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Abstract

Large-scale systematic analysis of gene essentiality is an important step closer toward unraveling the complex relationship
between genotypes and phenotypes. Such analysis cannot be accomplished without unbiased and accurate annotations of
essential genes. In current genomic databases, most of the essential gene annotations are derived from whole-genome
transposon mutagenesis (TM), the most frequently used experimental approach for determining essential genes in
microorganisms under defined conditions. However, there are substantial systematic biases associated with TM
experiments. In this study, we developed a novel Poisson model–based statistical framework to simulate the TM insertion
process and subsequently correct the experimental biases. We first quantitatively assessed the effects of major factors that
potentially influence the accuracy of TM and subsequently incorporated relevant factors into the framework. Through
iteratively optimizing parameters, we inferred the actual insertion events occurred and described each gene’s essentiality on
probability measure. Evaluated by the definite mapping of essential gene profile in Escherichia coli, our model significantly
improved the accuracy of original TM datasets, resulting in more accurate annotations of essential genes. Our method also
showed encouraging results in improving subsaturation level TM datasets. To test our model’s broad applicability to other
bacteria, we applied it to Pseudomonas aeruginosa PAO1 and Francisella tularensis novicida TM datasets. We validated our
predictions by literature as well as allelic exchange experiments in PAO1. Our model was correct on six of the seven tested
genes. Remarkably, among all three cases that our predictions contradicted the TM assignments, experimental validations
supported our predictions. In summary, our method will be a promising tool in improving genomic annotations of essential
genes and enabling large-scale explorations of gene essentiality. Our contribution is timely considering the rapidly
increasing essential gene sets. A Webserver has been set up to provide convenient access to this tool. All results and source
codes are available for download upon publication at http://research.cchmc.org/essentialgene/.
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Introduction

Large-scale systematic analysis of gene essentiality is an

important step closer toward unraveling the complex relationship

between genotypes and phenotypes [1]. However, such analysis

cannot be accomplished without unbiased and accurate annota-

tions of essential genes.

Whole-genome knockout experiments produce the most accu-

rate essential gene annotations, but they often take a consortium of

labs many years to complete in even one organism. It is not

surprising that single-gene knockout results are currently only

available in a handful of well-studied model organisms, such as

Escherichia coli [2] and Saccharomyces cerevisiae [3]. Computational

methods for predicting essential genes, e.g., homology mapping

[4,5,6], constraint-based methods [7,8,9,10] and supervised

learning [11,12,13,14,15], are often useful in reducing the cost

and labor. However, they have limited applicability to understud-

ied species. For example, supervised learning depends on a partial

list of known essential genes which is often unavailable for

understudied species. Constraint-based methods are often limited

to metabolic and signaling pathways and require prior knowledge

of pathways. Homology mapping works best when the model and

target organisms are closely related. Otherwise, the prediction

coverage is often low and it ignores the unique physiology of the

subject species as people have found that orthologs do not

necessarily have the same degree of essentiality [16].

Therefore, to interrogate the essential genes in understudied

species, whole-genome transposon mutagenesis (TM) followed by

sequence-based identification of insertion sites is often the most

practical and the most frequently used experimental approach

[17]. Using this approach, essential genes for a variety of

understudied bacterial species, such as Pseudomonas aeruginosa and

Francisella tularensis novicida, have been identified, greatly increasing

the insights into the essential processes necessary for growth of

these bacteria under defined conditions. As of May 2012, we have

found at least 24 genomic scale TM studies in 19 bacterial species

from literature (Table S1), all of which except two were generated

within the past ten years. For the past three years, we have seen at
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least nine such new datasets from different organisms. As

researchers are starting to analyze conditional essential genes,

that is, essential genes under virtually unlimited growth conditions,

we expect the number of available TM datasets will rapidly

increase in the future years.

As a result of this rapid increase, in current genomic databases,

e.g., [18,19,20], many of the annotations of microbial essential

genes are derived directly or indirectly from TM experiments.

However, unlike single-gene knockouts, TM has intrinsic biases

(see below). Without correcting these biases, the TM assignments

will contain hundreds of mis-annotated essential and non-essential

genes in each organism, which has caused substantial confusion

among the genetics community.

Transposons are segments of DNA that can move (transpose)

from one location in a genome to another [21,22]. The locations

in which a transposon can move depends on the sequence that the

transposase recognizes and cleaves, although the recognition

sequence for some transposons is unclear or has yet to be

determined. TM results in disruption of the region of the genome

where the transposon is inserted. If an insertion within a predicted

ORF allows the resulting strain to form a colony on appropriate

solidified media, it is unlikely that ORF is essential for viability

under those conditions (Fig. S1). Therefore, TM identifies

essential genes using a ‘‘negative’’ approach, i.e., identifying many

regions that are not essential and presuming that everything else is

essential.

Due to the random nature of transposon insertion events, there

are a number of factors that may create systematic biases in TM

experiments. For example, it is inevitable that some genes,

especially shorter ones, will be missed simply by chance

[23,24,25]. This will create false positive errors in which non-

essential genes are determined as essential by TM. On the other

hand, the insertion may take place at any part of a gene, such as

the extreme ends, which may not fully disrupt the function of the

gene product [23,24,25,26,27,28,29,30]. This will create false

negative errors in which essential genes are determined as non-

essential by TM. These biases from TM experiments have

introduced substantial errors in essential gene annotations in

current genomic databases [19]. In order to render the large-scale

integrative and comparative analysis of essential genes possible,

these biases must be quantitatively assessed and corrected.

