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A B S T R A C T

Beta oscillations within motor-cortical areas have been linked to sensorimotor function. In line with this, pa-
thologically altered beta activity in cortico-basal ganglia pathways has been suggested to contribute to the
pathophysiology of Parkinson's disease (PD), a neurodegenerative disorder primarily characterized by motor
impairment. Although its precise function is still discussed, beta activity might subserve an anticipatory role in
preparation of future actions. By reanalyzing previously published data, we aimed at investigating the role of
pre-stimulus motor-cortical beta power modulation in motor sequence learning and its alteration in PD. 20 PD
patients and 20 healthy controls (HC) performed a serial reaction time task (SRTT) in which reaction time gain
presumably reflects the ability to anticipate subsequent sequence items. Randomly varying patterns served as
control trials. Neuromagnetic activity was recorded using magnetoencephalography (MEG) and data was re-
analyzed with respect to task stimuli onset. Assuming that pre-stimulus beta power modulation is functionally
related to motor sequence learning, reaction time gain due to training on the SRTT should vary depending on the
amount of beta power suppression prior to stimulus onset. We hypothesized to find less pre-stimulus beta power
suppression in PD patients as compared to HC associated with reduced motor sequence learning in patients.
Behavioral analyses revealed that PD patients exhibited smaller reaction time gain in sequence relative to
random control trials than HC indicating reduced learning in PD. This finding was indeed paralleled by reduced
pre-stimulus beta power suppression in PD patients. Further strengthening its functional relevance, the amount
of pre-stimulus beta power suppression during sequence training significantly predicted subsequent reaction
time advantage in sequence relative to random trials in patients. In conclusion, the present data provide first
evidence for the contribution of pre-stimulus motor-cortical beta power suppression to motor sequence learning
and support the hypothesis that beta oscillations may subserve an anticipatory, predictive function, possibly
compromised in PD.

1. Introduction

The investigation of oscillatory brain activity within the context of
sensorimotor functions has revealed a typical pattern of modulation in
the beta band (13–30 Hz) time-locked to voluntary movement: A de-
crease in beta power (i.e., beta power suppression) prior to and during
movement execution followed by a transitory increase after movement
termination, known as rebound (Pfurtscheller and Lopes da
Silva, 1999). Parkinson's disease (PD) is a common neurodegenerative

disorder particularly characterized by motor symptoms such as brady-
kinesia and muscular rigidity although other impairments including
cognitive functions have been demonstrated as well (Dubois and
Pillon, 1997; Kalia and Lang, 2015; Svenningsson et al., 2012). Inter-
estingly, in PD, beta activity has been found to be pathologically al-
tered. Such alterations have been particularly observed in the sub-
thalamic nucleus (STN) of PD patients undergoing surgery for deep
brain stimulation (DBS) but also in motor-cortical areas (Brown et al.,
2001; Hammond et al., 2007; Heinrichs-Graham et al., 2014;
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Oswal et al., 2013a; Pollok et al., 2012; Schnitzler and Gross, 2005). For
example, planning of simple finger movements has been related to re-
duced beta power suppression in motor-cortical areas in PD patients as
compared to healthy participants, suggesting a link between altered
beta modulation and motor control in PD (Heinrichs-Graham et al.,
2014).

The modulation of beta activity has further been associated with
motor sequence learning in healthy volunteers (Pollok et al., 2014).
More specifically, Pollok et al. (2014) applied a Serial Reaction Time
Task (SRTT), a well-established motor learning paradigm involving
responses to stimuli at different locations following a sequential reg-
ularity (Nissen and Bullemer, 1987). In this study, superior learning
reflected by larger reaction time (RT) gain as training on the task
proceeded was linked to stronger beta power suppression (Pollok et al.,
2014). In PD, evidence for diminished motor sequence learning on tasks
such as the SRTT exists (for a review, see Ruitenberg et al., 2015). We
recently investigated whether altered motor sequence learning on the
SRTT in PD is linked to altered beta modulation (Meissner et al., 2018).
Supporting the role of beta activity in motor sequence learning, PD
patients indeed exhibited less beta power suppression over the course of
the task which was paralleled by diminished learning.

