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Purpose: Optical coherence tomography (OCT) has recently emerged as a source for
powerful biomarkers in neurodegenerative diseases such as multiple sclerosis (MS) and
neuromyelitis optica (NMO). The application of machine learning techniques to the
analysis of OCT data has enabled automatic extraction of information with potential to
aid the timely diagnosis of neurodegenerative diseases. These algorithms require large
amounts of labeled data, but few such OCT data sets are available now.

Methods: To address this challenge, here we propose a synthetic data generation
method yielding a tailored augmentation of three-dimensional (3D) OCT data and
preserving differences between control and disease data. A 3D active shape model
is used to produce synthetic retinal layer boundaries, simulating data from healthy
controls (HCs) as well as from patients with MS or NMO.

Results: To evaluate the generated data, retinal thicknessmaps are extracted and evalu-
ated under a broad range of quality metrics. The results show that the proposed model
can generate realistic-appearing synthetic maps. Quantitatively, the image histograms
of the synthetic thickness maps agree with the real thickness maps, and the cross-
correlations between synthetic and real maps are also high. Finally, we use the gener-
ated data as an augmentation technique to train stronger diagnosticmodels than those
using only the real data.

Conclusions: This approach provides valuable data augmentation, which can help
overcome key bottlenecks of limited data.

Translational Relevance: By addressing the challenge posed by limited data, the
proposedmethod helps apply machine learningmethods to diagnose neurodegenera-
tive diseases from retinal imaging.

Introduction

Multiple sclerosis (MS) is an unpredictable and
recurrent disease that affects the nerve cells of the
brain and spinal cord and destroys the protective

myelin sheath around the nerve fibers, causing vision
problems and impaired muscle control. Loss of vision
is one of the leading causes of disability in patients
with MS. Several studies have reported a correlation
between the axonal loss in the optic nerve and the
degree of functional disability in patients with MS.1,2
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Neuromyelitis optica (NMO) is another neurodegen-
erative disease that affects the eye and spinal cord and
occurs when the immune system attacks healthy cells in
the central nervous system.

Optical coherence tomography (OCT) facilitates
cross-sectional imaging of the retina based on inter-
ference patterns produced by low-coherence near-
infrared light reflected from retinal tissues. OCT has
been used as an easy, fast, and noninvasive method
for qualitative and quantitative evaluation of retinal
changes in neurologic disorders.3,4 This technique
makes it possible to reconstruct cross-sectional struc-
tural images with an axial resolution of approximately
4 μm.5

Over the past decades, several clinical and paraclin-
ical procedures have been performed to diagnose
neurodegenerative diseases like MS and NMO.
Magnetic resonance imaging (MRI) is widely used
to diagnose specific inflammatory lesions and tissue
atrophy in the brain and spinal cord.6,7 Recently,
diagnostic procedures have been increasingly comple-
mented by retinal imaging with OCT, first described
in MS by Parisi et al.8 Further studies have shown
that two features derived from OCT scans in MS
and NMO—namely, the peripapillary retinal nerve
fiber layer thickness as a measure of axonal health
and the macular volume and ganglion cell and inner
plexiform layer (GCILP) thickness as a measure
of neuronal health—are linked to MRI-based
measures of myelin health in the posterior visual
pathway.9–16

Machine learning (ML) methods have great
promise in ophthalmology for discriminating different
diseases.17,18 The main limitation of ML in appli-
cations like discrimination of MS and NMO is the
availability of large and well-annotated training data
sets. Synthetic OCT data could address this issue by
supplying additional training data, covering under-
represented classes to reduce bias, and avoiding the
privacy issues associated with the collection of real
imaging data.

The construction of synthetic OCT data has been
considered by researchers over the past few years.19–22
In recent work,23,24 we used an active shape model
(ASM25) to construct synthetic two-dimensional (2D)
and three-dimensional (3D) OCT data in the macular
region. In this article, we use that model as an augmen-
tation method to generate synthetic 3D OCT bound-
aries of themacular region fromhealthy controls (HCs)
and patients with MS and NMO. The thickness maps
of retinal layers (strong biomarkers of MS and NMO)
are then calculated using both synthetic and real data.
Three validation strategies are formulated to assess
the utility and integrity of the generated data and to
justify its use to augment real data in future research.
The strategies include histogram comparison methods,
comparison of statistical properties between original
2D maps (retinal thickness maps), and a standard
classification measure to evaluate the efficacy of the
synthetic data augmentation method in disease predic-
tion. Figure 1 shows the proposed approach in a graph-
ical abstract.

