuning function (tuneRF, randomForest; Liaw and
Wiener, 2001). Then, the intersections of the two algorithms
were taken as the final result. Receiver operating characteristic
(ROC) curve analysis of the GSE5281 dataset was conducted to
verify the result of the LASSO and random forest models. Then,
ROC curve analysis was conducted to verify their accuracy
in the GSE28146 and GSE48350 datasets. Finally, those genes
for which the area under the curve (AUC) was > 0.6 were
selected to analyze their correlations with immune infiltrating
cells. The expression of diagnostic biomarkers was divided

into two groups (high and low) according to median values.
Finally, the differences in immune infiltrating cells between high
expressed and low expressed diagnostic biomarkers were plotted
as boxplots to allow for comparisons.

Statistical analysis

All experiments were conducted using the R software
(version: 4.1.1).8 We used the BH method to perform multiple
test correction, which was performed to reduce false positive
rates in multiple tests. The Student’s t-test was applied to assess
the statistical significance of normally distributed variables, and
the Mann-Whitney U-test (i.e., Wilcoxon rank-sum test) was
applied to estimate the independence of and differences among
non-normally distributed variables. Spearman coefficients were
used for the correlation between genes and immune cells. All

8 https://www.r-project.org/

FIGURE 1

Identification of differentially expressed genes (DEGs) in Alzheimer’s disease tissues and normal tissues. (A) Heat map demonstrates the DEGs in
GSE5281. (B) Volcano plot demonstrates the immune DEGs in GSE5281. (C) Heat map demonstrates the DEGs in GSE28146. (D) Volcano plot
demonstrates the immune DEGs in GSE28146. (E) Heat map demonstrates the DEGs in GSE48350. (F) Volcano plot demonstrates the immune
DEGs in GSE48350. *P < 0.05. * The difference is significant.
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FIGURE 2

Construction of PPI (protein-protein interaction) and ceRNA (mRNA-miRNA-lncRNA) networks of the immune DEGs. (A–C) PPI network.
(A) GSE5281. (B) GSE28146. (C) GSE48350. (D–H) ceRNA network. (D) APLNR. (E) CHGB. (F) FGF13. (G) PAK1. (H) SERPINA3.

statistical tests were two-tailed, and a P-value < 0.05 was
considered statistically significant.

Results

Immune-related differentially
expressed genes

The number of DEGs identified in GSE5281 was 800
(Figure 1A), of which 80 were immune-related DEGs
(Figure 1B). The number of DEGs identified in GSE28146
was 200 (Figure 1C), of which nine were immune-related

DEGs (Figure 1D). The number of DEGs identified in
GSE48350 was 640 (Figure 1E), including 64 immune-related
DEGs (Figure 1F).

Construction of protein-protein
interaction and competing
endogenous ribonucleic acid networks

The PPI networks for the three datasets are shown in
Figures 2A–C; the darker the color of the nodes, the higher the
confidence and the stronger the co-expression. The intersections
of the immune-related DEGs of the three databases resulted in
the identification of the following hub genes: APLNR, CHGB,
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FIGURE 3

Enrichment analyses (GO, KEGG, DO, GSEA) of immune DEGs. (A) Circos diagram depicting GO-BP Enrichment analysis. (B) Circos diagram
depicting GO-CC Enrichment analysis. (C) Circos diagram depicting GO-MF Enrichment analysis. (D) Dot plot depicting KEGG Enrichment
analysis. (E) Dot plot depicting DO Enrichment analysis. (F–O) Signal-gene gene set enrichment analysis (GSEA) indicating statistically significant
enrichment from AD and normal tissues, and representative hallmarks. (F) APLNR in GSE5281. (G) CHGB in GSE5281. (H) FGF13 in GSE5281.
(I) PAK1 in GSE5281. (J) CHGB in GSE28146. (K) APLNR in GSE48350. (L) CHGB in GSE48350. (M) FGF13 in GSE48350. (N) PAK1 in GSE48350.
(O) SERPINA3 in GSE48350.

FGF13, PAK1, and SERPINA3. CeRNA networks for each hub
gene are shown in Figures 2D–H, in which yellow nodes are hub
genes, green nodes are miRNA, and red nodes are lncRNA.

Enrichment analysis

GO enrichment analysis of the immune DEGs of the three
datasets combined showed that they were significantly enriched
in “active regulation of response to external stimuli,” “regulation
of chemotaxis,” and “cell chemotaxis” (Figures 3A–C). KEGG
enrichment analysis, meanwhile, demonstrated that these genes
were significantly enriched in “tuberculosis,” “phagosome,” and
other pathways (Figure 3D). DO enrichment analysis indicated
that these genes were significantly enriched in “reproductive
system disease,” “pulmonary disease,” “arteriosclerosis,” and
other disease pathways (Figure 3E).