Similar to a vast amount of studies investigating oscillatory activity
related to motor control in general, both of the introduced motor
learning studies concentrated data analyses on activity time-locked to
the motor response (Meissner et al., 2018; Pollok et al., 2014). How-
ever, it has been stressed that beta activity already prior to stimuli
signaling the need for a specific motor response might be of behavioral
relevance for planning and preparation of the required response
(Meziane et al., 2015; Perfetti et al., 2011). Further emphasizing the
need to investigate pre-stimulus beta power modulation and to differ-
entiate between pre- and post-stimulus modulation, there is converging
evidence that despite generally preserved modulation depth, pre-sti-
mulus modulation of beta power is attenuated in PD (Praamstra and
Pope, 2007; te Woerd et al., 2014). In contrast, its modulation after
stimulus onset has been observed to be enhanced, indicating a shift
from a prospective to a more reactive mode of motor control in PD
(Praamstra and Pope, 2007; te Woerd et al., 2014). Taken together,
these findings support the assumption that beta activity may subserve a
prospective control function related to the anticipation of an upcoming
response (Brittain and Brown, 2014; Engel and Fries, 2010;
Jenkinson and Brown, 2011; Oswal et al., 2012), a function possibly
compromised in PD (te Woerd et al., 2014). This again raises the
question whether pre-stimulus beta activity may also relate to motor
sequence learning on the SRTT – a task in which faster RTs as training
on the task proceeds presumably reflect the anticipation of upcoming
items of the sequence. To investigate this, we reanalyzed previously
published magnetoencephalography (MEG) data for which PD patients

and healthy older controls (HC) performed a SRTT (Meissner et al.,
2018). The data was analyzed with respect to the onset of SRTT stimuli.
Based on previous results (e.g., te Woerd et al., 2014), we expected to
find less pre-stimulus beta power suppression in PD patients. Given that
pre-stimulus beta power is functionally related to motor sequence
learning, RT gain due to training on the SRTT should vary depending on
beta power modulation prior to stimulus onset.

2. Material and methods

2.1. Participants

Twenty PD patients and 20 age- and sex-matched HC participated in
the study. Exclusionary criteria involved tremor-dominant PD, de-
mentia (Mattis Dementia Rating Scale (MDRS; Mattis, 1988) score
≤130), clinically relevant depression (Beck Depression Inventory (BDI-
II; Hautzinger et al., 2006) score ≥18) or other psychiatric and/or
neurological disorders. Patients remained on their regular anti-
parkinsonian medication during study participation. For detailed
characteristics of participants including clinical information, see
Meissner et al. (2018). The study was approved by the local ethics
committee of the Medical Faculty of the Heinrich-Heine-University
Dusseldorf (study no. 4792) and is in accordance with the Declaration
of Helsinki. All participants provided written informed consent prior to
study participation and received monetary compensation.

2.2. Motor sequence learning: SRTT

The SRTT was introduced as a simple RT task with participants not
being informed about the embedded eight-digit sequence (ring-index-
thumb-middle-ring-middle-thumb-index finger). Four horizontally
aligned bars were presented on a back-projection screen. Each bar
corresponded to one of four response buttons on a custom-made re-
sponse box. Participants were instructed to press as quickly as possible
the corresponding button with the respective finger of the right hand
once one of the bars changed from dark to light blue (Fig. 1A). RT was
determined by measuring the interval between color change and button
press onsets. The response-stimulus interval was set to 2 s. In case of
incorrect responses, bars remained light blue until participants re-
sponded correctly.

To familiarize themselves with the buttons of the response box, all
participants conducted a short practice session of 12 randomly varying
trials. The experimental phase of the SRTT consisted of a training block
of 15 sequence repetitions (S1) followed by a test block of ten sequence
repetitions (S2). Ten repetitions of eight randomly varying trials before
(R1) and after sequence blocks (R2) served as control condition for
unspecific RT improvement (Fig. 1B). Stimulus timing and response

Fig. 1. Experimental setting. (A) Four horizontally aligned
bars presented on a back-projection screen were spatially
mapped to four response keys on a button box. Participants
were instructed to press the respective response button as
soon as one of the bars changed from dark blue to light blue.
The response-to-stimulus interval was set to 2 s. (B) The SRTT
consisted of sequential (S) and random control (R) trials.
During training on the sequence (S1), the sequence was re-
peated 15 times. Sequences during the subsequent test block
(S2) as well as random patterns prior to (R1) and after se-
quence trials (R2) were repeated ten times, respectively. MEG
was recorded during the entire SRTT procedure. (For inter-
pretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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recording were controlled by E-Prime® software version 2 (Psychology
Software Tools, Sharpsburg, PA, USA).

2.3. Statistical analyses of behavioral data

Analyses were performed using IBM SPSS 25 (IBM Corporation,
Armonk, NY, USA). Whenever necessary, the sequential Bonferroni
procedure was applied to correct for multiple comparisons
(Holm, 1979). To determine the RT gain in sequence relative to random
trials, we calculated a learning index by dividing RTs during sequence
trials by those during random ones (S1+2/R1+2; Values two standard
deviations (SD) below or above the respective group mean were ex-
cluded from further analyses (2 patients; 1 HC)). Values <1 indicate RT
gain during sequence as compared to random trials. Kolmogorov-
Smirnov tests revealed no significant deviations from Gaussian dis-
tribution (all p ≥ .20). Group comparison was assessed using a two-
tailed independent-samples t-test. In addition to comparing learning
indices between groups, we conducted one-sample t-tests for PD pa-
tients and HC to investigate whether learning indices differed sig-
nificantly from 1 and thereby indicate significant RT gains in sequence
trials in both groups. Effect sizes were computed using Cohen's d
(Cohen, 1988).

