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The purpose of this review was to search for experimental or clinical evidence on

the effect of hyperglycemia in fetal programming to neurological diseases, excluding

evident neural tube defects. The lack of timely diagnosis and the inadequate control

of diabetes during pregnancy have been related with postnatal obesity, low intellectual

and verbal coefficients, language and motor deficits, attention deficit with hyperactivity,

problems in psychosocial development, and an increased predisposition to autism and

schizophrenia. It has been proposed that several childhood or adulthood diseases have

their origin during fetal development through a phenomenon called fetal programming.

However, not all the relationships between the outcomes mentioned above and diabetes

during gestation are clear, well-studied, or have been related to fetal programming. To

understand this relationship, it is imperative to understand how developmental processes

take place in health, in order to understand how the functional cytoarchitecture of the

central nervous system takes place; to identify changes prompted by hyperglycemia, and

to correlate them with the above postnatal impaired functions. Although changes in the

establishment of patterns during central nervous system fetal development are related

to a wide variety of neurological pathologies, the mechanism by which several maternal

conditions promote fetal alterations that contribute to impaired neural development with

postnatal consequences are not clear. Animal models have been extremely useful in

studying the effect of maternal pathologies on embryo and fetal development, since

obtaining central nervous system tissue in humans with normal appearance during fetal

development is an important limitation. This review explores the state of the art on

this topic, to help establish the way forward in the study of fetal programming under

hyperglycemia and its impact on neurological and psychiatric disorders.

Keywords: diabetes, pregnancy, fetal programming, neurological disorders, psychiatric disease

INTRODUCTION

Diabetes is a group of metabolic diseases characterized by deficient insulin secretion and/or action
which leads to hyperglycemia, and, in turn, to abnormal metabolism of carbohydrates, fats, and
proteins in insulin target tissues (1). Depending on pathogenesis, diabetes can be classified as type
1, type 2, gestational diabetes mellitus (GDM), or other types of diabetes. Worldwide, ∼5–10%
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of diabetic patients have type 1 diabetes, in which complete
insulin deficiency stems from β-cell autoimmune destruction
as a result of genetic susceptibility or viral antigens. Type 2
affects 90–95% of diabetic patients and is characterized by either
insulin resistance or defective secretion. Other, less common,
types of diabetes are associated with monogenetic defects in β-
cell function, pancreatic injuries, and drug abuse, among other
causes (1).

GDM is commonly diagnosed in the second or third trimester
of pregnancy, and its prevalence varies between 1 and 17%
depending on the studied population and the diagnostic test used
(1, 2). Due to the ongoing epidemic of obesity and diabetes in
women of childbearing age, the American Diabetes Association
(ADA) has established that women with GDM risk factors must
be tested for diabetes during the second trimester of pregnancy,
using standard diagnostic criteria. Furthermore, that diabetes in
women in the first trimester should be classified as type 2 diabetes
(1). However, pregnant women with no risk factors can develop
diabetes as early as the first trimester (3–5), making it evident that
earlier testing is required in some cases.

As a result of GDM, women and their offspring confront a
series of problems including fetal death, spontaneous abortion,
congenital malformations, fetal-placental abnormalities, and
altered fetal programming (6–8). Fetal programming is defined as
the development of pathologies during childhood and adulthood
that originate during fetal development (9). In this sense,
maternal diabetes has been linked to offspring that develop
obesity, diabetes, neurodegenerative and psychiatric diseases, as
well as low intellectual and verbal coefficients, language and
motor impairments, attention deficit with hyperactivity disorder,
and problems in psychosocial development (10–15). However,
many of these relationships remain unclear, have not been
well-studied and have not been related to fetal programming
(Figure 1).

During this review, we realized that existing information
regarding the mechanisms of action between hyperglycemia
during fetal development and the outcomes is limited. Most
reports are focused on in utero hyperglycemia and neural tube
defects (NTD). Also, studies on viable “normal” offspring and
strategies to prevent the effects of maternal diabetes are scarce; an
understandable problem given that several extrinsic and intrinsic
factors (including embryo susceptibility, among others), may
contribute to CNS fetal programming in specific cell types,
locations, and times.