Meanwhile, for every immune-related DEG (n= 5), divided
into high or low groups based on expression, single-gene GSEA
was performed separately on each dataset. Single-gene GSEA
demonstrated that these genes were significantly enriched in the
“HALLMARK_OXIDATIVE_PHOSPHORYLATION,” “HALL-
MARK_OXIDATIVE_PHOSPHORYLATION,” “HALL-
MARK_OXIDATIVE_PHOSPHORYLATION,”
“HALLMARK_OXIDATIVE_PHOSPHORYLATION,”
“HALLMARK_EPITHELIAL_MESENCHYMAL_
TRANSITION,” “HALLMARK_INFLAMMATORY_

RESPONSE,” “HALLMARK_INTERFERON_ALPHA_
RESPONSE,” “HALLMARK_TGF_BETA_SIGNALING,”
“HALLMARK_ SPERMATOGENESI,” “HALLMARK_TNFA_
SIGNALING_VIA_NFKB,” and other pathways
(Figures 3F–O). Table 1 shows the detailed results.

Screening of diagnostic markers

During the screening of diagnostic markers, 63 were filtered
by LASSO regression analysis (Figures 4A,B), whereas 29
were filtered through random forest models (Figure 4C).
An intersection of the two methods identified 10 genes.
ROC analysis of these genes were showed in Table 2 and
Supplementary Figure 1, and revealed that only the AUC of
AGAP3 > 0.6. Respectively, AGAP3 exhibited an AUC of 0.878
in GSE5281 (Figure 4D), 0.727 in GSE28146 (Figure 4E), and
0.635 in GSE48350 (Figure 4F). Thus, AGAP3 was selected as
the final diagnostic marker.

Immune infiltration
Based on each dataset, the proportions of the 22 types

of immune infiltrating cells that were analyzed are shown in
bar plots (Figures 5A,E,I). The correlations between immune
infiltrating cells are visualized by a correlation heatmap
(Figures 5B,F,J). The differences in immune infiltrating cells
between AD and normal samples are shown as heat maps
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TABLE 1 GO, KEGG, DO, and GSEA enrichment analysis.

ID Description Count in gene set p.adjust

GO-BP

GO:0032103 Positive regulation of response to external stimulus 23 4.55E-14

GO:0050920 Regulation of chemotaxis 16 1.29E-09

GO:0060326 Cell chemotaxis 18 1.29E-09

GO:0030595 Leukocyte chemotaxis 16 1.29E-09

GO:0050900 Leukocyte migration 21 7.62E-09

GO:0051047 Positive regulation of secretion 19 2.69E-08

GO:1903532 Positive regulation of secretion by cell 18 6.01E-08

GO:0001667 Ameboidal-type cell migration 19 7.08E-08

GO:0001819 Positive regulation of cytokine production 19 7.08E-08

GO:0032103 Positive regulation of response to external stimulus 19 4.55E-14

GO-CC

GO:0042613 MHC class II protein complex 8 2.48E-12

GO:0071556 Integral component of lumenal side of endoplasmic reticulum membrane 7 2.38E-08

GO:0098553 Lumenal side of endoplasmic reticulum membrane 7 2.38E-08

GO:0005925 Focal adhesion 16 1.92E-07

GO:0005924 Cell-substrate adherens junction 16 1.92E-07

GO:0030055 Cell-substrate junction 16 1.92E-07

GO:0009897 External side of plasma membrane 15 6.54E-07

GO:0012507 ER to Golgi transport vesicle membrane 7 2.81E-06

GO:0101002 Ficolin-1-rich granule 10 5.50E-06

GO-MF

GO:0023023 MHC protein complex binding 7 4.30E-08

GO:0001664 G protein-coupled receptor binding 14 8.37E-07

GO:0042277 Peptide binding 14 9.94E-07

GO:0008083 Growth factor activity 11 9.94E-07

GO:0019955 Cytokine binding 10 9.94E-07

GO:0019838 Growth factor binding 10 1.64E-06

GO:0023026 MHC class II protein complex binding 5 2.39E-06

GO:0033218 Amide binding 14 5.22E-06

GO:0005179 Hormone activity 9 5.22E-06

KEGG

hsa04612 Antigen processing and presentation 14 4.42E-15

hsa05140 Leishmaniasis 18 2.63E-11

hsa05152 Tuberculosis 14 2.31E-10

hsa04659 Th17 cell differentiation 16 1.14E-09

hsa04145 Phagosome 14 1.14E-09

hsa05145 Toxoplasmosis 12 1.78E-09

hsa04658 Th1 and Th2 cell differentiation 12 2.41E-08

hsa05323 Rheumatoid arthritis 9 2.41E-08

hsa05332 Graft-versus-host disease 12 2.80E-08

hsa05150 Staphylococcus aureus infection 17 2.80E-08

DO

DOID:850 Lung disease 10 9.12E-08

DOID:6432 Pulmonary hypertension 18 3.07E-05

DOID:2320 Obstructive lung disease 19 3.07E-05

DOID:1936 Atherosclerosis 19 3.07E-05

DOID:2348 Arteriosclerotic cardiovascular disease 19 3.07E-05

DOID:3393 Coronary artery disease 20 3.07E-05

(Continued)
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TABLE 1 (Continued)