To investigate whether learning indices were related to dopami-
nergic medication (daily levodopa equivalent dose (LED;
Tomlinson et al., 2010)) or motor impairment (Movement Disorder
Society-Sponsored Revision of the Unified Parkinson's Disease Rating
Scale, part III (MDS-UPDRS III; Goetz et al., 2008)) in patients, corre-
lations involving LED using Pearson's r and correlations involving MDS-
UPDRS III using Spearman's ρ were calculated.

2.4. MEG data

2.4.1. Data acquisition and preprocessing
Neuromagnetic brain activity was recorded during the SRTT using a

306-channel whole-head MEG system with 204 planar gradiometers
and 102 magnetometers (Elekta Neuromag, Helsinki, Finland). Four
head position indicator (HPI) coils were fixed to each participant's scalp
and HPI coil positions and anatomical landmarks (nasion and pre-
auricular points) were digitized (Polhemus Isotrak, Colchester,
Vermont, USA). Vertical electrooculogram was recorded in order to
detect eye blinks. For 30 participants, structural magnetic resonance
images (MRIs) were acquired in a separate session (3 T Siemens-
Magnetom, Erlangen, Germany). Off-line analyses were restricted to
gradiometers and carried out using the MATLAB-based open source
toolbox FieldTrip (Oostenveld et al., 2011). Continuously recorded data
were segmented into epochs of 2000ms pre- to 2000ms post-stimulus
onset. Data were demeaned and filtered using 200 Hz low-pass and 1 Hz
high-pass filters. Trials with sensor jumps or muscle artifacts were re-
jected from further analyses after visual inspection of the data. A
principal component analysis was then applied to correct for further
artifacts. Components associated with eye blinks or cardiac signals were
removed (mean number of components± SD: 3.53 ± 0.60).

2.4.2. Time-frequency analyses
Groups did not differ in number of trials subjected to analyses (all p

> .11). Time–frequency representations of power (≤30 Hz) for se-
quence and random trials were computed using fast Fourier transfor-
mation. We used an adaptive sliding time window with a width of four
full cycles of the respective frequency f (Δt = 4/f) multiplied by a
Hanning taper. The time window moved in steps of 50ms and the
frequency resolution was 1/Δt. Spectral power was calculated for ver-
tical and horizontal gradiometers and was then combined. As no clear
baseline could be defined during the task, power changes were mea-
sured against a baseline defined by the mean of the full epoch length
according to previous studies (Meissner et al., 2018; Pollok et al., 2014;
te Woerd et al., 2015, 2014).

In a first step, we studied group differences in beta power mod-
ulation during sequence test trials (S2). To this end, oscillatory activity
was averaged across the beta band and cluster-based, independent-
samples t-tests with Monte Carlo randomization controlling for multiple
comparisons were computed (Maris and Oostenveld, 2007). Analyses
were performed for a time window ranging from 1500ms pre- to
1500ms post-stimulus onset. Since motor-cortical areas have been
shown to be relevant for motor sequence learning, sensors covering left
and right sensorimotor cortex (S1/M1) were selected and used for
statistical analyses. This selection was determined a priori and was
mainly based on a previous study investigating oscillatory activity in
channels covering the left primary sensorimotor cortex during motor
sequence learning in young healthy adults (Pollok et al., 2014). How-
ever, to account for rather bilateral and wider recruitment of the motor-
cortical network in the aging brain (Quandt et al., 2016; Vallesi et al.,
2010), we extended the original selection by adding a sensor located
posterior to it as well as by adding the respective channels covering the
right, ipsilateral hemisphere. To exclude the possibility that significant
group differences were present already prior to learning, beta power
changes during random trials prior to sequence training (R1) were
compared between groups using the same statistical approach. Re-
sulting clusters with p-values < 0.05 were considered significant.

For illustrative purposes, cortical sources of beta power modulation
for sequence test trials (S2) and random trials prior to training on the
sequence (R1) were identified by means of Dynamic Imaging of Coherent
Sources (DICS; Gross et al., 2001). To this end, we contrasted two time
intervals of 500ms centered on maximal beta power suppression and
maximal (pre-stimulus) beta power increase for R1 and S2, respectively.
The center frequency was 20 Hz (spectral smoothening of± 5Hz) re-
sulting in 10 full cycles per time window. A realistic, single-shell brain
model (Nolte, 2003) was created based on the individual anatomical
MRI or on a MNI template (n=10). Then, forward solution was esti-
mated for each participant using a regular 3D grid (1 cm resolution) in
MNI space which was warped onto individual anatomy. We computed a
lead-field matrix for each grid point according to MEG head position
and the forward model. A common spatial filter was constructed for
suppression and beta peak time windows for each grid point using the
cross-spectral density and lead-field matrices. This spatial filter was
then applied to suppression and peak epochs and contrasted. Source
reconstructed beta power was averaged across participants of each
group for R1 and S2 and visualized on the cortical surface of the MNI
template brain.