Bibliographic Search
We searched for experimental and clinical evidence regarding
the effect of hyperglycemia on the development of the
CNS and fetal programming related to neurological diseases,
but excluding evident NTD. We searched PubMed (https://
www.ncbi.nlm.nih.gov/pubmed) for studies on humans or
other animals, published in English in a variety of article

Abbreviations: GDM, gestational diabetes mellitus; NTD, neural tube defects;

NPY, neuropeptide Y; POMC, pro-opiomelanocortin; AgRP, agouti-related

peptide; ARC, arcuate nuclei; PVN, paraventricular nuclei; CART, cocaine

and amphetamine-related transcripts; Shh, Sonic hedgehog; Nkx2.1, thyroid

transcription factor 1; NSCs, neural stem cells; ASD, Autism spectrum disorder.

FIGURE 1 | Possible outcomes related to intrauterine hyperglycemia.

types (classical article, clinical study, comparative study,
evaluation studies, journal article, meta-analysis, and technical
report) published between 1990/01/01 and 2018/01/31. We
used a combination of the following keywords: maternal
diabetes or pregnancy+hyperglycemia, in combination with
neurological fetal programming, neurological outcomes, fetal
neural development, or neural tube.

From a total of 525 articles, 76 remained after we eliminated
those that contained the phrase “neural tube defect,” those
that were not related to CNS development and/or function,
duplicated articles, and those published in a language other than
English.

OBESITY AND DIABETES

Childhood obesity and type 2 diabetes are closely related to
GDM. A systematic review that included 20 observational studies
involving a total of 26,509 children showed that maternal
hyperglycemia (GDM and type 1 diabetes) was associated
with obesity and abnormal glucose tolerance in offspring.
Interestingly, while higher body mass index was reported for
the children of GDM mothers during childhood, the same
was reported from prepuberty to adolescence in children from
mothers with type 1 diabetes. Furthermore, offspring from
GDM mothers had high 2-h plasma glucose from prepuberty to
early adulthood, and those from mothers with type 1 diabetes
had a high rate of type 2 diabetes from years 2 to 5 and
early adulthood (16). On the other hand, the effect of diabetes
during gestation in offspring can be generationally transmissive
through the maternal line. Hanafi et al. (17) showed that rats
with grand-maternal diabetes showed impaired glucose sensing,
increased oxidative stress, insulin resistance, and impaired
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glucose tolerance in F1 and F2, with more prominent effects in
F2.

In an effort to study the mechanisms involved in the
development of obesity in offspring from diabetic mothers, the
plasma content of hormones involved in food intake and energy
expenditure were measured in an Austrian cohort of children
with a mean age of 6 years (male:female = 36:40) born from
mothers with GDM, pre-gestational diabetes, and nondiabetic
women. No differences were found in the plasma content of
hormones involved in food intake and energy expenditure such
as ghrelin, leptin, adiponectin, neuropeptide Y (NPY), peptide
YY, and growth differentiation factor 15. However, usingmultiple
regression analysis, the authors found that body mass index,
leptin, and GDF-15 had independent effects on insulin resistance
(18). It is worth mentioning that both GDF-15 and leptin are
synthesized by white adipose tissue; the first decreases food
intake, while the latter suppresses appetite and increases energy
expenditure (19, 20). Furthermore, leptin is a hormone that acts
via receptors in the hypothalamus, and the activation of leptin
receptors in pro-opiomelanocortin (POMC) and agouti-related
peptide (AgRP)/NPY neurons within the arcuate nuclei (ARC)
lead to increased AgRP and POMC expression reducing food
intake (19, 21). The absence of changes in plasma leptin in obese
children from GDM, but its relation with body mass index may
be explained through an impaired function in the leptin receptor
expressed in the CNS, a phenomenon called, leptin resistance.

POMC is the precursor of α-melanocortin stimulating
hormone, which in turn (through the activation of type 3 and 4
melanocortin receptors) is the most important component of the
network responsible for controlling appetite, energy expenditure,
glucose homeostasis and lipid metabolism in the hypothalamus
(19, 22, 23). This peptide functions as an anorexigenic factor in
ARC and paraventricular nuclei (PVN), predominantly reducing
appetite (24). AgRP and NPY are orexigenic factors inducing
hyperphagia and obesity (25–27).