ID Description Count in gene set p.adjust

DOID:15 Reproductive system disease 19 3.07E-05

DOID:2349 Arteriosclerosis 14 3.49E-05

DOID:854 Collagen disease 12 5.18E-05

DOID:1398 Parasitic infectious disease 28 7.05E-05

MSigDB collection Gene set name NOM p-val FDR q-val
GSEA

h.all.v6.1.symbols.gmt HALLMARK_OXIDATIVE_PHOSPHORYLATION 0.001 0.023

HALLMARK_OXIDATIVE_PHOSPHORYLATION 0.001 0.019

HALLMARK_OXIDATIVE_PHOSPHORYLATION 0.001 0.019

HALLMARK_OXIDATIVE_PHOSPHORYLATION 0.001 0.028

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 0.016 0.213

HALLMARK_INFLAMMATORY_RESPONSE 0.002 0.010

HALLMARK_INTERFERON_ALPHA_RESPONSE 0.003 0.052

HALLMARK_TGF_BETA_SIGNALING 0.003 0.027

HALLMARK_SPERMATOGENESI 0.001 0.020

HALLMARK_TNFA_SIGNALING_VIA_NFKB 0.002 0.004

and violin plots for GSE5281 (Figures 5C,D), GSE28146
(Figures 5G,H), and GSE48350 (Figures 5K,L). Consistent
with the immune infiltration results of the three datasets,
resting CD4 memory T cells, CD4 naïve T cells, naïve
B cells, memory B cells, plasma cells, resting NK cells,
activated NK cells, monocytes, macrophages M0, macrophages
M1, macrophages M2, activated mast cells, eosinophils,
and neutrophils were significantly different between AD
and normal samples.

Correlations between diagnostic gene
expression and infiltrating levels of
immune cells in Alzheimer’s disease

AGAP3, exhibited correlations with immune infiltrating
cells in each dataset. Figure 6 demonstrates that differences in
22 types of immune cells were identified between the high and
low AGAP3 groups. Follicular helper T cells, macrophages M0,
naïve B cells, memory B cells, naïve CD4 T cells, resting NK cells,
activated NK cells, monocytes, macrophages M0, macrophages
M1, macrophages M2, activated mast cells, eosinophils, and
neutrophils all exhibited significant differences.

Discussion

AD and relevant dementias are challenging conditions
that seriously affect patients and their families (Ren et al.,
2022). Furthermore, there are currently no good methods
or drugs to help patients with AD to recover or gain
an improved quality of life, and the exact mechanism

of AD remains elusive. From a data perspective, recent
studies have focused on exploring effective targets for AD
(Chong et al., 2021); some genes, including oncogenes and
suppressor genes, have been found, such as β-secretase
1 (BACE1) (Dai et al., 2021) and receptor-interacting
protein kinase 1 (RIPK1) (Li et al., 2021). Nevertheless,
novel biomarkers with high sensitivity, specificity, and
efficiency are necessary to improve AD diagnosis, understand
immune infiltration, and treat this disease. Thus, it is
important to develop predictive models that can assess
prospective biomarkers. In the present study, based on
bioinformatics analysis, the development gene expression
in AD were investigated through the systematic analyses of
three expression profiles from the GEO database. Immune-
related DEGs and the prognostic values of hub genes were
then investigated.

In these three expression profiles, which included data
from a total of 189 AD tissues and 255 normal tissues, 153
immune-related DEGs were screened for further analyses.
A PPI network was constructed for these immune-related
DEGs, and five hub genes (CHGB, APLNR, FGF13, PAK1,
and SERPINA3) were identified as promising prognostic
and diagnostic targets for AD. CeRNA networks were
therefore built (mRNA-miRNA-lncRNA) for every hub
gene. Functional and pathway enrichment analyses revealed
that the immune-related DEGs were enriched in biological
processes including the positive regulation of responses to
external stimuli; regulation of chemotaxis; cell chemotaxis
cellular component major histocompatibility complex
(MHC) protein complex; MHC class II protein complex,
an integral component of the luminal side of endoplasmic
reticulum membrane molecular function receptor ligand
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FIGURE 4

AGAP3 is the diagnostic marker of AD patients. (A,B) LASSO regression analysis model. (C) Random Forest models; MeanDecreaseAccuracy and
MeanDecreaseGini. (D) The ROC curve of AGAP3 in GSE5281. (E) The ROC curve of AGAP3 in GSE28146. (F) The ROC curve of AGAP3 in
GSE48350.

TABLE 2 The results of ROC analysis.

Data set ACIN1 BC040734 HINT3 LINC00936 PTMA RAB30 LOC100996724 LOC102724884 LOC102724927 AGAP3
GSE5281 0.67 0.766 0.678 0.691 0.863 0.525 0.857 0.743 0.751 0.878

GSE28146 0.596 0.515 0.529 0.548 0.497 0.472 0.576 0.599 0.637 0.727

GSE48350 0.601 0.648 0.588 0.724 0.654 0.51 0.573 0.614 0.599 0.635
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FIGURE 5

Immune infiltration analysis in AD. (A) Bar plot showing the proportion of 22 types immune infiltrating cells in GSE5281. (B) Correlation heatmap
showing the correlation between immune infiltrating cells in GSE5281. (C,D) Heatmap (C) and violin plot (D) showing the expression difference
of immune infiltrating cells between AD and normal samples in GSE5281. (E) Bar plot showing the components of 22 types immune infiltrating
cells in GSE28146. (F) Correlation heatmap showing the correlation between immune infiltrating cells in GSE28146. (G,H) Heatmap (G) and
violin plot (H) showing the expression difference of immune infiltrating cells between AD and normal samples in GSE28146. (I) Bar plot showing
the components of 22 types immune infiltrating cells in GSE48350. (J) Correlation heatmap showing the correlation between immune
infiltrating cells in GSE48350. (K,L) Heatmap (K) and violin plot (L) showing the expression difference of immune infiltrating cells between AD
and normal samples in GSE48350.