2.4.3. Pre-stimulus beta power modulation during the SRTT
As potential group differences resulting from time-frequency ana-

lyses may simply relate to differences in modulation depth, we further
examined the percentage of beta power modulation prior to stimulus
onset relative to the total modulation depth. The strength of this ap-
proach has been demonstrated previously (e.g., Praamstra and
Pope, 2007; te Woerd et al., 2015, 2014). In a first step, we averaged
activity across the beta band and the channels covering left and right
S1/M1, respectively. We then determined the percentage of pre-sti-
mulus beta power suppression relative to the total suppression depth
from maximum pre-stimulus beta power to maximum beta power
suppression (te Woerd et al., 2015, 2014, see Fig. 2 for a schematic
representation) for sequence (S1 and S2) and random trials (R1 and R2).
Differences in the percentage of pre-stimulus beta power suppression
relative to the full suppression depth were tested by means of a mixed
design analysis of variance (ANOVA) with within-subjects factors
hemisphere (left vs. right) and condition (sequence vs. random) and be-
tween-subjects factor group (HC vs. PD patients). Effect sizes were cal-
culated using partial eta squared (η2p).

2.4.4. Pre-stimulus beta power modulation during sequence training and its
relation to learning

In a last step, we aimed to determine the predictive value of the
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ability to suppress beta power prior to stimulus onset. Therefore, linear
regression analyses involving the percentage of pre-stimulus beta power
suppression relative to the full suppression depth during sequence
training (S1) and subsequent RT advantage in sequence as compared to
random trials were conducted. The percentage of pre-stimulus beta
power suppression of the left S1/M1 during S1 was used as predictor,
since previous data support the particular relevance of the contralateral
hemisphere to motor learning (Pollok et al., 2014). However, as the
aging motor system has been suggested to be characterized by a loss of
hemispheric lateralization, we additionally correlated the percentage of
pre-stimulus beta power suppression relative to the full suppression
depth of the left and the right hemisphere with each other, since such a
correlation would play a role in the interpretation of regression analysis
outcomes. As dependent variable for the regression analyses, the
learning index at test trials was used (i.e., RTs during S2/R2). Values
two SD below or above the respective group mean were excluded from
analyses (1 PD patient, 1 HC). Analyses were conducted for each group
separately.

3. Results

3.1. Behavioral data

The independent-samples t-test on learning indices revealed sig-
nificantly higher values in PD patients as compared to HC (t
(35)=−2.1; p= .04; Cohen's d=0.68; Fig. 3) indicating smaller RT

gains in sequence relative to random trials in the former group. Addi-
tional one-sample t-tests indicated that learning indices differed sig-
nificantly from 1, both in PD patients (t(17)=−2.21; p= .04; Cohen's
d=0.52) and HC (t(18)=−5.87; p < .001; Cohen's d=1.35). For
absolute mean RTs for all PD patients and HC, please see Supplemen-
tary Figure S1 as well as our previous publication for more detail
(Meissner et al., 2018). Correlational analyses between clinical char-
acteristics in PD patients and learning indices revealed no significant
results (all p > .40).

3.2. MEG data

3.2.1. Time-frequency analyses
Fig. 4 displays oscillatory activity in frequencies ≤30 Hz as well as

cortical sources of beta power modulation prior to (R1) and after se-
quence training during sequence test trials (S2). Time-frequency ana-
lyses revealed the expected pattern of beta power modulation which
was strongest over both left and right sensorimotor areas (Fig. 4A and
C) and occurred over the entire beta range from 13–30 Hz (Fig. 4B).

Statistical analyses on beta power changes during S2 revealed sig-
nificant differences between groups most pronounced between 250ms
pre- to 250ms post-stimulus onset (negative cluster; p= .007; for to-
pographical representations, see Supplementary Figure S2), indicating
that PD patients exhibited less beta power suppression as compared to
HC prior to stimulus onset. Additionally, significant differences be-
tween groups emerged most pronounced between 700 and 1300ms
after stimulus onset (positive cluster; p= .004) suggesting stronger,
prolonged post-stimulus beta power suppression in patients as com-
pared to HC (see Fig. 4D for group differences in oscillatory activity
including the beta frequency range during S2). For random trials prior
to sequence training, no significant group differences emerged, neither
prior to nor post stimulus onset (R1: all p ≥ .10).