Figure 1. Graphical abstract of the proposed approach.
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Materials and Methods

TheOCTdata set was collected using Spectralis SD-
OCT (Heidelberg Engineering, Heidelberg, Germany)
at the Kashani Comprehensive MS center, Isfahan,
Iran (details in Ashtari et al.14). It consists of OCT data
from HCs (26 eyes) and patients with NMO (30 eyes)
and MS (30 eyes). To construct the proposed model,
a limited number (five OCT volumes) were randomly
selected from each class to be used in the training stage
and to synthesize 25 three-dimensional OCT bound-
aries in each category. In total, 130 OCT volumes from
HCs26 were used for further validation of the synthetic
data (30 eyes for training and 100 eyes for further
comparison with synthetic data).

Each OCT image stack contains 25 horizontal B-
scans (each with 512 A-scans, with automatic real-time
tracking in nine frames and axial resolution of 3.8
mm), scanning a macular area of 6 by 6 mm focused
on the fovea. Automated segmentation of retinal layer
boundaries was performed using a custom-developed
graph-based method27 with reference values presented
in Kafieh et al.26 The segmentation results were quality
controlled and manually corrected in case of errors by
an ophthalmologist using the method in Montazerin
et al.28 To account for eye laterality, 3D OCTs from left
eyes are flipped and the nasal area is located on the right
side of the thickness maps.

The boundaries of intramacular layers were calcu-
lated for macular retinal nerve fiber layer (mRNFL),
GCIPL, inner nuclear layer (INL), outer plexiform
layer (OPL), outer nuclear layer (ONL), myoid-
ellipsoid zone (MEZ), and retinal pigment epithe-
lium (RPE). The reporting is according to APOSTEL
recommendations.29 Figure 2 shows an example of a
3D OCT image stack with extracted layers.

Synthetic Data Generation Using 3D ASM

Generating synthetic data requires a statistical
shape model that can produce new 3D retinal layer
boundaries. The model should be general (i.e., able

Figure 2. Example of retinal 3D OCT image stack and the location
of retinal layer boundaries.

to generate any plausible example of the class it
represents), so the thickness and morphology of the
synthetic retinal layers must be sufficiently variable.
However, the model should also be target oriented,
which means that it is only authorized to generate
suitable shapes. To achieve this, a statistical model
based on prior knowledge is built by analyzing the
statistical characteristics of a set of annotated 3DOCT
scans in the training stage. The annotations provide
a set of feature points in three dimensions by which
the training maps are aligned and from which the
model extracts their principal components. The trained
model captures and generalizes the statistical charac-
teristics of the retinal layer boundaries in the training
set, allowing us to synthesize similar layer boundary
shapes.

Annotated 3D OCT scans in the training stage are
first cropped to cover a symmetrical 6-mm distance
around the fovea. The layer boundaries in the train-
ing set must cover the different types of variation we
wish themodel to represent.We annotate each 3DOCT
image stack with a set of points used as landmarks for
the alignment. In this study, we use 91 landmark points
on each of the eight retinal layer boundaries on each
of the 25 B-scans in a stack, for a total of n = 18,200
points per image stack.

For the ith boundary, the jth landmark point is
represented by (xij, yij, zij), in coordinates where x,y
corresponds to the horizontal and vertical components
of each B-scan, z indexes the identity of each B-scan,
and j runs from 1 to 91. By definition, zij is the same for
all points in a given B-scan. The first and last landmark
points are taken to be the left and right edges of the
B-scan; thus, by definition, xi1 = 1 and xi91 = 512
in every case, with the values y11 and yi91 giving the
height of the ith boundary at the edges. To obtain
the other landmark points, we identify the coordinates
corresponding to the center of the macula in the given
image stack (xmac,ymac,zmac). For all boundaries, xi46
is defined to be xmac. The remaining points xi2… xi45
and xi47… xi90 are then spaced evenly between, respec-
tively, xi1 = 1 and xi46 = xmac, and xi46 = xmac and xi91
= 512. Each yij is then the height of the ith boundary
at xij.