activity; MHC protein complex binding; and G protein-
coupled receptor binding. Thus, immune cell infiltration
appears to be closely related to AD. Moreover, the identified
immune-related DEGs could be closely related to lung
disease, reproductive system disease, and atherosclerosis.
In addition, in accordance with the results of single-
gene GSEA, oxidative phosphorylation was found to
be enriched based on four hub genes (CHGB, APLNR,
FGF13, and PAK1). LASSO regression analysis and random
forest models were used to identify biomarkers related to
AD. ROC curve verification revealed that only AGAP3
demonstrated high predictive performance in terms of
specificity and sensitivity.

ArfGAP with a GTPase domain, ankyrin repeat, and PH
domain 3 (AGAP3), which encodes an essential component
of the NMDA receptor signaling complex, mediates long-
term potentiation in synapses by linking the activation
of NMDA receptors to alpha-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptor trafficking (Oku and
Huganir, 2013). AGAP3 is a guanosine triphosphate containing
a nuclear localization signal sequence, first identified in 2006
(Qin et al., 2006). Qin revealed that AGAP3 is closely related
to the generation of reactive oxygen species and to the
ubiquitin–proteasome pathway (Qin et al., 2006). AGAP3 can
protect cells and mediate the functions of the antioxidant
pathway by restraining the accumulation of unfolded proteins
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FIGURE 6

Correlation between diagnostic gene expression and infiltration levels of immune cells in AD. (A) The correlation of between AGAP3 and
immune infiltrating cells in GSE5281. (B) The correlation of between AGAP3 and immune infiltrating cells in GSE28146. (C) The correlation of
between AGAP3 and immune infiltrating cells in GSE48350. *P < 0.05, **P < 0.01, ***P < 0.001.
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(Nagashima et al., 2011). Furthermore, as it contains multiple
domains (a pleckstrin homology domain, GTPase-like domain,
and ArfGAP domain), AGAP3 could be a component of
the NMDA receptor complex, which links NMDA receptor
activation to the regulation of alpha-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) trafficking and the
plasticity of synapses (Oku and Huganir, 2013). In addition,
AGAP3 has been shown to be most highly expressed in the
brain in the Human Protein Atlas (HPA) database, through
analyses of human tissue-specific expression (Fagerberg et al.,
2014). Moreover, AGAP3 mainly participates in the endocytosis
pathway (Kanehisa and Goto, 2000). Given their importance
with respect to many receptors associated with human diseases
(such as AMPA and NMDA), ArfGAPs could represent a
novel therapeutic target, in addition to providing mechanistic
insights into receptor sorting (Shiba and Randazzo, 2014).
To date, however, there has been no related research on the
development or underlying mechanism of AD pathogenesis. In
this study, the potential prognostic and diagnostic involvement
of different markers in AD was comprehensively analyzed,
demonstrating that AGAP3 had AUCs of 0.727 and 0.635 in the
GSE28146 and GSE48350 datasets, respectively for AD. Thus,
AGAP3 is a good diagnostic and prognostic biomarker with
favorable sensitivity and specificity. It represents a promising
diagnostic target for AD development; this may aid in the
early detection of AD and improved treatment options for
patients with AD.

Owing to the blood brain barrier, the brain is traditionally
considered immune-privileged; peripheral immune cells are
rarely detected in the brain parenchyma (Jevtic et al., 2017).
However, in AD, clinical and experimental studies have
demonstrated that peripheral immune cells (macrophages,
monocytes, and neutrophils) participate in inflammatory
responses and Aβ metabolism (Ennerfelt and Lukens, 2020).
CD4+ cells, numbers of which are positively correlated with AD,
have been revealed to be a hub factor of cognitive dysfunction
in AD (Pérez-González et al., 2021), as have CD8+ cells (Unger
et al., 2020). Immunoglobulin accumulation around Aβ plaques,
caused by the infiltration of B cells into the brain parenchyma,
could be reduced by the therapeutic depletion of B cells; this
could retard disease progression in mice (Kim et al., 2021).
Macrophages (microglia), which are the resident innate immune
cells of the CNS, are pivotal in maintaining immune defense
and homeostasis (Madore et al., 2020). In AD, it is clued that
CD8 cells was the key immune cells (Li et al., 2022). Eosinophils,
M0 macrophages, M1 macrophages and CD8 cells were relevant
to AD, especially M1 macrophages (Liu et al., 2022). What’s
more, it was confirmed that CD8+ T-cells could infiltrate the
aged and AD brain, in order that brain CD8+ T-cells maybe
directly lead to neuronal dysfunction in modulating synaptic
plasticity (Unger et al., 2020). In addition, contributing to
neuroinflammation associated to AD, the infiltrated peripheral
Th1 immune cells are relevant to the M1 microglia activation

in brain (Wang et al., 2019). Overall, the immune infiltration
of AD was related to CD4 cells, CD8 cells, and macrophages.
Herein, the correlation betweenAGAP3 and immune infiltrating
cells was assessed, revealing significant changes in immune
infiltrating cells, such as follicular helper T cells, naïve CD4
T cells, naïve B cells, memory B cells, macrophages M0,
macrophages M1, macrophages M2, resting NK cells, activated
NK cells, monocytes, neutrophils, eosinophils, and activated
mast cells. The results indicated that AGAP3 may exert a
significant effect on AD by influencing immune infiltrating cells,
especially CD4 cells, CD8 cells, and macrophages.