3.2.2. Pre-stimulus beta power modulation during the SRTT
The mixed design ANOVA on the percentage of pre-stimulus beta

power suppression relative to the full suppression depth revealed sig-
nificant main effects of condition (F(1,38)= 5.40; p= .03; η2p=0.12)
and hemisphere (F(1,38)= 28.66; p < .001; η2p=0.43), indicating a
larger percentage of pre-stimulus beta power modulation in sequence
than in random trials and in the left as compared to the right hemi-
sphere. Furthermore, a significant main effect of group (F
(1,38)= 10.72; p= .002; η2p=0.22) emerged, revealing a sig-
nificantly smaller percentage of pre-stimulus beta power suppression
relative to the full suppression depth in patients as compared to HC. All
interactions, including the condition by group interaction (F
(1,38)= 2.05; p= .16; η2p=0.05), failed to reach significance (all
other p ≥ .22).

Although the mixed design ANOVA did not reveal evidence for a
significant interaction involving the factor group, the effect size (η2p) of
the condition by group interaction roughly corresponds to a medium
effect (small effect: η2p=0.01; medium effect: η2p=0.059;
Cohen, 1988; Miles and Shevlin, 2001). Therefore, we decided to con-
duct additional exploratory repeated-measures ANOVAs on the per-
centage of pre-stimulus beta power suppression relative to the full
suppression depth for PD patients and HC separately. In patients, this
ANOVA yielded a significant main effect of hemisphere (F(1,19)= 6.95;
p = .02; η2p=0.27) revealing a larger percentage of pre-stimulus beta
power modulation in the left hemisphere as compared to the right one.
However, the main effect of condition and the hemisphere by condition
interaction were not significant (all p ≥ .44; η2p ≤ 0.03). In HC, sig-
nificant main effects of both hemisphere (F(1,19)= 27.78; p < .001;
η2p=0.59) and condition (F(1,19)= 6.19; p = .02; η2p=0.25)
emerged, indicating not only a larger percentage of beta power mod-
ulation prior to stimulus onset in the left as compared to the right
hemisphere but also in sequence than in random trials. The hemisphere
by condition interaction was not significant (F(1,19)= 0.004; p = .95;

Fig. 2. Schematic representation of the percentage of pre-stimulus beta power
modulation relative to the full modulation depth. The trace illustrates the time
course of beta power changes during one SRTT trial. For data analyses, we
calculated the percentage of pre-stimulus beta power suppression, thus the
change in beta power from maximum pre-stimulus beta power to stimulus onset
(t=0) as indicated by the black arrow relative to the full suppression depth
(i.e., from maximum pre-stimulus beta power to maximum beta power sup-
pression).

Fig. 3. Behavioral data. Standardized learning indices indicating RT gain
during sequence (S1 and S2) relative to random trials (R1 and R2) during the
SRTT in HC and PD patients. Please note that lower learning indices indicate
greater RT gain during sequence relative to random trials. Indices are presented
as group means and error bars indicate standard error of the mean (SEM). * p <
.05.
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η2p < 0.01). Fig. 5A displays the respective group means for sequence
and random trials in each hemisphere.

3.2.3. Pre-stimulus beta power modulation during sequence training and its
relation to learning

In a final step, linear regression analyses were conducted to eluci-
date the predictive value of pre-stimulus beta power suppression for
motor sequence learning. In PD patients, the percentage of pre-stimulus
beta power suppression relative to the full suppression depth in the left
S1/M1 during sequence training (S1) significantly predicted subsequent
learning indices at test trials (RTs at S2/R2; standardized β=−0.57;
R2= 0.33; p= .01; Fig. 5B). This result suggests that the ability to
suppress beta oscillations prior to stimulus onset during sequence

training is linked to learning-related RT gain in subsequent sequence
trials. In HC, the regression analysis did not reveal significant effects
(standardized β=−0.22; R2= 0.05; p= .38; Supplementary Figure
S3). Additional analyses correlating the percentage of pre-stimulus beta
power suppression in the left with the one in the right hemisphere re-
vealed strong correlations, both in patients (r=0.83; p < .001) and in
HC (r=0.87; p < .001).