Several models were previously developed to tackle the biases in

TM. For example, Lamichhane et al. used a Bayesian framework

to estimate essential genes in Mycobacterium tuberculosis with a

subsaturation level of TM [28,31]. Jacobs et al. used a neutral base

pair model to reach an estimation of 307 essential genes in P.

aeruginosa PAO1 with a saturation level of TM [29]. However, the

key limitation of the existing models is that they only take into

account the insertions in viable mutants and ignore those that

disrupt essential genes because these mutants die and, as such, are

not observable. Therefore, the number of real insertions is

underestimated to equal the observed insertions. Also, most of

the existing models assume a gene’s probability of being inserted

only depends on its length and one insertion is sufficient to disrupt

a gene’s function. However, the TM results often show ‘‘hot’’ and

‘‘cold’’ spots in the genome for transposon insertions. Further-

more, it may often require multiple insertions to disrupt a gene’s

functions, depending on the site of the insertion.

Given these caveats, we developed a novel Poisson model based

statistical framework to simulate the TM insertion process and

subsequently correct the experimental biases. Briefly, the statistical

framework works as follows: We first quantitatively assessed the

effects of potential factors that may affect the accuracy of TM

results, such as gene length and relative insertion positions, and

subsequently incorporated relevant factors into the framework.

Through iteratively optimizing parameters, we finalized the model

and inferred the actual insertion events occurred in each gene

given the observed insertion information. Finally we described

each gene’s essentiality on probability measure, and provided

corrections towards possible biases in the TM assigned annota-

tions.

We took advantage of the definitive mapping of essential genes

in E. coli MG1655 strains determined by single gene knockout

experiments (PEC set) [2] to identify the errors in the essential

gene annotations produced by TM experiments (Gerdes set) [23]

by comparing their assignments. Although the single-gene

knockout experiments are not completely error free, they have

been considered the least error-prone [2]. We also realized that the

essential genes uniquely identified by TM may have biological

significance as they may represent genes essential for fitness as

suggested by Gerdes et al. [32]; however, since our focus was on

those essential for survival, we still referred to them as ‘‘errors’’.

Also note, our model is not dependent on the single-gene knockout

results in the target organism (see the Discussion section). The

PEC dataset was only used for assessing the errors in TM dataset

and evaluating our model’s performance.

Results

1. Assessing Overall Error Rates in the TM Annotations of
Essential Genes

Using the PEC set as a reference, we assessed the overall error

rates in the Gerdes dataset. We examined the subset of genes

appearing in both datasets. This subset contains 3833 genes in

total, including 615 TM-assigned essential genes (TmEs) and 3218

TM-assigned non-essential genes (TmNs), and covers 90% (3833

out of 4291) of all genes in the TM dataset.

According to the intersection with the PEC set, the Gerdes

dataset can be divided into four mutually exclusive fractions

(Table 1): true essential by TM (TETmE, essential assigned by

TM and PEC), false essential by TM (FETmE; essential assigned

by TM but non-essential in PEC), false non-essential by TM

(FNTmN; non-essential by TM but essential in PEC) and true

non-essential by TM (TNTmN; non-essential by both TM and

PEC). In this report, we defined the TM essential error rate

(TmER) as the proportion of the FETmEs over the total TmEs;

likewise, the TM non-essential error rate (TmNR) was defined as

the proportion of the FNTmNs over the total TmNs. Among the

615 TmEs, 186 were TETmEs, yielding a TmER of 70%.

Similarly, the TmNR was 2.3%. Typically, in TM experiments the

TmNR is low, but the TmER is relatively high.

2. Assessing the Effects of Four Factors on the Accuracy
of TM Experiments

Previous studies suggested the accuracy of TM experiments may

be affected by four main factors: gene length, insertions in the

Table 1. Using the PEC dataset as gold-standards to identify
the false essential and non-essential genes in the TM dataset.

*E – Essential PEC dataset (Gold Standard)

*N – Non-essential E (259) N (3574)

TM dataset TmEs (615) 186 (TETmEs) 429 (FETmEs)

(Gerdes set) TmNs (3218) 73 (FNTmNs) 3145 (TNTmNs)

doi:10.1371/journal.pone.0058178.t001
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distal regions, number of insertions per gene and polar effects

[23,29]. To quantitatively assess each factor’s influence on the

accuracy of TM results, we examined the association of each

factor with the FETmEs and FNTmNs, respectively (Fig. 1).

(1) Gene length: potentially causing false positive

errors. In TM experiments, the genes that have never been

detected with transposon hits will be assigned as essential (Fig.
S1). The average detectable insertion density is about 1 per 400 bp

in TM experiments under saturation levels [23,24,25]. This

suggests relatively short genes (e.g. #300 bp) would easily be

missed simply by chance, and thus will be incorrectly labeled as

essential.

To quantitatively assess its influence, we compared the length of

essential genes in the Gerdes and PEC sets, using the total genes as

a control (Fig. 1A). The student t-test shows that the average

length of essential genes in the Gerdes set (730 bp) is significantly

shorter than that in the PEC set (1,003 bp) (P-value ,1E-11). It is

also significantly shorter than total genes (982 bp) (P-value ,1E-

25) while the difference between the PEC set and total genes is

considered not significant (P-value .0.05).

(2) Insertions in the 59- and 39-ends of genes: potentially

causing false negative errors. In TM experiments, sometimes

insertions occurring at the extreme ends of a gene’s coding

sequence may not sufficiently disrupt its function

[23,24,25,26,27,28,29,30]. In these cases, essential genes may be

mistakenly assigned as non-essential genes, creating a false

negative error. We compared the distributions of the position of

insertions within the ORFs between FNTmNs and TNTmNs. As

expected, the FNTmNs have a higher percentage of transposon

insertions in the 39- and 59-ends than TNTmNs (Fig. 1B). To

assess the significance of this difference, we simulated pure random

insertion experiments within the coding sequences (see Methods).