The interaction between peripheric leptin and the
melanocortin systems in the ARC and PVN is essential for
the circuits that regulate food intake, energy expenditure,
glucose, and lipid metabolism. Furthermore, it can be suggested
that changes in hypothalamic fetal ontogenesis could be taking
place in the diencephalon exposed to hyperglycemia, affecting
the postnatal function of hypothalamic circuits because of the
effects reported at early and late development in offspring from
GDM and Type 2 diabetes mothers on leptin level, glucose
homeostasis and BMI, mentioned above (16, 18). Indeed,
several studies have shown that high glucose levels promote
an inadequate organization of hypothalamic ARC and PVN,
as well as malformation of the ventromedial hypothalamic
nucleus in rats (28–31). Moreover, chicken embryos exposed
to high glucose concentrations (30mM) have lower glucose
tolerance in neurons located in the hypothalamic infundibulum
the equivalent anatomic area of the ARC (32).

On the other hand, the expression of hypothalamic
neuropeptides in sheep ARC exposed to intrauterine
hyperglycemia increases the expression of POMC and the
cocaine and amphetamine-related transcripts (CART) at 81
and 140 days of gestation (33, 34). Such changes may affect

FIGURE 2 | Altered energy and food intake balance in diabetic dams offspring.

In normal conditions (gray lines and arrows), leptin activates POMC/CART

neurons (pro-opiomelanocortin/cocaine- and amphetamine-regulated

transcript) and inhibits NPY/AgRP neurons (neuropeptide Y/agouti-related

protein) promoting satiety and a balance between food intake and energy

expenditure. In diabetic offspring (black lines and arrows), a decrease in the

activation of POMC/CART neurons takes place due to leptin resistance, which

reduces melanocortin release at the PVN (paraventricular nuclei), promoting an

increase in food intake leading to obesity and diabetes. 3V, third ventricle.

energy balance regulation in later life, affecting food intake
and energy balance. To our knowledge, there is no postnatal
evidence of an altered pathway for central energy balance
in sheep, but there are some clues provided in the murine
model. Offspring from diabetic rats and mice have increased
susceptibility to body weight dysregulation and obesity due to:
increased expression of the orexigenic (NPY and AgRP) and
decreased expression of the anorexigenic (α-MSH) peptides in
the ARC (30, 35), leptin resistance in 10-day old pups, decreased
fiber density of AgRP and α-MSH peptides, as well as in the
PVN, and increased food intake and body weight (31). These
findings suggest that offspring born from diabetic dams showed
leptin resistance in first-order neurons within the ARC, less
synaptic transmission into the PVN and, consequently, obesity
(Figure 2).

Altered levels of morphogens and transcription factors
important in hypothalamic organizationmay affect hypothalamic
fetal development under hyperglycemic conditions. During
early fetal development, the hypothalamus emerges from the
diencephalon, and its adequate formation depends on the precise
regulation of molecular and cellular mechanisms orchestrated
by regional morphogenetic organizers in the neural tube.
The diencephalon is separated from surrounding regions by
the influence of organizing signals (morphogens) such as
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Wingless/integrins, Sonic hedgehog (Shh), bone morphogenetic
proteins and fibroblast growth factors, and later by the expression
of the thyroid transcription factor 1 (Nk×2.1, a downstream gene
of Shh) and a key factor for hypothalamic neuron development
(36, 37).

Interestingly, Shh has been evaluated by in situ hybridization
and qRT-PCR during brain development in embryos from
streptozotocin-induced diabetic mice, at embryo day (E) 8.5
and E11.5. Normally, at E8.5 Shh expression is restricted to the
ventral medial plate in the forebrain, but its domain is expanded
and its expression increases in embryos from diabetic mice.
At E11.5 in control animals, Shh expression is localized in the
ventral diencephalon and telencephalon, but in the diencephalon
from diabetic animals its expression is stronger and expanded
toward the dorsal telencephalon. Thus, there is an increased and
expanded expression of Nk×2.1 to the telencephalon (38). In
addition, an increase in cell proliferation and neurogenesis has
been reported in ventral telencephalon/diencephalon in E11.5 to
diabetic mice (39).

These data suggest that early changes in the ventral-dorsal
patterning and increased neurogenesis are contributing to
defects in the fetal and postnatal hypothalamus in murine,
chicken and sheep models; an aspect worthy of further
study.