4. Discussion

With the present study, we aimed to elucidate the functional role of
pre-stimulus beta activity in motor sequence learning and its possible
alteration in PD. We reanalyzed previously published MEG data of PD

Fig. 4. Oscillatory activity during the SRTT. (A) Exemplary illustration of the distribution of oscillatory beta power modulation (13–30 Hz; prior to sequence learning
(R1)) as measured from maximum pre-stimulus beta power to maximum beta power suppression. White dots show channels covering left and right sensorimotor areas
(S1/M1) further used for statistical MEG analyses. (B) Time-frequency representations of oscillatory power in frequencies ≤30 Hz for channels covering S1/M1
during random (R1; top) and sequence test trials (S2; bottom) in HC (left) and PD patients (right). Warm colors indicate an increase, cold colors a decrease in power
relative to baseline. Stimulus onset is defined as t=0 on the x-axis. The expected movement-related beta power modulation with a decrease in power (i.e.,
suppression) before and during movement as well as subsequent beta power increase is observable across the whole beta range from 13–30 Hz. Please note that due to
our stimulus-locked analysis strategy, the beta power increase of the previous trial also appears as pre-stimulus beta power increase of the current trial. (C) Source
reconstruction of beta power modulation, measured from maximal pre-stimulus beta power to maximal beta power suppression for random (R1; top) and sequence
test trials (S2; bottom) averaged across HC (left) and PD patients (right) projected onto the MNI template brain. Beta power modulation was strongest over left and
right sensorimotor areas. (D) Group differences (HC vs. PD patients) in oscillatory activity (≤30 Hz) for channels covering S1/M1 during sequence test trials (S2). A
schematic illustration of significant group differences in the beta frequency band during S2 resulting from cluster-based permutation tests is given by black rectangles.
Cold colors indicate less decrease in beta power in PD patients as compared to HC (first rectangle), warm colors indicate stronger decrease in beta power in PD
patients as compared to HC (second rectangle). For cluster plots with a detailed topographic representation, see Supplementary Figure S2.

Fig. 5. The percentage of pre-stimulus beta power mod-
ulation and its association with the learning index at test
trials. (A) The percentage of pre-stimulus beta power
suppression in left (contralateral) and right (ipsilateral)
motor-cortical areas during sequence and random trials in
HC and PD patients. Values are presented as group means
and error bars indicate SEM reflecting within-subjects
variability (O'Brien and Cousineau, 2014). (B) The per-
centage of pre-stimulus beta power suppression in left
motor-cortical areas during sequence training (S1) sig-
nificantly predicted the subsequent learning index at test
trials (i.e., S2/R2) in PD patients. Please note that lower
learning indices indicate greater RT gain in sequence re-
lative to random trials.
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patients and HC recorded during the SRTT with a focus on beta mod-
ulation time-locked to the onset of SRTT stimuli. At the behavioral
level, we observed less RT gain in sequence relative to random trials in
PD patients than in HC. Nevertheless, PD patients showed significant
sequence-specific gains in RT as well, indicating reduced but basically
preserved motor sequence learning in PD patients. This finding fits ni-
cely with numerous studies reporting altered motor sequence learning
in PD (Muslimovic et al., 2007; Stephan et al., 2011; Wilkinson et al.,
2009; for a review, see Ruitenberg et al., 2015). Analyses of MEG data
revealed that during the SRTT, PD patients exhibited reduced beta
power suppression prior to stimulus onset as compared to HC. Further
exploratory within-group analyses indicated that whereas the amount
of beta power suppression occurring prior to stimulus onset did not
differ significantly between sequence and random trials in PD patients,
it was larger during sequence trials in HC. Although especially the latter
findings have to be interpreted with caution due to their exploratory
character, the present data provide first evidence for the hypothesis that
pre-stimulus beta power modulation may contribute to motor sequence
learning. Further strengthening this assumption and the behavioral
relevance of pre-stimulus beta power modulation, the ability to sup-
press beta power prior to stimulus onset during sequence training made
a significant contribution to predicting subsequent RT advantage in
sequence relative to random trials in PD patients.

As reported previously, movement-related beta power modulation
suggested to be linked to motor sequence learning in healthy volunteers
(Pollok et al., 2014) has been shown to be altered in PD (Meissner et al.,
2018). In addition to studying oscillatory activity time-locked to
movement onset, the SRTT further allows to investigate oscillatory
activity time-locked to stimuli indicating the next sequence item. Be-
haviorally, RT improvement during training on the task presumably
reflects the anticipation of upcoming items of the sequence. The in-
vestigation of stimulus-locked activity during the SRTT might therefore
allow to identify the oscillatory signature which may serve as a marker
for an anticipatory function of motor control going beyond “pure”
motor activity. Previous data showed attenuated pre-stimulus beta
power suppression during a simple choice response task in PD with a
shift from a prospective to a more reactive mode of motor control
(Praamstra and Pope, 2007; te Woerd et al., 2015, 2014). Based on
these findings, we examined pre-stimulus motor-cortical beta activity in
PD patients as compared to HC during the SRTT to investigate its
functional relevance to motor sequence learning. The present time-
frequency analyses revealed the expected pattern of beta power mod-
ulation associated with voluntary movement during random and se-
quential trials of the SRTT. In PD patients, beta power suppression prior
to stimulus onset was reduced in sequence test trials. It is important to
keep in mind that – as reported in more detail in our previously pub-
lished study on the same dataset (Meissner et al., 2018) – PD patients
exhibited generally slower RTs than HC during random trials already
prior to sequence training. Therefore, one might argue that significant
group differences in oscillatory beta activity might simply reflect un-
specific movement slowing related to motor impairment rather than
representing differences in motor sequence learning in PD. However,
control analyses comparing beta power changes in random trials prior
to sequence training between groups did not reach significance ren-
dering this assumption less likely. Furthermore, general motor impair-
ment was not significantly related to task performance in PD patients.
Taken together, the present findings on pre-stimulus beta power mod-
ulation extend previously reported results of movement-related beta
power suppression in a motor learning task (Pollok et al., 2014) and its
alteration in PD (Meissner et al., 2018), and provide first evidence for a
functional role of pre-stimulus beta power modulation in motor se-
quence learning.