We apply Procrustes analysis30 to align all image
stacks to a reference image stack, and a point distri-
bution model31 is then constructed. Assuming that the
variabilitywithin the population occurs along just a few
directions in this space, the dimensionality is reduced
to a lower space using principal component analysis
(PCA). Each layer boundary in the training set can now
be approximated by the mean shape plus a weighted
sum of the first t principal components, and we can
synthesize new layer boundaries by allocating different
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Figure 3. Example of synthetic retinal layer boundaries in each class (HC, MS, and NMO). The color codes the height (y-value) of each
boundary point.

numbers to weights of plausible principal components.
Details of this procedure are elaborated in the Supple-
mentary Material.

In this way, we generate synthetic vectorsX, describ-
ing the locations of the 18,200 landmark points on
layer boundaries of a synthetic OCT stack. We finally
interpolate values linearly between the landmark points
to recover the complete synthesized boundaries.

Figure 3 shows examples of the synthesized layer
boundaries for each of the classes (HC, MS, and
NMO). As we focus on retinal thickness maps because
of their usefulness as biomarkers for neurologic
diseases, it is not necessary to create synthetic textures
in order to generate a full OCT image, as we did in
Danesh et al.24

Construction of Retinal Thickness Maps

Retinal thickness maps have a potential role in
the diagnosis of neurodegenerative diseases.32–34 They
reveal information implicit in the 3D OCT volumes
by providing easily interpretable maps for each retinal
layer. We, therefore, calculated the thickness of each
retinal layer and of the whole retina as 2D maps to be
used in the validation strategies discussed below. The
thickness of each retinal layer is the distance between
consecutive retinal boundaries; similarly, the thickness
of the entire retina is obtained as the distance between

the first and the last boundaries. Accordingly, macular
thickness maps are calculated for all three data classes,
demonstrated in Figures 4, 5, and 6 for selected retinal
layers (mRNFL, GCIPL, RPE) and the total retinal
thickness. The real thickness maps and corresponding
synthetic maps are shown in the first and second rows,
respectively. Each thickness map has a size of 512 × 25
pixels, but the examples in Figures 4 to 6 are resized to
500 × 500 pixels for better visualization.

Validation Strategies

Three validation strategies are employed to check
the usefulness and integrity of the synthesized data
and to justify its use as an augmentation method in
future research. The first two are statistical. First, we
compute image histograms of the thickness maps for
a given layer and compare these in real and synthe-
sized maps. This checks that the range of thicknesses is
comparable but does not evaluate their spatial pattern.
To achieve that, we examine the cross-correlation and
mean absolute difference between pairs of thickness
maps and compare the distribution obtained for pairs
of real maps with that obtained when one image is
real and the other synthetic. The last strategy builds
classificationmodels to discriminate betweenHCs,MS,
and NMO in order to assess our synthetic data genera-
tor as a data augmentation method. We compare the
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Figure 4. Example of thicknessmaps frommRNFL, GCIPL, RPE, and the total retina in an area of 6 by 6mmaround the fovea in the HC class.
The upper row (a) shows the real data, and the lower row (b) shows the synthetic data with the proposed method.

Figure 5. Example of thicknessmaps frommRNFL, GCIPL, RPE, and the total retina in an area of 6 by 6mmaround the fovea in theMS class.
The upper row (a) shows the real data, and the lower row (b) shows the synthetic data with the proposed method.

Figure 6. Example of thickness maps from mRNFL, GCIPL, RPE, and the total retina in an area of 6 by 6 mm around the fovea in the NMO
class. The upper row (a) shows the real data, and the lower row (b) shows the synthetic data with the proposed method.
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predictive performance of models trained using only
real maps versus models trained from a set enriched
with our synthetic data.