The P-values showed that in the 20%-most of the 39-end and the

5%-most of the 59-end regions, the FNTmNs have significantly

more insertions than TNTmNs (Table S2). We named it the

‘‘25% extreme ends’’ rule and used it later in the model.

(3) Number of insertions per gene: potentially causing

false negative errors. Occasionally, a few insertions in a gene

are insufficient to completely disrupt its function, especially when

the target gene is relatively long [23,24,25,26,29,33]. We plotted

the distribution of the number of insertions per gene for both

FNTmNs and TNTmNs (Fig. 1C). The histogram showed that

about 75% of the FNTmNs that were mistakenly assigned to be

non-essential by TM only harbored a single insertion. The average

insertion number per gene among FNTmNs was 1.56, significantly

smaller than TNTmNs (4.13) (P-value #1E-26).

(4) Polar effects: potentially causing false positive

errors. In TM experiments, polar effects can occur when a

transposon inserts in a dispensable gene and prevents the

transcription of its downstream essential genes in the same operon

[23,24,25]. Because the insertion in this dispensable gene actually

disrupts the entire downstream essential genes and causes death of

these mutants, this dispensable gene will be incorrectly labeled as

essential, causing a false positive error.

To detect the number of FETmEs caused by polar effects, we

examined all TmEs within each of 2,665 operons that were

inferred experimentally or computationally (see Methods). If

there exists a TETmE that resides downstream of a FETmE, this

FETmE is considered to be potentially caused by a polar effect.

Among the 429 FETmEs, only 46 of them may be caused by polar

effects. The small number is likely due to the fact that many TM

experiments have been designed to prevent polar effects, typically

by designing transposons with a strong or regulatable promoter

downstream of the transposase but still within the transposon.

3. Developing the Statistical Framework to Correct TM
Errors

We then developed a statistical framework that is capable of

incorporating potential factors that have strong associations with

FETmE and FNTmN assignments. This model not only estimates

the overall error rates, but also assigns a score to indicate the

probability that an individual gene is essential given the TM

assignments. We incorporated three of the above four potential

factors into our model. Since polar effects are only responsible for

a relatively few number of FETmEs, we chose not to include this

factor into our model. The general idea of this model is illustrated

in Fig. 2.

This model requires two assumptions:

(A) Transposons insert randomly and independently into the

coding region of a gene; and

(B) Each transposon has the same ability to disrupt a gene’s

function, although this ability may vary at different regions

of a gene.

Assumption (A) does not require transposon insertions to be

uniformly distributed along the entire genome because of the

insertion ‘‘hot’’ and ‘‘cold’’ spots observed in microbial genomes

Figure 1. Three factors have strong associations with false TM assignments. (A) Gene length. The lengths of TmEs are significantly shorter
than those in the PEC dataset and total genes. Many of these short genes may be false essential genes. (B) Position of insertions. Essential genes
mistakenly assigned to be non-essential by TM often have insertions in the 25% extreme-ends (5% in 59 end and 20% in 39 end). These insertions do
not completely disrupt a gene’s function. (C) Number of insertions. 75% of the essential genes mistakenly assigned to be non-essential by TM only
have one insertion in them.
doi:10.1371/journal.pone.0058178.g001
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and thus provides a more realistic approximation of the process of

transposon insertions.

If we assume that transposons insert into a gene independently

and the insertions occur at a constant rate during mutagenesis,

then this process can be characterized by a Poisson distribution

[34,35]. The probability that there are k insertions occurring

within a gene with length L can be expressed as:

Poisson k; rLð Þ~e{rL rLð Þk=k!

Here r is the local insertion density on the DNA fragment,

estimated by counting the number of insertions within a 30 kb-

long region flanking the coding sequence. If k = 0, this equation

describes the probability that this ORF is missed in TM

experiments.

Based on assumption (B), we defined two parameters P1 and P2

both in the range of (0, 1) representing the probability that an

individual transposon insertion disrupts a gene’s function when the

insertion occurs at the 25% extreme ends or in the middle of a

gene, respectively. We assumed the same probability (P1) for the

5%-most of 59-end and 20%-most of 39-end to disrupt a gene’s

function.

Under these two assumptions, we can calculate the probability

of being essential for each gene given the TM assignments.

(A) If it is a TM assigned essential gene (TmE), we have:

Pr (E~1DTmE)~ Pr (E~1Dnreal§nobs~0) ð1Þ

(B) Similarly, if it is a TM assigned non-essential gene (TmN),

we have:

Pr (E~1DTmN)~ Pr (E~1Dnreal~nobsw0) ð2Þ

Here E is a binary variable and E = 1 if this gene is essential;

otherwise, it is non-essential. nreal represents the real number of

insertions occurring in this gene during the TM experiment and

nobs represents the observed number of insertions in the TM

dataset. Here nobs = 0 if the gene is assigned as essential by TM,

and nobs.0 if it is assigned as non-essential. nobs can be further

separated into two parts n30or50ends and nmiddle to represent the

observed insertions occurring at the 25% extreme ends or in the

middle of a gene, respectively. In the transposon insertion process,

if an insertion hits a true essential gene and disrupts its function,

the inserted mutant will die and this insertion will not be

observable in the TM dataset; therefore the real insertion number

nreal should be greater or equal to the observed insertion number

nobs. While for a non-essential gene, no matter whether an

insertion disrupts its function or not, it will not die. Thus the real

insertion number nreal always equals to the observed insertion

number nobs.

After the derivation of equations, we then used an iterative

procedure [36,37,38] to estimate the values of unknown param-

eters that determine Eqs. (1) and (2) (details see Methods).

4. Validating the Model in E. coli TM Dataset
The Gerdes dataset contains 615 TmEs and 3218 TmNs. Using

the above algorithm, we found the converged P1 = 0.942,

P2 = 0.984 and the overall essential rate ress = 12.84%. Since our

model assigned each individual gene a score to indicate its

probability of being essential, we ranked these genes in the TmEs

and TmNs separately. Among the 615 TmEs, the expected

number of essential genes (
Pn

i P(E~1)) we estimated was 480.