The present study does have some limitations that need to
be considered. First, the GEO database lacks complete clinical
data, and has shortcomings in terms of the analysis of clinical
characteristics; thus, the data have low statistical power. Second,
the interactions between factors could not be identified. Hence,
further attempts should be made to identify these and verify
the relationships between AGAP3 and immune infiltrating cells.
More clinical evidence on AD patients must be obtained about
this study for further subgroup analysis. However, further
experimental techniques, such as real-time PCR and western
blot, need to be applied to elucidate the role of hub genes and the
underlying mechanisms of AD. Future studies should not only
focus on studying the molecular, organismal, and cellular levels
of AGAP3 and also explore the effects of AGAP3 on immune
infiltrating cells in relation to AD.

Conclusion

Overall, this study provides a better understanding of
immune-related genes related to AD through comprehensive
analyses of gene datasets from the GEO database. These
immune-related genes could provide new insights for the early
diagnosis of AD. This study also highlights the role of AGAP3
and offers directions for further biological studies on AD
development and immunity.

Data availability statement

The original contributions presented in this study are
included in the article/Supplementary material, further
inquiries can be directed to the corresponding author.

Ethics statement

Ethical review and approval was not required for the
study on human participants in accordance with the local
legislation and institutional requirements. Written informed
consent from the patients/participants or patients/participants’
legal guardian/next of kin was not required to participate in

Frontiers in Aging Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnagi.2022.901972
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-901972 August 24, 2022 Time: 15:53 # 13

Zhao et al. 10.3389/fnagi.2022.901972

this study in accordance with the national legislation and the
institutional requirements.

Author contributions

KZ and HZ: study design, data acquisition, analysis,
completed drawing, and writing and editing of the manuscript.
YYW, JZL, and XZL: data acquisition and analysis. JYL:
data acquisition, analysis, interpretation, and critical revision
of the manuscript. All authors have read and approved the
final manuscript.

Funding

This work was supported by the research foundation of
Affiliated People’s Hospital of Jiangsu University (Y2020003-S
and Y2019014) to KZ and JYL.

Acknowledgments

We are grateful to the reviewers for their input in
improving this manuscript. We would like to thank Editage
(www.editage.cn) for English language editing.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The reviewer XD-P declared a shared parent affiliation
with the author HZ to the handling editor at the time of
review.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fnagi.2022.901972/full#supplementary-material

References

Anand, A., Patience, A. A., Sharma, N., and Khurana, N. (2017). The present
and future of pharmacotherapy of Alzheimer’s disease: A comprehensive review.
Eur. J. Pharmacol. 815, 364–375. doi: 10.1016/j.ejphar.2017.09.043

Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky,
M., et al. (2013). NCBI GEO: Archive for functional genomics data sets–update.
Nucleic Acids Res. 41:D991–D995. doi: 10.1093/nar/gks1193

Berchtold, N. C., Cribbs, D. H., Coleman, P. D., Rogers, J., Head, E., Kim, R.,
et al. (2008). Gene expression changes in the course of normal brain aging are
sexually dimorphic. Proc. Natl. Acad. Sci. U.S.A. 105, 15605–15610. doi: 10.1073/
pnas.0806883105

Bhattacharya, S., Dunn, P., Thomas, C. G., Smith, B., Schaefer, H., Chen, J., et al.
(2018). ImmPort, toward repurposing of open access immunological assay data for
translational and clinical research. Sci. Data 5:180015. doi: 10.1038/sdata.2018.15

Blair, L. J., Nordhues, B. A., Hill, S. E., Scaglione, K. M., O’Leary, J. C. III,
Fontaine, S. N., et al. (2013). Accelerated neurodegeneration through chaperone-
mediated oligomerization of tau. J. Clin. Invest. 123, 4158–4169. doi: 10.1172/
jci69003

Blalock, E. M., Buechel, H. M., Popovic, J., Geddes, J. W., and Landfield, P. W.
(2011). Microarray analyses of laser-captured hippocampus reveal distinct gray
and white matter signatures associated with incipient Alzheimer’s disease. J. Chem.
Neuroanat. 42, 118–126. doi: 10.1016/j.jchemneu.2011.06.007

Butterfield, D. A., and Halliwell, B. (2019). Oxidative stress, dysfunctional
glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 20, 148–160. doi:
10.1038/s41583-019-0132-6

Castellani, G., and Schwartz, M. (2020). Immunological Features of Non-
neuronal Brain Cells: Implications for Alzheimer’s Disease Immunotherapy.
Trends Immunol. 41, 794–804. doi: 10.1016/j.it.2020.07.005

Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M., and
Alizadeh, A. A. (2018). Profiling Tumor Infiltrating Immune Cells with

CIBERSORT. Methods Mol. Biol. 1711, 243–259. doi: 10.1007/978-1-4939-74
93-1_12

Chen, Y., and Wang, X. (2020). miRDB: An online database for prediction of
functional microRNA targets. Nucleic Acids Res. 48:D127–D131. doi: 10.1093/nar/
gkz757

Chong, J. R., Ashton, N. J., Karikari, T. K., Tanaka, T., Schöll, M., Zetterberg,
H., et al. (2021). Blood-based high sensitivity measurements of beta-amyloid and
phosphorylated tau as biomarkers of Alzheimer’s disease: A focused review on
recent advances. J. Neurol. Neurosurg. Psychiatry 92, 1231–1241. doi: 10.1136/
jnnp-2021-327370

Dai, L., Wang, Q., Lv, X., Gao, F., Chen, Z., and Shen, Y. (2021). Elevated β-
secretase 1 expression mediates CD4(+) T cell dysfunction via PGE2 signalling
in Alzheimer’s disease. Brain Behav. Immun. 98, 337–348. doi: 10.1016/j.bbi.2021.
08.234

Ennerfelt, H. E., and Lukens, J. R. (2020). The role of innate immunity in
Alzheimer’s disease. Immunol. Rev. 297, 225–246. doi: 10.1111/imr.12896

Fagerberg, L., Hallström, B. M., Oksvold, P., Kampf, C., Djureinovic, D.,
Odeberg, J., et al. (2014). Analysis of the human tissue-specific expression by
genome-wide integration of transcriptomics and antibody-based proteomics. Mol.
Cell Proteomics 13, 397–406. doi: 10.1074/mcp.M113.035600

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization Paths
for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 33,
1–22.

Hochberg, Y. B. Y. (1995). Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing. J. R. Statist. Soc. Series B 57, 289–300.
doi: 10.1111/j.2517-6161.1995.tb02031.x

Jevtic, S., Sengar, A. S., Salter, M. W., and McLaurin, J. (2017). The role of the
immune system in Alzheimer disease: Etiology and treatment. Ageing Res. Rev. 40,
84–94. doi: 10.1016/j.arr.2017.08.005

Frontiers in Aging Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnagi.2022.901972
http://www.editage.cn
https://www.frontiersin.org/articles/10.3389/fnagi.2022.901972/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2022.901972/full#supplementary-material
https://doi.org/10.1016/j.ejphar.2017.09.043
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1073/pnas.0806883105
https://doi.org/10.1073/pnas.0806883105
https://doi.org/10.1038/sdata.2018.15
https://doi.org/10.1172/jci69003
https://doi.org/10.1172/jci69003
https://doi.org/10.1016/j.jchemneu.2011.06.007
https://doi.org/10.1038/s41583-019-0132-6
https://doi.org/10.1038/s41583-019-0132-6
https://doi.org/10.1016/j.it.2020.07.005
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1093/nar/gkz757
https://doi.org/10.1093/nar/gkz757
https://doi.org/10.1136/jnnp-2021-327370
https://doi.org/10.1136/jnnp-2021-327370
https://doi.org/10.1016/j.bbi.2021.08.234
https://doi.org/10.1016/j.bbi.2021.08.234
https://doi.org/10.1111/imr.12896
https://doi.org/10.1074/mcp.M113.035600
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/j.arr.2017.08.005
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-901972 August 24, 2022 Time: 15:53 # 14

Zhao et al. 10.3389/fnagi.2022.901972

Joe, E., and Ringman, J. M. (2019). Cognitive symptoms of Alzheimer’s disease:
Clinical management and prevention. BMJ 367:l6217. doi: 10.1136/bmj.l6217

Kanehisa, M., and Goto, S. (2000). KEGG: Kyoto encyclopedia of
genes and genomes. Nucleic Acids Res. 28, 27–30. doi: 10.1093/nar/
28.1.27

Kim, K., Wang, X., Ragonnaud, E., Bodogai, M., Illouz, T., DeLuca, M., et al.
(2021). Therapeutic B-cell depletion reverses progression of Alzheimer’s disease.
Nat. Commun. 12:2185. doi: 10.1038/s41467-021-22479-4

Knopman, D. S., Amieva, H., Petersen, R. C., Chetelat, G., Holtzman, D. M.,
Hyman, B. T., et al. (2021). Alzheimer disease. Nat. Rev. Dis. Primers 7:33. doi:
10.1038/s41572-021-00269-y

Li, J. H., Liu, S., Zhou, H., Qu, L. H., and Yang, J. H. (2014). starBase
v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction
networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42:D92–D97. doi:
10.1093/nar/gkt1248

Li, S., Qu, L., Wang, X., and Kong, L. (2021). Novel insights into RIPK1 as
a promising target for future Alzheimer’s disease treatment. Pharmacol. Ther.
231:107979. doi: 10.1016/j.pharmthera.2021.107979