COGNITION

Cognition is involved in the regulation of emotional and social
cues, including the formal measures of intelligence such as
memory and attention. Cognitive functions studied in infants
from diabetic mothers and offspring from different animal
models include language (animal communication), learning,
memory, motor coordination, perception, and problem-solving.
All of these are functions that are coordinated in a complex
manner by different anatomical structures such as the cerebral
cortex, amygdala, hippocampus, and basal ganglia. However, the
relationship between diabetes during pregnancy and impaired
cognitive function after birth remains controversial. Some studies
in humans have shown that maternal diabetes contributed to
cognitive dysfunction in school-age children, which has been
associated with changes in cell migration and differentiation
during brain development (12, 40, 41). For example, Ornoy
et al. (12) reported that children under 9 years old born
to GDM women had lower scores in verbal tasks and fine
and gross motor skills. Bolaños et al. (42) found that in
utero hyperglycemia was associated with a lower average IQ
and poor performance in working memory skills, such as
graphic and visuospatial tasks, in children from 7 to 9-
years-old born to control and GDM women: They concluded
that GDM leads to minor neurological deficits in children
(42).

Workingmemory is the result of proper coordination between
the prefrontal cortex and hippocampus; structures that arise from
the dorsal telencephalon during embryo development.

Hyperglycemia during hippocampal development decreases
synaptic plasticity and reduces memory durability in male rats

(43, 44), presumably due to a delay in normal hippocampal
development regulated by insulin and insulin growth factor-
1 receptors that lead to structural, behavioral, and cognitive
abnormalities (45).

It is worth mentioning that the hippocampus is very
vulnerable to several neurotoxic insults, including fetal hypoxia
and iron deficiency, both of which are phenomena reported in
fetuses from diabetic mothers (46–49). One way to evaluate early
postnatal hippocampal function is through the measurement of
event-related potentials (ERPs) generated by visual or auditory
stimuli. ERPs are divided into two categories: sensory, which are
early waves, peaking within the first 100ms after the stimulus,
and cognitive, which are waves generated later due to information
processing (50). Using this tool, recognition memory (visual and
auditory stimuli) was evaluated in 6-month-old infants from
diabetic mothers, finding robust evidence of a memory deficit
(51, 52).

During embryo development, the cerebral cortex
and hippocampus arise from the dorsal telencephalic
neuroepithelium. As in other areas of the CNS, intrinsic
and extrinsic factors coordinate correct patterning during
development by promoting the self-renewal of neural stem cells
(NSC). These then will specify into neurons, astrocytes, and
oligodendrocytes, to develop the functional areas of the cerebral
cortex and the characteristic hippocampus anatomy. Diabetes
during pregnancy in mice promotes changes in the expression
of proliferative and differentiative related genes during brain
development. However, NTD embryos or complete litters have
been used, which makes it difficult to relate changes in gene
expression during fetal development and postnatal impaired
cognitive functions in offspring without NTD. Moreover,
contrasting data have been reported regarding the effect of
hyperglycemia on embryo cell proliferation, differentiation, and
survival. Thus, an increase in cell proliferation without affection
on cell death, which promotes thickening and deformation
of the dorsal telencephalon in embryos to diabetic mice, was
reported at E11.5. However, increased BrdU incorporation was
not observed (38, 39). On the other hand, there are several
reports which suggest increased cell death using the same model
and embryo data (53–57). Despite some discrepancies, changes
in cell proliferation, migration, and differentiation may be taking
place in a different and complex manner, and even depending
on the embryos susceptibility. Thus, researchers need to separate
non-NTD from NTD embryos in order to define both shared
and different mechanisms, and, in turn, propose and establish
specific prevention, treatment, and diagnosis strategies beyond
NTD.

Even though the telencephalon is the most studied structure
during development in health and disease, few studies have
analyzed the effect of hyperglycemia in embryos with “normal”
(non-NTD) development. However, the use of cortical NSC
obtained from the dorsal telencephalon can be a useful tool
to study the effect of hyperglycemia. Fu et al. (39), studied
the effect of high glucose (30mM) on the proliferation and
differentiation of E13 cortical NSC from normal pregnant
mice, and showed that high glucose in proliferative NSC
promoted increased cell death and reduced cell proliferation,
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together with increased neuron, astrocyte, and oligodendrocyte
differentiation in differentiated cells. They concluded that NSC
cultured in high glucose led to cell-cycle arrest and apoptosis
and influenced lineage specification, through a mechanism
in which Shh, Bmps and the Notch/Delta pathway are
involved (39).