Histogram-Based Validation
This validation strategy checks the correspondence

between the histogram of the generated 2D maps
(retinal thickness maps) and the histogram of the maps
in the training set. For this purpose, retinal thick-
ness maps are calculated for retinal layers (mRNFL,
GCIPL, INL, OPL, ONL, MEZ, and RPE). For each
retinal layer with a thickness map of 512 × 25 pixels,
the histogram is calculated to represent the distribu-
tion of thickness values by counting how many pixels
out of 512 × 25 fall into each thickness interval.
The histogram is then normalized to display relative
frequencies as a proportion of pixels that fall into each
of several thickness categories, with the sum of the
heights equaling 1. The normalized histogram can then
be interpreted as discretized probability distributions
whose value at any given thickness provides a relative
likelihood that the value of the random variable (pixels
of the 2D image of thickness map) would be close to
that sample thickness. To quantify the similarity of
pairs of normalized histograms in the real training set
(H1) and synthetic data (H2), four measurements are
used.

i. The correlation coefficient is used to determine
the type (direct or inverse) and degree of the
relationship between two discretized probability
distributions, approximating the similarity of the
histograms. This coefficient ranges between 1 and
–1 (zero if no correlation exists):

C (H1,H2)

=
∑

I (H1 (I ) − H1 )(H2 (I ) − H2 )√∑
I (H1 (I ) − H1 )2

∑
I (H2 (I ) − H2 )2

(1)

where Hi, i = [1, 2] is the mean value of each
histogram over the total number of histogram
bins, and I denotes the bin number.

ii. The chi-square distance calculates the normalized
square difference between two histograms, and
for identical histograms, this distance equals zero:

χ2 (H1,H2) =
∑

I

(H1 (I ) − H2 (I ) )2

H1 (I )
(2)

iii. The histogram intersection calculates the similar-
ity of two discretized probability distributions
(histograms), with possible values of the intersec-
tion lying between 0 (no overlap) and 1 (identical

distributions).35

I (H1,H2) =
∑

I
min(H1 (I ) ,H2 (I ) ) (3)

iv. The Hellinger distance is related to the
Bhattacharyya coefficient BC(H1,H2) and is used
to quantify the similarity between two proba-
bility distributions.36 The maximum Hellinger
distance is 1, and in the case of best match with
a Bhattacharyya coefficient of 1, the Hellinger
distance is 0.

BC (H1,H2) =
∑

I

√
H1 (I ) H2 (I ) (4)

H (H1,H2) =
√
1 − BC (H1,H2) (5)

Pairwise Comparisons Between Thickness Maps:
Cross-Correlation andMean Absolute Error

We carry out this validation based on healthy
controls. We have 30 OCT stacks from healthy controls
that were used to synthesize 100 synthetic stacks
(the “training set”) and a further 100 OCT stacks
from healthy controls that were not used in synthe-
sizing the data (the “validation set”). To assess the
degree of variation between thickness maps in healthy
controls, we computed themaximumvalue of the cross-
correlation between pairs of thickness maps, one taken
from the validation set and one from the training set.
This gave us a “real” distribution of maximum cross-
correlations that we could then compare with synthetic
data (i.e., the distribution of values when one thickness
map is taken from the validation set and the other from
the synthetic set). We also did a similar analysis using
the mean absolute error (difference in the thickness of
a given layer between a pair of maps). Again, the train-
ing and validation real maps were used to assess the
distribution of mean absolute error in real maps, and
this was then compared with the distribution obtained
when synthetic maps were used instead of the real
maps. We also carried out this analysis comparing the
synthetic maps with the training set they were gener-
ated from, in order to see whether the synthetic maps
matched these more closely than the cross-validation
set.

Synthetic OCT Image Generation as a Data Augmen-
tation Strategy for Diagnostic Tasks

The last validation strategy is based on a standard
classification to validate the ability of the synthesis
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model as a data augmentation method. We train classi-
fication models using training sets containing only real
maps versus using training sets augmented with our
synthetic data in order to determine if the latter leads to
better predictive performance to distinguish either MS
or NMO from HC. Of the available eight retinal thick-
ness maps, the first and second maps (from mRNFL
and GCIPL) and the total macular thickness are the
layers that discriminate best between HC, MS, and
NMO, according to the literature.9–16 Each of these
three thickness maps has a size of 512 × 25 pixels, and
we used PCA to reduce the dimension of each map to
5. Overall, we construct a 15D space as input features
for classification models. We train two types of binary
classifiers, one to discriminate HC from MS and one
for classifying HC from NMO, using a support vector
machine (SVM) with radial basis kernel functions in
both cases. A stratified fivefold cross-validation was
used to evaluate the predictive performance of these
models with a nested cross-validation for hyperparam-
eter tuning (C and gamma) based on grid search. The
partition into folds was done using the real data only,
and in cross-validation iterations when a fold was used
for training, we enhanced it with our synthetic data for
the experiments with augmentation. This ensured that
all test predictions were done on the real data and that
the experiments with or without augmentation used the
same partitions.