Li, Y., Shi, H., Chen, T., Xue, J., Wang, C., Peng, M., et al. (2022). Establishing
a competing endogenous RNA (ceRNA)-immunoregulatory network associated
with the progression of Alzheimer’s disease. Ann. Transl. Med. 10:65. doi: 10.
21037/atm-21-6762

Liang, W. S., Dunckley, T., Beach, T. G., Grover, A., Mastroeni, D., Ramsey,
K., et al. (2008a). Altered neuronal gene expression in brain regions differentially
affected by Alzheimer’s disease: A reference data set. Physiol. Genomics 33, 240–
256. doi: 10.1152/physiolgenomics.00242.2007

Liang, W. S., Reiman, E. M., Valla, J., Dunckley, T., Beach, T. G., Grover, A.,
et al. (2008b). Alzheimer’s disease is associated with reduced expression of energy
metabolism genes in posterior cingulate neurons. Proc. Natl. Acad. Sci. U.S.A. 105,
4441–4446. doi: 10.1073/pnas.0709259105

Liaw, A., and Wiener, M. (2001). Classification and regression by randomForest.
R. News 2, 18–22.

Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J. P.,
and Tamayo, P. (2015). The Molecular Signatures Database (MSigDB)
hallmark gene set collection. Cell Syst. 1, 417–425. doi: 10.1016/j.cels.2015.
12.004

Lim, B., Prassas, I., and Diamandis, E. P. (2021). Alzheimer Disease
Pathogenesis: The Role of Autoimmunity. J. Appl. Lab. Med. 6, 756–764. doi:
10.1093/jalm/jfaa171

Liu, C., Zhang, X., Chai, H., Xu, S., Liu, Q., Luo, Y., et al. (2022). Identification
of Immune Cells and Key Genes associated with Alzheimer’s Disease. Int. J. Med.
Sci. 19, 112–125. doi: 10.7150/ijms.66422

Madore, C., Yin, Z., Leibowitz, J., and Butovsky, O. (2020). Microglia. Lifestyle
Stress, and Neurodegeneration. Immunity 52, 222–240. doi: 10.1016/j.immuni.
2019.12.003

Nagashima, S., Fukuda, T., Kubota, Y., Sugiura, A., Nakao, M., Inatome,
R., et al. (2011). CRMP5-associated GTPase (CRAG) protein protects neuronal
cells against cytotoxicity of expanded polyglutamine protein partially via c-Fos-
dependent activator protein-1 activation. J. Biol. Chem. 286, 33879–33889. doi:
10.1074/jbc.M111.234997

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., et al.
(2015). Robust enumeration of cell subsets from tissue expression profiles. Nat.
Methods 12, 453–457. doi: 10.1038/nmeth.3337

Newman, A. M., Steen, C. B., Liu, C. L., Gentles, A. J., Chaudhuri, A. A., Scherer,
F., et al. (2019). Determining cell type abundance and expression from bulk tissues
with digital cytometry. Nat. Biotechnol. 37, 773–782. doi: 10.1038/s41587-019-
0114-2

Ngandu, T., Lehtisalo, J., Solomon, A., Levälahti, E., Ahtiluoto, S., Antikainen,
R., et al. (2015). A 2 year multidomain intervention of diet, exercise, cognitive
training, and vascular risk monitoring versus control to prevent cognitive decline
in at-risk elderly people (FINGER): A randomised controlled trial. Lancet 385,
2255–2263. doi: 10.1016/s0140-6736(15)60461-5

Oku, Y., and Huganir, R. L. (2013). AGAP3 and Arf6 regulate trafficking of
AMPA receptors and synaptic plasticity. J. Neurosci. 33, 12586–12598. doi: 10.
1523/jneurosci.0341-13.2013

Pérez-González, M., Badesso, S., Lorenzo, E., Guruceaga, E., Pérez-Mediavilla,
A., García-Osta, A., et al. (2021). Identifying the Main Functional Pathways
Associated with Cognitive Resilience to Alzheimer’s Disease. Int. J. Mol. Sci.
22:9120. doi: 10.3390/ijms22179120

Phipson, B., Lee, S., Majewski, I. J., Alexander, W. S., and Smyth, G. K. (2016).
Robust Hyperparameter Estimation Protects against Hypervariable Genes and
Improves Power to Detect Differential Expression. Ann. Appl. Stat. 10, 946–963.
doi: 10.1214/16-AOAS920

Prinz, M., and Priller, J. (2017). The role of peripheral immune cells in the
CNS in steady state and disease. Nat. Neurosci. 20, 136–144. doi: 10.1038/nn.
4475

Qin, Q., Inatome, R., Hotta, A., Kojima, M., Yamamura, H., Hirai, H., et al.
(2006). A novel GTPase, CRAG, mediates promyelocytic leukemia protein-
associated nuclear body formation and degradation of expanded polyglutamine
protein. J. Cell Biol. 172, 497–504. doi: 10.1083/jcb.200505079

Readhead, B., Haure-Mirande, J. V., Funk, C. C., Richards, M. A., Shannon, P.,
Haroutunian, V., et al. (2018). Multiscale Analysis of Independent Alzheimer’s
Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks
by Human Herpesvirus. Neuron 99, 64–82.e7. doi: 10.1016/j.neuron.2018.
05.023