Using the expected number of essential genes as the cutoff, the top

480 genes were named predicted essential genes by our model

among the TM-assigned essential genes (PETmEs) and the

remaining 135 genes were predicted non-essential genes by our

model among the TM-assigned essential genes (PNTmEs).

Similarly, among the 3218 TmNs, the expected number of

essential genes we estimated was 12. Using this cutoff, the top

Figure 2. Illustration of the statistical model. In a TM experiment, if a gene has no observed insertions, meaning it is TM essential or TmEs, what
could it be? There are two possibilities: (1) Part A: It never had any insertion and was missed by all transposons by chance. This means we do not have
useful information to infer what this gene could be, and it is completely blind for us. For any blind gene, we can only try our best guess and assume
that the chance of that gene to be essential (Pr (E~1Dnreal§nobs~0)) is equal to the overall essential gene rate (Pr(overall essential)), and that a gene
to be non-essential is equal to Pr (E~0Dnreal§nobs~0) = 1-Pr (E~1Dnreal§nobs~0). (2) Part B: It actually had insertions, but all inserted mutations
died. (Pr (E~1,nrealw0Dnreal§nobs~0)) This means that this gene is truly essential. In this way, we can now split the TM assigned essential genes into
two parts, TETmE and FETmE. Similarly, if in the TM experiment, a gene is observed to have insertions, meaning it is TM nonessential, what could it
really be? There are also two possibilities: (1) Part C: All these observed insertions are ineffective, and did not interrupt the gene function. This means
again we are blind about this gene. So it has a certain chance to be essential (Pr (E~1,allinsertionsineffectiveDnreal~nobsw0)), and also has a certain
chance to be nonessential (1-Pr (E~1,allinsertionsineffectiveDnreal~nobsw0)). (2) Part D: There was at least one effective insertion, and it did
interrupt the gene function. (Pr (E~1,atleastoneinsertioneffectiveDnreal~nobsw0)~0). This means this gene is truly non-essential.
doi:10.1371/journal.pone.0058178.g002
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12 genes were named predicted essential genes by our model

among the TM-assigned non-essential genes (PETmNs) and the

remaining ones were predicted non-essential genes among the

TM-assigned non-essential genes (PNTmNs).

To assess the accuracy of our predictions, we compared our

results with the PEC dataset (Table 2). Among the 480 PETmEs,

176 (or 37%) were true essential, significantly higher than that in

the original TmEs (186/615 = 30%) (P-value = 0.013, Fisher’s

exact test). Remarkably, among the 135 PNTmEs that we filtered

out, only 10 (or 7.4%) were true essential, significantly lower than

that of the original TmEs, i.e., 30% (P-value ,1E-8). On the other

hand, among the 12 PETmNs, 5 (or 42%) were true essential,

significantly higher than that in the original TmNs (2.3%) (P-value

,1E-6). These results strongly indicated that our model success-

fully enhanced the accuracy of the original TM assignments.

Our results also showed a positive correlation between the

confidence score and the enrichment of essential genes (Fig. 3). In

other words, the higher confidence scores we chose as the cutoff,

the higher percentage of true essential genes our predictions

contained, indicating that our score system is in agreement with

the distribution of essential genes. For instance, the top 100

PETmEs contained 50 true essential genes, this ratio is signifi-

cantly higher than that in the original TmEs (30%) with P-value

,1E-4.

5. Testing the Model’s Robustness in Analyzing
Subsaturation Level TM Datasets

Compared with a saturated TM experiment, an unsaturated

TM experiment generally contains a higher TmER, because genes

are more likely to be missed by transposon insertions and thus

incorrectly assigned as essential.

To test our model’s applicability to unsaturated TM datasets,

we randomly removed 10%, 30% and 50% of the total insertions

from the Gerdes dataset to simulate the effects of different

subsaturation levels of TM experiments. We then applied our

model on these subsaturated datasets.

The results suggested a strong robustness in analyzing

subsaturation level TM datasets (Fig. 3). As shown in Fig. 4,

the lower curve (dashed line) showed the p-values of the Fisher’s

exact test to examine whether the true essential rate in PNTmEs is

significantly lower than that in the original TmEs set. Similarly,

the upper curve (solid line) showed the p-values of the Fisher’s

exact test to examine whether the true essential rate in our

PETmNs is significantly higher than that in the original TmNs set.

For each of the three (10%, 30% and 50%) random experiments,

we repeated 100 times to obtain the error bars. The results showed

that under each of these subsaturation conditions, our model still

significantly improved TM results.

6. Testing the Model’s Applicability to P. aeruginosa by
Allelic Exchange Experiments

The ultimate test is to see if our model is applicable to other

microorganisms. A set of essential genes has been determined by

TM to a saturated level in another c-Proteobacteria, P. aeruginosa

PAO1 (Jacobs dataset) [29]. This TM dataset contains 678 putative

essential genes and 4892 non-essential genes. If we assume the

probability that an individual transposon insertion disrupts a

gene’s function, is the same across different species, i.e., P1 = 0.942

and P2 = 0.984 as those in E. coli, then the overall essential rate ress

we estimated for PAO1 is 10.1% and the expected numbers of

PETmEs and PETmNs are 540 and 15, respectively.

Because a whole-genome single gene knockout dataset is not yet

available in this organism, we chose to pursue allelic exchange

experiments to validate our predictions in PAO1.

In order to make sure our experimental procedure can correctly

identify essential genes, we first tested it on PA4238 as positive

control. PA4238 is a subunit of RNA polymerase, which is the

Table 2. Improvement of overlaps with the PEC dataset using
our model.