Additional support for the latter assumption comes from our ana-
lyses on the percentage of pre-stimulus beta power suppression relative
to the full suppression depth conducted to control for possible effects of
modulation depth. We found that the percentage of pre-stimulus beta

power suppression was not only significantly smaller in random as
compared to sequence trials but also generally reduced in PD patients as
compared to HC. Although we realize that the condition by group in-
teraction failed to reach significance, its effect size (η2p) corresponds to
a medium effect (Cohen, 1988; Miles and Shevlin, 2001).We therefore
decided to conduct additional analyses for each group separately.
However, it is important to keep in mind, that their results have to be
interpreted with caution due to their exploratory character and require
further investigation and replication with larger samples sizes. Never-
theless, these analyses may give a hint that the pattern of pre-stimulus
beta power modulation in motor-cortical areas during sequence and
random trials in PD patients might indeed differ from that observed in
HC: whereas there was no significant difference in the percentage of
pre-stimulus beta power suppression relative to the full suppression
depth between sequence and random trials in patients, this percentage
was significantly larger in sequence than in random trials irrespective of
the hemisphere in HC. These findings may simply reflect less efficient
response preparation during sequence trials in PD. However, alternative
interpretations are also conceivable. Previous work pointed out, that a
stronger post-movement beta power increase may also increase pro-
spective, pre-stimulus beta power suppression in the subsequent trial
(te Woerd et al., 2015). Interestingly, such a post-movement beta power
increase has been suggested to reflect a trial-to-trial modification of an
internal model informing future actions (Tan et al., 2014). One might
therefore speculate, that stronger pre-stimulus beta power suppression
in sequence as compared to random trials as observed in the present
study may provide evidence for the formation of an internal model of
the sequence during motor sequence learning in HC.

The result of the linear regression analysis conducted on the present
data provides further evidence for the behavioral relevance of beta
power modulation prior to stimulus onset. More specifically, this ana-
lysis confirmed that the percentage of pre-stimulus beta power sup-
pression relative to the full suppression depth in contralateral motor-
cortical areas during sequence training significantly contributed to
subsequent RT gain in sequence relative to random trials in patients.
However, as additional analyses revealed a strong correlation between
pre-stimulus beta power suppression in the contra- with the one in the
ipsilateral hemisphere, we cannot completely exclude the possibility
that the ipsilateral hemisphere might also contribute to observed RT
gains in sequential trials, especially since the loss of hemispheric la-
teralization with bilateral recruitment of sensorimotor areas has been
suggested to be one characteristic of an aging motor system
(Meziane et al., 2015; Vallesi et al., 2010). Within the group of HC, a
significant relation was not obtained. This difference in findings might
at least to some extent be explained by the more variable neurophy-
siological pattern observed in patients (and a relatively low variability
in the data of HC, respectively: SDHC=15; SDPD=21; see also Sup-
plementary Figure S3) that might result in a stronger and statistically
significant association between the two variables in the patient group
(Goodwin and Leech, 2006). Taken together, those PD patients who
showed rather strong pre-stimulus beta power suppression – and
therefore exhibited a neurophysiological pattern more similar to that in
HC – also exhibited larger learning indices.

Interestingly, Ruiz and colleagues (2014) revealed in an explicit
sequence learning study that anticipatory beta power suppression in the
STN in PD patients at sequence boundaries (i.e., the first and the last
sequence item) is related to better performance, while stronger beta
power suppression before within-sequence items seems to be associated
with poorer performance (Ruiz et al., 2014). Similarly, it is conceivable
that in the present study, the movement related to the first sequence
item (i.e., when the pattern has yet to emerge) differs fundamentally
from the one related to the following sequence items. Unfortunately –
unlike in the case of explicit sequence learning in which the sequence
boundaries are very well set as participants are informed about the
specific sequence they have to perform prior to the experiment – it is
difficult to pinpoint the individual sequence boundaries in implicit
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learning paradigms such as the SRTT as they may differ between par-
ticipants; especially as the embedded sequence is presented repeatedly
without any breaks between the items of the current and the subsequent
sequence. This assumption is indirectly supported by one of our former
studies in which several participants who recognized a repeating pat-
tern were asked to reproduce the sequence. Interestingly, these parti-
cipants did not necessarily begin the reproduction of the sequence with
the first item of the sequence as defined by us (Meissner et al., 2016).
Nevertheless, future MEG and electroencephalography studies in PD
patients implementing explicit rather than implicit forms of motor se-
quence learning paradigms could help to provide more fine-grained
insights into motor sequence learning and its underlying dynamics at
the motor-cortical level.