Results

The results from the proposed three validation
strategies are presented in this section. Overall, these
aim to determine whether the synthesized OCT bound-
aries are proper representatives of the real ones and

whether they can be used as an augmentation method
in future research.

Results of Histogram-Based Validation

Four metrics, including correlation coefficient, chi-
square distance, histogram intersection, and Hellinger
distance, are used to quantify the similarity of pairs of
normalized histograms in the real training set (H1) and
synthetic data (H2).

Figure 7 shows three samples of the generated
data with corresponding boundaries in three classes.
It should be emphasized that the boundaries are the
only necessary data in this article due to the focus
on retinal thickness maps rather than B-scans. There-
fore, the synthetic images in Figure 7 are provided only
for illustrative purposes and are not used in validation
stages.

Five real OCT volumes are randomly selected
from each class (HC, MS, and NMO) and 25 three-
dimensional retinal layer boundary images are synthe-
sized. From each 3D boundary image, thickness maps
of seven retinal layers (mRNFL, GCIPL, INL, OPL,
ONLMEZ,RPE) and the thickness of the totalmacula
are calculated (each with a size of 512 × 25 pixels).
The five thickness maps of real data with 5 × 512 ×
25 values and 25 thickness maps of synthetic data with
25 × 512 × 25 values are then fed into a two-sample
t-test. The P values reported in Table 1 show that real
and synthetic data are not significantly different for any
layer.

The normalized histograms are also compared
between different pairs of real training data in Table
2. Table 3 reports the comparison between real and
synthetic data from the same class. Finally, Table 4
reports the comparison between real and synthetic data
from different classes.

Figure 7. Three examples of synthetic images and corresponding boundaries from the three classes.
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Table 1. Comparison of Thickness of Different Macular Layers Between Groups (Mean ± SD)

Characteristic Total Macula mRNFL GCIPL INL OPL ONL MEZ RPE

Real HC data 310.9 ± 12.8 29.7 ± 3.1 76.6 ± 2.8 35.7 ± 1.9 27.8 ± 2.1 61.5 ± 5.0 23.8 ± 0.5 55.5 ± 3.2
Synthetic HC data 308.0 ± 5.0 29.8 ± 1.9 75.8 ± 2.2 35.4 ± 1.7 28.2 ± 1.5 59.8 ± 3.5 23.8 ± 0.3 54.9 ± 1.2
P value 0.738 0.094 0.691 0.319 0.185 0.458 0.824 0.115
Real MS data 276.1 ± 11.3 24.3 ± 7.2 55.2 ± 6.6 33.8 ± 2.5 26.7 ± 0.9 58.6 ± 2.4 23.5 ± 0.3 53.8 ± 1.1
Synthetic MS data 275.3 ± 9.9 23.8 ± 7.8 55.2 ± 3.9 33.9 ± 2.7 26.6 ± 0.5 58.3 ± 1.9 23.5 ± 0.2 53.7 ± 0.9
P value 0.071 0.530 0.196 0.712 0.851 0.364 0.097 0.591
Real NMO data 281.2 ± 14.9 26.1 ± 6.8 56.2 ± 8.9 34.3 ± 4.3 29.6 ± 1.8 57.1 ± 2.4 23.6 ± 0.4 54.1 ± 3.0
Synthetic NMO data 282.5 ± 16.2 25.6 ± 7.6 8.76 ± 8.0 34.0 ± 2.3 27.3 ± 1.3 59.3 ± 2.9 23.6 ± 0.2 53.9 ± 1.1
P value 0.831 0.246 0.563 0.439 0.782 0.347 0.081 0.511

Table 2. Averaged Metrics between All Possible Pairs of Normalized Histograms in the Real Training Set (Values
from First and Second Maps [mRNFL and GCIPL] and the Total Macular Thickness)