The effect of high glucose on cell phenotype must be more
complex, and other factors may be involved, such as micro RNAs
(miRNAs, molecules with a potential use in therapeutic as well
as noninvasive biomarkers), neurotransmitters and epigenetic
mechanisms (chromatin modification, histone methylation, or
acetylation and DNA methylation). The level of telencephalic
development-related miRNAs was evaluated in serum from
control and GDMwomen whose fetuses were not diagnosed with
NTD. Interestingly, GDM led to higher levels of proliferative
and neurogenic miRNAs (miR-183-5p, miR-200b-3p, miR-
125-5p, and miR-1290). Moreover, gene ontology in-silico
analysis revealed alterations in cell proliferation and neuron
differentiation (5). Furthermore, an array study containing
∼2,383 probes was used to analyze the in vitro and in vivo effects
of high glucose in mice forebrain NSC. Results showed that high
glucose deregulated 104 and 25 miRNAs in vivo and in vitro,
respectively. Neurogenic miRNAs: miR-30 family, miR-125-5p,
miR-124, and miR-128 were upregulated under both conditions
(58). Furthermore, miR-183, considered a proliferative miRNA,
was downregulated in NSC obtained in embryos from diabetic
mice (59, 60). Although the authors focused on the miRNA-30
family, because it is known to be involved in schizophrenia, ASD,
axon extension and guidance, and other neurodevelopmental
disorders (61–63), it is clear that changes in miRNAs expression
may have an extensive regulatory effect. One miRNA may
regulate hundreds or thousands of RNAm, which may, in
turn, affect cell proliferation, differentiation, migration, and
death, through a complex network of epitrascriptomic regulation
occurring in parallel.

The expression of miRNAs under hyperglycemic conditions
may be regulated by epigenetic factors. To explore this
circumstance under high glucose in utero and in vitro,
Shyamasundar et al. (64) isolated E13.5 dorsal telencephalic
tissue from diabetic and control pregnant mice litters or NSC
from control mice that were maintained under normal or high-
glucose conditions during 48 h (40mM). They reported that
high glucose in vivo and in vitro alters chromatin reorganization
due to an increase in histone H3K9 trimethylation and global
DNA methylation, and provokes a decrease in histone H3K9
acetylation. Decreased gene expression due to high glucose
was expected because H3K9 can turn genes on by becoming
acetylated, and can silence when methylated. However, the
authors reported that high glucose in NSCs in embryos
from diabetic mice promoted a significant increase in the
expression of doublecortin and Pafah1b1 (Platelet-activating
factor acetylhydrolase isoform 1b, subunit 1), molecules essential
for neuron migration and differentiation; this effect could be
explained because no change in the CpG methylation status
of the gene promoter was observed (55, 64, 65). They further
determined that the decreased miR-200a, miR-200b, miR-466a-
3p, and miR-466d-3p miRNAs were responsible for the changes

observed in Dcx and Pafah1b1 (64), suggesting the epigenetic
regulation of these miRNAs. Interestingly, a lower level of mir-
200b was reported in serum samples from diabetic pregnant
women at the third trimester, with a negative diagnosis for
NTD (5).

Neurotransmitters may also contribute to increased
neurogenesis observed in the cortical neuroepithelium of
embryos under hyperglycemia with non-NTD. Our group
reported that histamine increases cortical and mesencephalic
NSC neurogenesis through H1-receptor (H1R) activation.
Both this neurotransmitter and H1R showed a significant
increase in the cortical neuroepithelial of embryos from
diabetic pregnant rats (66–68). In mammals, histamine is a
neurotransmitter/neuromodulator in the adult brain, acting
through G-protein coupled receptors [H1R, H2RH3R, and H4R]
(69, 70). During cortical development, histamine displays high
concentration as well as a high expression of H1R and H2R
(71–73). On the other hand, in cortical NSC, HA promotes cell
proliferation and neuron differentiation through H1R and H2R
activation, respectively (66, 74–76).