TM dataset Our Statistical PEC dataset (Gold Standard)

(Gerdes set) Model E (259) N (3574)

TmEs (615) PETmEs (480) 176 304

PNTmEs (135) 10 125

TmNs (3218) PETmNs (12) 5 7

PNTmNs (3206) 68 3138

doi:10.1371/journal.pone.0058178.t002

Figure 3. Enrichment of true essential genes using different
thresholds of the confidence score.
doi:10.1371/journal.pone.0058178.g003

Figure 4. Robustness of our model at subsaturation levels of
transposon insertions. The dashed line showed p-values of the
Fisher’s exact test to examine whether the true essential rate in PNTmEs
is significantly lower than that in the original TmEs set. Similarly, the
solid line showed p-values of the Fisher’s exact test to examine whether
the true essential rate in our PETmNs is significantly higher than that in
the original TmNs set.
doi:10.1371/journal.pone.0058178.g004
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target of the microbicidal antibiotic, Rifampin [39]. The

essentiality of PA4238 is confirmed by independent gene knockout

efforts [24,29]. As expected, PA4238 was determined by the allelic

exchange experiments as essential. According to our model,

PA4238 has a rank 46 out of 678, higher than the expected

number of essential genes among TmEs, i.e., 540; therefore it was

predicted as essential by our model. In this case, the results from

the TM assignment, our model and the allelic exchange

experiment are consistent (Table 3).

We then selected six ORFs from the PAO1 TM dataset to

further test our model: PA0723, PA2954 and PA2143 were

selected from the TmEs; and PA3746, PA4260 and PA0985 were

selected from the TmNs. The main purpose to conduct allelic

exchange experiments for validations was to demonstrate that TM

indeed contains errors and our method is capable of correcting

some of these errors. To serve this purpose, we chose the genes

that are most likely to be TM errors as our testing cases based on

the following considerations: First, the testing cases among TmEs

should be lower ranked (close to or below the cutoff of 540) while

the testing cases among TmNs should be higher ranked (close to or

above the cutoff 15). The higher-ranked genes among TmEs and

lower-ranked genes among TmNs are mostly agreements between

TM and our model and most likely to be correct assignments;

therefore, they would not be interesting testing cases. Second,

among these lower-ranked TmEs and higher-ranked TmNs, we

challenged ourselves by selecting those more difficult cases, i.e., we

either cannot find an ortholog in E. coli or the assignments based

on orthologs are contradictory to TM assignments. Third, we

chose our testing cases to be on both sides of the cutoffs to test the

robustness of our cutoff setting. Finally, among the short list of

genes that met the above three criteria, we nailed down to six

based on experimental feasibility.

Among the three TmEs (PA2954, PA0723 and PA2143),

PA0723 was a true essential gene but PA2954 and PA2143

turned out to be non-essential. According to our model, PA0723

was ranked 414 out of 678. Because the expected number of

essential genes among TmEs is 540, it was correctly predicted to

be essential. In contrast, PA2954 and PA2143 were given a rank of

588 and 663, respectively. They were both predicted as false

positive error (i.e., non-essential) genes because their ranks were

lower than 540. Our model was correct in all three cases.

Among the three TmNs (PA3746, PA4260 and PA0985),

PA0985 was a true non-essential gene but PA3746 and PA4260

were tested to be essential. Our model assigned PA3746 a rank of

8 out of 4892. Because the rank was higher than 15, the expected

number of essential genes among the TmNs, PA3746 was

predicted to be essential. In contrast, PA0985 and PA4260 were

assigned a rank of 113 and 103, respectively; they were predicted

to be non-essential. Our model was correct in two out of the three

cases.

Overall, among the seven genes tested by allelic exchange

experiments, our model agreed with the experimental validations

in six of them. Remarkably, among all three cases that directly

contradicted the TM assignments, allelic exchange experiments

supported our predictions. Details of allelic exchange experiments

are provided in the Sup (Fig. S2 and

Table S3).

7. Examples of Identified TM Annotation Errors
Confirmed by Literature

Among the TM annotation errors in PAO1 identified by our

model, a number of them have been confirmed by literature.

Below are three examples:

Hfq (PA4944) is a RNA-binding protein in PAO1 and involved

in the Bacterial RNA degradation pathway. It is identified as an

essential gene by TM experiments [29], but assigned as non-

essential by our model (ranked 572 out of the 678 TmEs). A recent

study [40] investigated the effect of Hfq on virulence and stress

response of PAO1 and compared the growth rate of a wild-type

strain and a Dhfq strain. The Dhfq strain showed a reduced

growth rate compared with the wild-type strain, which indicates

that this gene is essential for fitness but not for survival and should

be referred as a non-essential gene here.

FpvI (PA2387) is a RNA polymerase sigma factor and also a

TM-assigned essential gene in PAO1. Our model predicted it as

non-essential by assigning it a rank of 582 out of the 678 TmEs.

Beare et.al studied its role in siderophore-mediated cell signaling

[41]. They found that FpvI is required for the synthesis of

ferripyoverdine receptor FpvA which is part of the signaling

pathway regulating pyoverdine (a form of siderophore) production.

In the experiment, they constructed a DfpvI strain and found that

this mutant produced much lower amounts of FpvA than the wild-

type stain, which suggests that FpvI is required for normal

amounts of FpvA production but not for survival.

PcrG (PA1705) is a regulator in type III secretion system (TTSS)

which enables the bacteria to translocate virulence effectors

directly into the cytosol of host cells. It ranks 559 out of the

678 TmEs by our model and is predicted as a non-essential gene,

contradicting the TM assignment. To further understand its

mechanism, Sundin’s group constructed an in-frame deletion

mutant of PcrG and cultured the mutant in LB medium. They

found the PcrG mutant can up-regulate the expression of

exoenzyme S (ExoS) which has been identified as effectors

targeted into host cells by the TTSS of PAO1 [42]. This

experiment also proved that PcrG is a non-essential gene.