Total Macula mRNFL GCIPL

Characteristic HC MS NMO HC MS NMO HC MS NMO

Correlation coefficient 0.988 0.977 0.979 0.971 0.988 0.989 0.979 0.997 0.988
Chi-square distance 0.145 0.127 0.097 0.224 0.171 0.138 0.124 0.096 0.175
Histogram intersection 0.973 0.984 0.993 0.994 0.984 0.997 0.994 0.986 0.992
Hellinger distance 0.153 0.182 0.132 0.121 0.137 0.181 0.177 0.122 0.201

Table 3. Averaged Metrics Between All Possible Pairs of Normalized Histograms in the Two Groups of the Real
Training Set and Synthetic Data from the Same Class (Values from First and Second Maps [mRNFL and GCIPL] and
the Total Macular Thickness)

Total Macula mRNFL GCIPL

Characteristic HC MS NMO HC MS NMO HC MS NMO

Correlation coefficient 0.982 0.972 0.968 0.955 0.970 0.969 0.971 0.986 0.981
Chi-square distance 0.159 0.173 0.136 0.219 0.193 0.122 0.146 0.142 0.129
Histogram intersection 0.969 0.989 0.984 0.981 0.987 0.966 0.962 0.985 0.975
Hellinger distance 0.161 0.172 0.164 0.211 0.205 0.139 0.192 0.126 0.182

Results of Pairwise Comparisons Between
Thickness Maps

Figure 8 shows the distribution of the peak cross-
correlation (left columns) and the mean squared error
(right columns) when comparing pairs of thickness
maps for different layers. The green histograms give
the distribution expected for real maps, as a reference.
The red histograms compare the distributions encoun-
tered when comparing synthetic maps with real maps
(from the cross-validation set; i.e., real maps that were
not used in the generation of the synthetic maps).
Ideally, these distributions would be identical, with a
Kolmogorov–Smirnov (KS) “D” statistic of 0, but in

fact they differ (KS-D shown on each panel; all are
highly significant). However, the deviations are gener-
ally fairly small, and the modes are generally similar.

The blue histograms show the distributions when
synthetic maps are compared with the training set of
real maps they were generated from. One might have
expected that these would agree more closely, thus
producing higher cross-correlation and lower mean
absolute error. However, no such effect is apparent, and
the KS-D between this and the real/real green distri-
butions is in fact slightly smaller than when the cross-
validation set is used. The KS-D between the red and
blue distributions is shown last, in pink. Unsurpris-
ingly, these values are much lower, since we are now
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comparing two real/synth distributions, although in
fact still significant.

Overall, this analysis has revealed significant differ-
ences between the thickness map from real versus
synthetic boundaries. However, the agreement seems
acceptable. The distribution of the pairwise compari-
son metrics is very similar between pairs of real maps
as between real/synthetic pairs.

Results of Classification-Based Validation

A pilot evaluation is done using two binary SVM
classifiers with radial basis kernel functions (one to
discriminate HC from MS and one to discriminate
HC fromNMO) with the hyperparameters tuned using
grid search. From each of the three classes (HC, MS,
and NMO), thirty 3D OCT volumes were randomly
selected, and the dimension of each OCT volume is
reduced to 15 using the PCA algorithm (as elaborated
above). The classification algorithms are trained twice,
once with real data and once with the synthesized data.
Stratified fivefold nested cross-validation is used for
splitting training/test partitions.

For classification of MS from HC, in the first trial,
the real data indices for fivefold cross-validation were
used for training. The metrics are reported in Table 5
(real training data). In the second trial, in each splitting
iteration, 24 OCT scans for each class (whose indices
are determined by fivefold algorithm as the training
data) were selected. The 24 HC OCT scans were used
by one synthesis model, and the 24MSOCT scans were
used by another synthesis model, each producing new
maps similar to their own inputs. Different numbers
of synthesized maps were produced using synthesis
models for each category and added to the sets of
24 real maps. The metrics from the second trial are
reported in Table 5.