In the diabetic model, the cortical neuroepithelium of
embryos without NTD showed increased neurogenesis (E14)
as well as histamine concentration (E14) and H1R expression
(E12). Interestingly, the systemic administration at E12 of
chlorpheniramine (H1R antagonist/inverse agonist) partially
prevented increased dorsal telencephalic neurogenesis in
embryos from diabetic rats, suggesting the participation of this
receptor in the impaired neurogenesis observed in embryos from
the diabetic model (68). The relevance of the above findings is
also supported by evidence on the effect of antihistamine drugs
on controlling glycemia under diabetic conditions (77).

MOTOR BEHAVIOR

Early school-age children born from mothers with GDM
present motor impairment (12). As with cognition, several
regions of the brain control motor activity, including the
cerebral cortex and the cerebellum. As mentioned above, the
dorsal telencephalon showed increased neurogenesis during fetal
development. However, to our knowledge, postnatal studies
on the anatomy and functional neurochemistry of the motor
cortex have not been reported. In contrast, we found a few
studies regarding the effect of hyperglycemia during embryo
development and its effect on the cerebellum. A reduction in
cerebellum size has been observed, which correlates with a
decreased number of Purkinje and granular cells, and the reduced
size of the molecular and granule cell layers in offspring of the
streptozotocin-induced diabetic model in rats (Figure 3) (78,
79). Under these conditions, an increase in the synaptic length
and dendritic spine was detected at postnatal days 30 and 70
(78), which suggests that the reduction in cerebellum size is
compensated by an increase in the size of the dendritic spine.
Nevertheless, it may also indicate inadequate cerebellar synaptic
maturation (80).

Although postnatal cytoarchitectonic changes are reported in
diabetic offspring, to our knowledge there is no evidence that
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FIGURE 3 | Schematic proposal of the effect of maternal diabetes on embryo

and offsprings cerebellum. Sagittal views of the embryonic neural tube and

adult cerebellum in control (top) and diabetic (bottom). r1 indicates the

rhombomere (rb) from which the cerebellum (Cb) rise. The scheme shows that

embryos from diabetic animals present a smaller r1 and that this may reduce

the size of the Cb, and the number of Purkinje and granular cells in the adult.

Telen, telencephalon; Dienc, diencephalon; Mes, mesencephalon; Met,

Metencephalon; Mye, Myelencephalon; WM, white matter.

could explain the postnatal changes in the cerebellum during fetal
development.

PSYCHIATRIC DISORDERS

Autism and schizophrenia have been related tomaternal diabetes.
Autism spectrum disorder (ASD) is a neurodevelopmental
disorder with an estimated prevalence of 1 in 68 children in 2016
(81). ASD is characterized by stereotyped behavior, severe social
dysfunction, restricted attention and language impairments (82–
86). Although ASD has a highly heritable factor (86), stressful
environment in utero has also been implicated (83, 84, 86–91).
In 2009, a two-fold increase in the risk of ASD in infants from
GDM mothers was reported. However, authors have concluded
that infections during pregnancy, maternal age, hypertension,
and preeclampsia contribute to the incidence of the disease
(92). This is supported by other studies that reported no
relationship between GDM and risk of ASD (93, 94). However, a
cohort study of 66,445 pregnancies examined the relationship of
obstetric complications with ASD, finding that GDM presented
a significant risk increment in the pathology of 1.2% of the
children (89). A case-control study also reported that children

from GDMmothers had a high incidence of ASD with expressive
language deficits (84). Discrepancies among studies may be due
to differences in the study design and ethnic populations.

Alterations in the cerebellum have also been related to autism
(95–97). One of the most consistently abnormal findings in the
postmortem brains of autistic individuals, regardless of age, sex,
and cognitive ability is the significant decrease in the number of
Purkinje cells in the posterolateral-neocerebellar and the adjacent
archicerebellar cortices (98, 99). Both Yamano et al. and Razi
et al. have shown that in utero hyperglycemia reduces the size
of the cerebellum due to a reduction in the number of Purkinje
and granular cells (78, 79). Although changes in cerebellum
architecture in autism have been observed, the physiological
relevance of these relationships remains unsolved, probably
due to the clinical heterogeneity within the broad behavioral
phenotype (100).