Table 3. Validation using allelic exchange experiments in Pseudomonas aeruginosa PAO1. E – Essential; N – Non-essential.

PAO1 genes Length
Local Insertion
Density Assignments by TM Ranks by Our Model

Assignments
by our model

Assignments by Allelic
exchange experiments

PA3746 1374 4.9521 N 8/4289 E E

PA4260 822 3.4102 N 103/4289 N E

PA0985 1497 7.5415 N 113/4289 N N

PA4238 1002 3.3564 E 46/678 E E (Positive Control)

PA0723 249 7.4446 E 414/678 E E

PA2954 570 2.0336 E 588/678 N N

PA2143 288 2.1479 E 663/678 N N

doi:10.1371/journal.pone.0058178.t003
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8. Testing the Model’s Broad Applicability to Other
Organisms

Francisella tularensis is a Gram-negative, intracellular pathogen

that causes the disease tularemia. F. tularensis novicida is commonly

used as surrogate in virulence studies particularly virulent toward

mice and is also able to cause tularemia-like disease in rodents.

Genome-scale TM experiments have been performed on its

subspecies F. tularensis novicida [25]. This TM library consists of

16,508 unique insertions covering 1,434 out of the 1,767 genes, an

average of .9 insertions per gene, which achieves the highest

coverage among the available TM experiments of bacterial

species. We applied our model on this TM library and estimated

the overall essential rate is 14.5%. Among the 333 TmEs, we

predicted 251 genes as essential labeled them as PETmEs. Among

the 1434 TmNs, we predicted 5 as essential and labeled as

PETmNs. The prediction results have been made available on the

Web server described in the next section. The TM annotations

from other microorganisms will be processed and deposited in our

Web server once the results become available.

9. Developing a Web Server that Provides Convenient
Access to Our Method

To make our model readily available to the research

community, we developed a convenient and user-friendly Web

service named EGTEC (The Essential Gene TM Annotation

Error Corrector) hosted at: http://research.cchmc.org/

essentialgene/. The EGTEC interface is implemented using

PHP-HTML and comprises of two main functions (Fig. 5):

(1) A query tool for a quick exploration of the corrected TM

sample results in bacteria, which currently includes E. coli, P.

aeruginosa and F. tularensis novicida. Once a query is received, the

tool will check for the gene’s presence in the database and

displays the matching records for the input, including the

original TM annotations and the EGTEC’s prediction as well

as the results from single-gene knockout experiments if

available. The tool will accept the input query gene’s name

in the following formats: gene symbol/name, GenBank

accession number or Entrez Gene ID.

(2) An uploading tool for submitting new TM experimental data

by users. The EGTEC accepts user-generated TM experi-

mental results and makes corrections on these results. The

input should contain the following information: (a) Each

ORF’s name, (b) Start and end position of this ORF and (c)

The transposon insert position in this ORF. A sample input

file is provided along with the uploading box. When finished,

the corrected TM annotations including the predicted

probability of each ORF being essential will be sent to the

user through email.

Discussion

The intrinsic biases in TM experiments motivated us to develop

a statistical framework to systematically filter out errors (both

FETmEs and FNTmNs) and thus improved the accuracy in TM-

determined essential gene annotations. This model is significant in

four ways:

First, our model significantly enhances the accuracy of the

original TM assignments. In the E. coli TmEs, our PNTmEs, i.e.,

the false essential genes filtered out by our method, had a

significantly lower true essential rate than that in the original

TmEs. In contrast, in the TmNs, our PETmNs, i.e., the predicted

essential genes from TmNs, had a significantly higher true

essential rate than that in the original TmNs. The confidence

scores generated by our model were shown to have positive

correlations with the enrichment of true essential genes.

Being able to assign PETmNs demonstrates the advantage of

our approach over previous studies by recovering true essential

genes from TmNs. Most of the existing models, e.g., in [28], only

focused on removing false essential genes from TmEs, but are

incapable of recovering false non-essential genes, although

relatively few, from TmNs. In E. coli, among the 12 false non-

essential genes we recovered, five are true essential, significantly

higher than original TmNs (Table 2).

Second, because our model adopts simple but more realistic

assumptions, it is applicable across multiple microorganisms. It is

very important to note that our method is not dependent on single

gene knockout results to make predictions. The single gene

knockout results in E. coli were only used for assessing the TM

errors and evaluating the performance of our predictions. In P.

aeruginosa PAO1 where single gene knockout results are unavailable,

we demonstrated that our method is remarkably accurate based on

literature and the six allelic exchange experiments. Among the

seven chosen genes for an experimental test, six of them were

assigned correctly by our model with an overall accuracy of 86%.

These results clearly demonstrated our method’s reliability and

applicability to organisms that do not have single gene knockout

results. We further demonstrated our model’s broad applicability

to F. tularensis novicida, where single gene knockout results are also

unavailable. Therefore, we believe, if granted full access to the

information of transposon insertion positions in the bacterial

genomes, our model can be readily applicable to all 24 available

TM datasets listed in Table S1.

Third, our model displays robustness in analyzing unsaturation

level TM datasets and resisting with experimental errors as

demonstrated in the simulated unsaturation level TM datasets.

This is potentially useful in significantly reducing the time and

costs currently associated with TM experiments.

Finally, our model is flexible and able to incorporate more

potential factors. For example, we assigned different weights to the

insertions based on the positions where they were inserted in the

genes. In the future, we will consider other factors that might affect

the accuracy of TM experiments [33].