Furthermore, to compare the performance of the
methodwith oversamplingmethods such as SMOTE,37
instead of synthesizing full 3D OCT data and then
generating thickness maps to extract the final feature
vector for the classification model, we directly resam-
pled from the thickness map of the annotated train-
ing set to generate additional sample points for train-
ing in Figure 9. For this purpose, we use SMOTE to
produce the synthetic points, generating a number of
synthetic points equal to that of our method in order
to have a fair comparison. Accuracy and F1 score are
compared, and the results indicate that using SMOTE
in this way also effectively enhances the training set,
and the samples generated by ourmethod lead to better
performance in all scenarios. The rationale behind this
result is that the oversampling technique assumes that
the feature space behaves as a Euclidean space with
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←
Figure8. Comparisonof pairwise cross-correlations (left column) andmean absolute errors (right column) for real versus synthetic thickness
mapsof thedifferent retinal layers (rows). Thegreenhistograms show thedistributionof the specifiedmetric comparingpairs of real thickness
maps: one from the cross-validation set of 100maps and one from the training set of 30maps. All pairs were used, so the histogram is based
on 3000 pairwise comparisons. The red histograms show the distribution for pairs where one is again from the cross-validation set and one
is from the set of 100 synthetic maps generated from the training set (10,000 comparisons). Ideally, the red and green distributions would
be identical, but they are not. The blue histograms show the distribution for pairs where one is from the training set and one is synthetic
(3000 comparisons). The text in red shows the Kolmogorov–Smirnov “D” statistic between the red and green, blue and green, and blue and
red distributions (all are very highly significantly different from zero given the large number of pairwise comparisons).

Table 5. Comparisons of Classification Results for MS/HCDiscrimination Between the Real Training Data and Real
Data Plus Synthetic OCTs with the Proposed Method, for Different Numbers of Synthetic OCTs

Characteristic Sensitivity Specificity Precision
False-Positive

Rate
False-Negative

Rate Accuracy F1 Score

Real training data (24 OCT
scans for each class)

0.7333 0.6154 0.6875 0.3846 0.2667 0.6786 0.7097

Real plus 24 × 1 = 24
synthetic data

0.7667 0.6638 0.7188 0.3462 0.2813 0.7143 0.7419

Real plus 24 × 2 = 48
synthetic data

0.8000 0.6923 0.7500 0.3077 0.2000 0.7500 0.7742

Real plus 24 × 4 = 96
synthetic data

0.8333 0.7692 0.8065 0.2307 0.1667 0.8036 0.8197

Real plus 24 × 8 = 192
synthetic data

0.8421 0.7586 0.8205 0.2414 0.1579 0.8060 0.8312

Real plus 24 × 16 = 384
synthetic data

0.8333 0.7742 0.8333 0.2258 0.1667 0.8082 0.8333

Figure 9. Classification performance forMS/HCdiscrimination for different training sets: real training data, real datawith different numbers
of additional synthetic OCTs, and real data with different numbers of data added via SMOTE.

equal relevance for each axis, so that distances are
meaningful.38 The thickness maps may not fully fulfill
this assumption.

Similarly, the same procedure was repeated for
classification of HC and NMO data, and the results
are shown in Table 6 and Figure 10.
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Table 6. Comparisons of Classification Results for NMO/HC Discrimination Between the Real Training Data and
Real Data Plus Synthetic OCTs with the Proposed Method, for Different Numbers of Synthetic OCTs

Characteristic Sensitivity Specificity Precision
False-Positive

Rate
False-Negative

Rate Accuracy F1 Score

Real training data (24 OCT
scans for each class)

0.7857 0.6875 0.7674 0.3125 0.2143 0.7432 0.7765

Real plus 24 × 1 = 24
synthetic data

0.8095 0.7188 0.7907 0.2813 0.1905 0.7703 0.8000

Real plus 24 × 2 = 48
synthetic data

0.8571 0.7586 0.8372 0.2414 0.1429 0.8169 0.8471

Real plus 24 × 4 = 96
synthetic data

0.8810 0.7667 0.8409 0.2333 0.1190 0.8333 0.8605

Real plus 24 × 8 = 192
synthetic data

0.8780 0.7857 0.8571 0.2143 0.1220 0.8406 0.8675

Real plus 24 × 16 = 384
synthetic data

0.8810 0.7931 0.8605 0.2069 0.1190 0.8451 0.8706

Figure 10. Classification performance for NMO/HC discrimination for different training sets: real training data, real data with different
numbers of additional synthetic OCTs, and real data with different numbers of data added via SMOTE.