Genetic studies have revealed three promising ASD-
implicated genes: engrailed homeobox 2 (EN2), gamma-
aminobutyric acid type A receptor beta3 subunit (GABRB3),
and MET proto-oncogene, receptor tyrosine kinase (MET). All
have specific roles in cerebellar development (101, 102). The
expression of En2 is restricted to midbrain and cerebellum. The
loss of its function causes abnormal cerebellar foliation, with
deficits in motor and social behavior (102). Interestingly, in
embryos from diabetic mice a decrease in the expression of En2
has been reported (56, 103).

Several studies have shown a positive association between
oxidative stress during fetal development and ASD, suggesting
that oxidative damage is an important factor in the etiology of
ASD (104, 105) and schizophrenia (106, 107). The release of
reactive oxygen species (ROS) and the generation of oxidative
stress under GDM is a critical aspect that may contribute.

On the other hand, schizophrenia is a chronic and severe
psychiatric incapacitating disorder that affects a wide range
of cognitive, emotional, and motor functions that have been
associated with GDM. The symptoms include hallucinations
or paranoid delusions, disorganized speech, and socialization,
cognition, and memory impairment (108). The etiology of
this disorder is unknown. However, epidemiological evidence
suggests prenatal and perinatal complications as antecedents
(109–112).

In a Swedish case-control cohort study, an increased
susceptibility of developing schizophrenia in females from
GDM mothers was reported, suggesting a gender susceptibility
(113). A meta-analysis study reported that among the obstetric
complications for schizophrenia, GDM was found to have a
significant participation (114). Other studies described that there
is no evidence of the association between GDM and the disease
(109, 115). This inconsistency could be explained by the fact
that most studies used questionnaires or scales where GDM or
a history of maternal diabetes were not included.

On the other hand, it has been suggested that an increased
level in plasma of pro-inflammatory cytokines such as IL-8
(interleukin-8) and tumor necrosis factor-α (TNF-α) during
pregnancy could be related to offspring schizophrenia in
adulthood (116). Thus, a hyperglycemic condition increases
the expression of inflammatory cytokines in macrophages
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by decreasing H3K9me3 levels in inflammatory cytokines
promoters, such as TNF-α, and chemoattractant protein-1 and
IL-6 (117).

Changes in the DNA methylation pattern have been

reported in term placenta and cord-blood samples from GDM.
Interestingly, the analysis showed that 57 genes associated with

schizophrenia or schizoaffective disorders were affected (118).
Moreover, several lines of evidence have shown that alterations

in the degree of DNA and histone methylation are related to
ASD and schizophrenia (119–122). All these data suggest that
epigenetic changes during GDM may be related to offspring
schizophrenia. A “two-hit” hypothesis has been proposed for
this and other diseases, where the onset of disease cannot
clearly be linked to a specific genetic or environmental insult.
This is also applicable to ASD. For schizophrenia, it has been
hypothesized that the first hit may affect neurogenic and cell
specification pathways, while the second hit may have a greater
effect on functional integration (123), two processes that have
been suggested to be altered in embryos and early born diabetic
animals (31, 38, 39, 56).

CONCLUSION

Morphological and functional alteration in the CNS and its
relationship with changes in gene expression and maternal
diabetes is complex. Particularly because other phenomena may
be participating in the final function of a gene or group of genes,
such as post-transcription, translation, or post-translational
regulatory processes that define cell commitment, differentiation,
migration, death, integration, and function during specific
moments in development.

Although fetal programming due to maternal diabetes may
be evident, and a lot of information regarding the intrinsic
and extrinsic factors that participate in the development of
several areas of the CNS has been generated and related to
NTD, we have not developed proper experimental protocols
to generate information related to how hyperglycemia affects
the development of specific areas of the CNS during critical
time windows. It is also clear that, depending on the timing of
insult in relation to the stages of brain development, different
cell populations may be selectively affected. Furthermore, it is
likely that early defects may be exclusively due to hyperglycemia,
while defects occurring in late development may be due to
high glucose and/or hyperinsulinemia. Finally, it is important to
bear in mind that the problem is complex, and that no single
molecular mechanism can fully explain the effects of maternal
diabetes on fetal programming during neurodevelopment. Global
approaches are needed.
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