To benchmark our method’s performance against different

types of computational methods, we compared their prediction

performance in Table S4. We only included the studies

conducted in E. coli in order to make an objective comparison.

It is not surprising that supervised methods that rely on gold

standard datasets often outperform non-supervised methods that

do not rely on gold standard datasets. The main problem of

supervised learning is that it is not applicable to understudied

species where very few essential genes are already known;

therefore, its superior performance in sensitivity, specificity and

precision is not meaningful to the problem we intend to solve.

Although the constraint-based method outperforms our model in

precision, its sensitivity and specificity are rather poor. This reflects

its limitation of being dependent on a priori knowledge on pathways

and reactions. Homology mapping has a similar level of

performance as our model, but it requires a closely related model

organism, and the accuracy of assignment is highly dependent on

the distance between the model organism and the target organism.

In this case, homology mapping also performs well mainly because

single gene knockout results are available in a well-studied and

closely-related organism, Acinetobacter baylyi [43]. It is unrealistic to

expect such a model organism is always available for an

understudied species.
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Our approach represents a significant advancement over

Gerdes approach to filter TM errors. First, the cutoff settings in

Gerdes approach appeared to be somewhat arbitrary and lack of

statistical rigorousness. For example, all genes longer than 240 bp

and free from inserts were assigned as essential, and genes with at

least one insertion were designated as non-essential unless they are

relatively long (.900 bp). In contrast, all of our parameters were

determined through the iterative learning process. Second, Gerdes

annotations were not strictly based on TM data but also involved

manual inspection that requires prior knowledge on E. coli

physiology. Therefore, Gerdes approach cannot be easily extended

to an understudied organism and expected to achieve the same

performance. In contrast, our approach only relies on the TM

data, i.e., transposon insertion positions in the bacterial genome.

Even without using prior knowledge to improve our assignments,

our model still significantly outperformed Gerdes approach in

precision and specificity (Table S4).

In other organisms, although the performance metrics cannot

be easily assessed because definite mappings of essential genes are

not yet available in those species, our approach exhibits several

advantages: Our model is capable of estimating the probability

score of being essential for individual genes, rather than only

estimating an overall essential rate for the whole genome as in

Jacobs et al.’s method. In addition, Jacobs et al. used a multinomial

distribution which cannot incorporate the difference between

‘‘hot’’ and ‘‘cold’’ spots. Furthermore, their method is not

applicable for correcting false negative errors, i.e., detecting true

essential genes among TmNs. In Lamichhane et al.’s study, their

method was applicable to a subsaturation level of TM. Since a

gold-standard dataset is not yet available in M. tuberculosis, we

cannot compare our subsaturation results with theirs. In addition,

they also have the same issues as in Jacobs et al.’s method by

disregarding false negative errors and differences in insertion

density. By taking into account these features, our model is

expected to be more realistic and accurate.

Our effort is timely given the large number of existing

annotations of essential genes and rapidly increased TM datasets.

The need for such a system to assess the TM errors becomes even

more urgent as researchers start to explore conditional essentials,

which could hold the key to understanding gene essentiality. For

the past three years, we have seen numerous new bacterial

essential gene sets published and the majority of them were

generated by TM approach [44,45,46,47,48,49,50,51,52,53]

(Table S1). We expect growth of essential gene datasets to

greatly accelerate. Therefore our contribution is not only valuable

but also timely. As long as TM experiments remain the dominant

method to determine essential gens in prokaryotes, our method is

expected to remain useful.

A logical next step is to investigate our model’s applicability to

eukaryotes. However, because eukaryotes have much more

complex genome structure than prokaryotes, e.g., introns, the

mechanism for eukaryotic essential genes is expected to be quite

different from the prokaryotic essential genes. For the same reason,

transposons may also likely work differently in eukaryotes than in

prokaryotes. A thorough investigation on these aspects should be

performed before we apply our model to eukaryotic genomes.

In summary, we have developed a promising tool that is crucial

for large-scale data mining on essential genes. The analysis

Figure 5. Interface of the EGTEC Web server.
doi:10.1371/journal.pone.0058178.g005
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enabled by this tool will eventually lead to a better understanding

on the mechanistic basis underlying gene essentiality.

Materials and Methods

1. Data Sources
In this study, we tested our model on three different prokaryotic

organisms: E. coli, P. aeruginosa PAO1 and F. tularensis novicida. We

chose to study these three organisms because their genomic

sequences and the TM datasets are publicly available.

The genomic and protein sequences of E. coli MG1655 were

downloaded from the Comprehensive Microbial Resource (CMR)

at http://cmr.jcvi.org/. It contained 4,289 protein coding genes in

total.

The E. coli essential dataset was downloaded from Profiling of E.

coli Chromosome (PEC) v4 at http://www.shigen.nig.ac.jp/. This

dataset (PEC set) contained 302 essential genes and 4477 non-

essential genes.

The E. coli TM dataset was downloaded from [23]. Of the total

4291 protein-coding genes in this dataset, 3,311 ORFs have

observed transposon insertions and 649 ORFs have not. The

remaining 331 genes were excluded from analysis because no

reliable PCR data can be obtained for the corresponding region of

the E. coli chromosome for the technical reasons.

The total 5,568 protein sequences of P. aeruginosa PAO1 were

downloaded from http://www.pseudomonas.com/

(Pseudomonas_aeruginosa_PAO1.faa, revision 2009-07-17).

The P. aeruginosa PAO1 TM dataset was downloaded from [29].

This dataset contained 4,892 ORFs that have observed transposon

insertions and 678 ORFs that have not.

The F. tularensis novicida TM dataset was downloaded from [25].

This datasets contain 333 putative essential genes and 1,767

putative non-essential genes.

The E. coli operon dataset was downloaded from Regulon DB

version 6.4 at http://regulondb.ccg.unam.mx/. This dataset

contained 2,665 operons that inferred experimentally or compu-

tationally in the E. coli genome.