Discussion and Conclusion

In this study, we have shown (1) that the proposed
3D ASM synthesis model can generate realistic-
appearing synthetic maps of retinal layer boundaries,
(2) that the histogram-based validation shows the
histogram of generated 2D maps (retinal thickness
maps) corresponds to the histogram of the maps in the
training database, (3) that cross-correlations between
the generated and real 2D maps shows the validity of
the synthetic data, and (4) a standard classification-

based validation confirms the efficacy of synthetic data
as an augmentation method for training the classifica-
tion algorithms.

The proposed model is general, and by changing
the weights vector, it can generate new examples of
different diagnostic classes. However, the realistic shape
(resembling layer boundaries from real OCT maps)
is controlled by imposing limitations on the weights
vector. Figures 4 to 6 visually depict 2D maps of
synthetic thickness maps and show their similarity to
real data. The similarity between real and synthetic
data in horizontal B-scans is also demonstrated
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in Figure 7. Despite the subtlety of differences between
the three classes (HC, MS, NMO), which often elude
expert clinicians, the numerical evaluations prove that
the proposed model is able to capture them.

The normalized histograms are compared between
different pairs of the data in Tables 2, 3, and 4. Higher
correlation coefficients and histogram intersections,
as well as lower chi-square distances and Hellinger
distances, indicate greater similarity in the compared
probability distributions. Comparison of Table 2
with Table 3 indicates that the similarity between
all synthetic–real pairs of histograms in the same
disease class is as great as the similarity between real–
real histogram pairs. In Table 4, pairs of normal-
ized histograms are drawn from the real and synthetic
data, across disease classes. These values indicate
that real MS and synthetic NMO data are similar
in their normalized thickness histograms for total
retina, mRNFL, and GCIPL. However, the differ-
ence between HC and disease data is captured by
the synthetic data, in that the similarity is reduced
between HC (real)/MS (synthetic) andHC (real)/NMO
(synthetic) total macular volume and GCIPL thick-
ness, in keeping with earlier clinical studies9–16 that
indicate the greatest effect of disease on those parame-
ters.

The cross-correlation analysis is more sensitive,
because it assesses not only the distribution of thick-
ness values in a layer but also the pattern of thick-
ness across the retina. This method did reveal small but
significant differences between the synthetic maps and
real maps.More workwill be needed to understand and
correct these discrepancies.

However, even in its current state, we demonstrate
that the proposed model is demonstrably useful as
an augmentation method, since including synthetic
examples improved performance. Our method also
avoids the problem of mode collapse observed in other
synthetic image construction algorithms like genera-
tive adversarial networks (GANs). Provided different
weights are used, the ASM model is guaranteed to
generate different synthetic data points. The intradi-
versity of the method was also demonstrated in our
correlation-based validation: the distribution of cross-
correlation values was similar when synthetic thick-
ness maps were compared with (a) the real “train-
ing” maps used to generate them (blue histograms
in Fig. 8) as with (b) a distinct set of real “cross-
validation” maps (red histograms). If the synthetic
maps remained very close to the real maps used to
generate them, we would have expected systematically
higher correlations in the former comparison. Further-
more, the complexity of the proposed method is lower
than GAN methods, and it is able to work with a

very small training data set, which is not practical for
GANs.

Finally, one of the important outcomes of the
proposed synthetic data is that we can provide large
amounts of data for training ML algorithms without
the privacy concerns that affect real human data, since
retinal images are considered protected health infor-
mation.39 The method could be expanded to produce
synthetic OCT image data with different features
ranging from age, ethnicity, and severity (e.g., for use
in tele-education platforms).40 Thus, the ASM model
has potential for aiding future education of neuro-
ophthalmology trainees.

In conclusion, the proposed method for generating
synthetic OCT data can address the problem of limited
data sets from patients with neurodegenerative disease,
which could help us apply ML approaches even when
OCT data are limited. The degree of matching between
corresponding layers in synthesized data reflects the
realism of the synthetic data and justifies its use to
augment real data in future research.
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