Our data are consistent with current theories proposing an antici-
patory, predictive nature of beta power modulation (Jenkinson and
Brown, 2011; Oswal et al., 2013b, 2012). Some results fueling this as-
sumption stem from studies on beta activity in PD patients undergoing
STN-DBS surgery (e.g., Oswal et al., 2012). Similarly, motor-cortical
beta activity has been reported to be modulated in an anticipatory
fashion as well (Androulidakis et al., 2007; Perfetti et al., 2011). In-
terestingly, a shift to a rather reactive mode in PD has been proposed
(Meziane et al., 2015; Praamstra and Pope, 2007; te Woerd et al., 2015,
2014). This assumption is supported by the present finding of stronger
beta power suppression several hundred milliseconds after stimulus
onset in patients as compared to HC. It is nevertheless important to
keep in mind that with the present study design, it is not possible to
clearly separate whether beta activity relates to anticipatory processes
or task-specific response preparation. However, results of a previous
study support the former interpretation (Oswal et al., 2012). More
precisely, warning cues signaling the need for an upcoming action –
being it motor or cognitive – were followed by beta power suppression,
independent of the specific nature of the upcoming action. Thus,
modulation of beta activity can be dissociated from task-specific re-
sponse preparation and appears to particularly reflect an anticipatory
function (Oswal et al., 2012). Further evidence for this hypothesis
comes from studies investigating oscillatory beta activity during lan-
guage or tactile tasks (Li et al., 2017; van Ede et al., 2010), suggesting
pre-stimulus modulation of beta activity to represent one mechanism
underlying anticipatory language processing (Li et al., 2017), or the
expectation of tactile stimuli (van Ede et al., 2010). Remarkably, in the
latter study, expectation-induced modulation of beta activity prior to
predictable tactile stimuli occurred independent of whether sensory
events were attentive or not (van Ede et al., 2010). Our data linking pre-
stimulus beta modulation to behavioral performance during the SRTT
in which repetition of the embedded sequence implicitly invites an-
ticipatory processes further add to the proposed anticipatory function of
beta activity even in implicit tasks. This function is possibly compro-
mised in PD.

Beyond its contribution to a better understanding of the functional
significance of pre-stimulus beta activity and the neurophysiological
dynamics of motor sequence learning, the present data may also be of
clinical relevance. Importantly, our results suggest that although motor
sequence learning is reduced in PD patients as compared to HC, it is
nevertheless preserved to some extent. As motor rehabilitation is often
characterized as a “re-learning” process and is therefore based on the
assumption that practice leads to improvement of motor skills, the
preservation of motor (sequence) learning is essential for successful
rehabilitation in PD (Abbruzzese et al., 2016; Krakauer, 2006;
Nieuwboer et al., 2009). Furthermore, a better understanding of the
neurophysiological dynamics linked to (poorer) behavioral perfor-
mance is not only required to disentangle the pathophysiological me-
chanisms underlying this movement disorder but may also help to
further unravel therapeutic strategies and approaches specifically tar-
geting these altered neurophysiological dynamics to improve learning
in future studies.

It is important to note that PD patients remained on their regular

antiparkinsonian medication during study participation to minimize the
effects of general motor impairment on motor sequence learning. Thus,
we cannot exclude the possibility that medication may have affected
the present findings as well. However, time-frequency analysis during
random trials prior to learning did not result in significant differences
between groups. Additionally, reduced beta power modulation prior to
stimulus onset has been reported in PD patients tested OFF medication
as well (Praamstra and Pope, 2007; te Woerd et al., 2015, 2014).
Therefore, we would argue that the present findings are not just driven
by alterations related to antiparkinsonian medication.

5. Conclusion

The present results indicate that pre-stimulus beta power suppres-
sion is not only reduced in PD patients as compared to healthy volun-
teers during a motor sequence learning task, but it also significantly
predicts sequence learning-related RT gains. The present data provide
first evidence for the functional significance of pre-stimulus beta ac-
tivity in motor sequence learning and are well in line with its suggested
anticipatory, predictive function, possibly compromised in PD.
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