Ren, R., Qi, J., Lin, S., Liu, X., Yin, P., Wang, Z., et al. (2022). The China
Alzheimer Report 2022. Gen Psychiatr. 35:e100751. doi: 10.1136/gpsych-2022-
100751

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al.
(2015). limma powers differential expression analyses for RNA-sequencing and
microarray studies. Nucleic Acids Res. 43:e47. doi: 10.1093/nar/gkv007

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage,
D., et al. (2003). Cytoscape: A software environment for integrated models of
biomolecular interaction networks.Genome Res. 13, 2498–2504. doi: 10.1101/gr.12
39303

Shiba, Y., and Randazzo, P. A. (2014). ArfGAPs: Key regulators for receptor
sorting. Receptors Clin. Investig. 1:e158. doi: 10.14800/rci.158

Smyth, K. G. (2004). Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Statist. Appl. Genetics Mol. Biol.
3:Article3. doi: 10.2202/1544-6115.1027

Sticht, C., De La Torre, C., Parveen, A., and Gretz, N. (2018). miRWalk: An
online resource for prediction of microRNA binding sites. PLoS One 13:e0206239.
doi: 10.1371/journal.pone.0206239

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., et al. (2005). Gene set enrichment analysis: A knowledge-based approach
for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102,
15545–15550. doi: 10.1073/pnas.0506580102

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J.,
et al. (2019). STRING v11: Protein-protein association networks with increased
coverage, supporting functional discovery in genome-wide experimental datasets.
Nucleic Acids Res. 47:D607–D613. doi: 10.1093/nar/gky1131

Unger, M. S., Li, E., Scharnagl, L., Poupardin, R., Altendorfer, B., Mrowetz,
H., et al. (2020). CD8(+) T-cells infiltrate Alzheimer’s disease brains and regulate
neuronal- and synapse-related gene expression in APP-PS1 transgenic mice. Brain
Behav. Immun. 89, 67–86. doi: 10.1016/j.bbi.2020.05.070

Wang, X., Sun, G., Feng, T., Zhang, J., Huang, X., Wang, T., et al. (2019).
Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut
bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease
progression. Cell Res. 29, 787–803. doi: 10.1038/s41422-019-0216-x

Wiener, A. L. M. (2002). Classification and Regression by RandomForest.
R. News. 2, 18–22.

Wu, K. M., Zhang, Y. R., Huang, Y. Y., Dong, Q., Tan, L., and Yu, J. T. (2021).
The role of the immune system in Alzheimer’s disease. Ageing Res. Rev. 70:101409.
doi: 10.1016/j.arr.2021.101409

Frontiers in Aging Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fnagi.2022.901972
https://doi.org/10.1136/bmj.l6217
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1038/s41467-021-22479-4
https://doi.org/10.1038/s41572-021-00269-y
https://doi.org/10.1038/s41572-021-00269-y
https://doi.org/10.1093/nar/gkt1248
https://doi.org/10.1093/nar/gkt1248
https://doi.org/10.1016/j.pharmthera.2021.107979
https://doi.org/10.21037/atm-21-6762
https://doi.org/10.21037/atm-21-6762
https://doi.org/10.1152/physiolgenomics.00242.2007
https://doi.org/10.1073/pnas.0709259105
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1093/jalm/jfaa171
https://doi.org/10.1093/jalm/jfaa171
https://doi.org/10.7150/ijms.66422
https://doi.org/10.1016/j.immuni.2019.12.003
https://doi.org/10.1016/j.immuni.2019.12.003
https://doi.org/10.1074/jbc.M111.234997
https://doi.org/10.1074/jbc.M111.234997
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1016/s0140-6736(15)60461-5
https://doi.org/10.1523/jneurosci.0341-13.2013
https://doi.org/10.1523/jneurosci.0341-13.2013
https://doi.org/10.3390/ijms22179120
https://doi.org/10.1214/16-AOAS920
https://doi.org/10.1038/nn.4475
https://doi.org/10.1038/nn.4475
https://doi.org/10.1083/jcb.200505079
https://doi.org/10.1016/j.neuron.2018.05.023
https://doi.org/10.1016/j.neuron.2018.05.023
https://doi.org/10.1136/gpsych-2022-100751
https://doi.org/10.1136/gpsych-2022-100751
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.14800/rci.158
https://doi.org/10.2202/1544-6115.1027
https://doi.org/10.1371/journal.pone.0206239
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1016/j.bbi.2020.05.070
https://doi.org/10.1038/s41422-019-0216-x
https://doi.org/10.1016/j.arr.2021.101409
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

	Integrated analysis and identification of hub genes as novel biomarkers for Alzheimer's disease
	Introduction
	Materials and methods
	Datasets
	Differentially expressed genes
	Construction of protein–protein interaction networks of immune differentially expressed genes
	Enrichment analysis
	Immune infiltration
	Identification and validation of diagnostic biomarkers
	Statistical analysis

	Results
	Immune-related differentially expressed genes
	Construction of protein-protein interaction and competing endogenous ribonucleic acid networks
	Enrichment analysis
	Screening of diagnostic markers
	Immune infiltration

	Correlations between diagnostic gene expression and infiltrating levels of immune cells in Alzheimer's disease

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