2. Simulation of Random Insertions
Assuming a uniform distribution for the transposon insertions

within an ORF, we conducted a simulation experiment for

random insertions. In the Gerdes set, we observed 12,966 total

transposon insertions inside ORFs, excluding intergenic insertions.

We randomly generated 12,966 insertions along the genome,

excluding intergenic regions. For each random insertion, we

recorded its relative position inside the ORF. Repeating this

simulation 1,000 times, we obtained the distribution of the

positions of simulated insertions. We then evaluated the empirical

insertion distribution of TmNs (both TNTmNs and FNTmNs) by

calculating the probability P for the randomized insertions

appearing in a certain position for an equal or greater number

of times than in the real experiment. We concluded that there was

a significant difference if the P-values #0.01 (Table S2).

3. Derivation of Equations
Based on the probability theory, Eq. (1) can be rewritten into

two parts (Fig. 2):

Pr (E~1Dnreal§nobs~0)

~ Pr (E~1,nreal~0Dnreal§nobs~0) ðPartAÞ

z Pr (E~1,nrealw0Dnreal§nobs~0) ðPartBÞ

Part A:

Pr (E~1,nreal~0Dnreal§nobs~0)

~ Pr (E~1Dnreal~0,nreal§nobs~0) Pr (nreal~0Dnreal§nobs~0)

where Pr (E~1Dnreal~0,nreal§nobs~0)~ Pr (E~1Dnreal~0) is

the probability that the gene is essential given the actual insertion

number equal to 0. This means it never had any insertion and was

missed by all transposons by chance. Thus, we cannot further infer

the information about this gene, we assume its probability of being

essential should equal to the overall percentage of essential genes

in the genome. We thus have:

Pr (E~1Dnreal~0)~ Pr (overall essential):

Since the transposon insertion process follows a Poisson

distribution, we get:

Pr (nreal~0Dnreal§nobs~0)~
Pr (nreal~0,nreal§nobs~0)

Pr (nreal§nobs~0)

~Poisson(0; rL)

Part B:

Pr (E~1,nrealw0Dnreal§nobs~0)

~
X

mw0

½Pr (E~1jnreal~m,nreal§nobs~0)

Pr (nreal~mjnreal§nobs~0)�

where Pr (E~1Dnreal~m, nreal§nobs~0), mw0 is the proba-

bility that this gene is essential given that the real insertion number

is m (m .0), and none of these insertions survived. Since we didn’t

observe any insertion, all m insertions should be effective;

otherwise, mutants with ineffective insertions should have

survived. In this case, the target gene is always essential, as all

insertions interrupted its function and caused the mutant’s death.

Thus, we have:

Pr (E~1Dnreal~m,nreal§nobs~0)~1

Pr (nreal~mDnreal§nobs~0)~Poisson(m; rL)

Similarly, Eq. (2) can also be rewritten into two parts (Fig. 2):

Pr (E~1Dnreal~nobsw0)
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~ Pr (E~1, all insertions ineffective Dnreal~nobsw0) ðPartCÞ

z Pr (E~1, at least one insertion effectiveDnreal~nobsw0)ðPartDÞ

Part C:

Since all the insertions have not disrupted this gene’s function

and we cannot further infer the information about this gene, we

assume its probability of being essential should equal to the overall

percentage of essential genes in the genome, thus,

Pr (E~1, all insertions ineffectiveDnreal~nobsw0)

~ Pr (overallessential)(1{P1)n
30or50ends (1{P2)nmiddle

Part D:

Since we observed effective insertions in the target gene and the

mutant with this gene disrupted still survived, the target gene

cannot be essential.

Pr (E~1,atleastoneinsertioneffectiveDnreal~nobsw0)~0

4. Estimating Parameters Using an Iterative Procedure
We iteratively estimated the unknown parameters P1 (the

probability that an individual insertion disrupts a gene’s function

when it occurs within the 25% extreme ends of a gene), P2 (the

probability that an individual insertion disrupts a gene’s function

when it occurs in the middle of a gene) and

ress~ Pr (OverallEssential) (the true essential rate in the genome)

as follows:

Step 1. Based on the model assumptions, we defined the

empirical estimators for P1 and P2 by calculating the number of

corresponding insertions (denominator) and their effectiveness

(numerator) using the definition as follows:

P̂P1~1{

P
i[S(Ess)

ni
30or50ends

=
P

i[S(Ess)

Li

(
P

j[S(Non{ess)

ni
30or50ends

=
P

j[S(Non{ess)

Ljz
P

i[S(Ess)

ni
30or50ends

=
P

i[S(Ess)

Li)

P̂P2~1{

P
i[S(Ess)

ni
middle=

: P
i[S(Ess)

Li

(
P

j[S(Non{ess)

ni
middle=

P
j[S(Non{ess)

Ljz
P

i[S(Ess)

ni
30or50ends

=
P

i[S(Ess)

Li)

ð3Þ

Here S Essð Þ and S Non{essð Þ denote the set of essential and

non-essential genes at the current step, respectively. ni
middle is the

observed insert number within the middle regions of the ith gene;

ni
30or50ends is the observed insert number at the 39 or 59ends and Li is

the length of that gene.

Step 2. Using P̂P1,P̂P2 to estimate ress:

In this step, first, we calculated the expected number of essential

genes in TmEs and TmNs respectively, by the following equation:

E(TETmE)~
X

i[TmE

Pr (Ei~1Dni
real§ni

obs~0)

E(FNTmN)~
X

i[TmN

Pr (Ei~1Dni
real~ni

obsw0)
ð4Þ

Then ress can be estimated by:

ress~
E(TETmE)zE(FNTmN)

NTmEzNTmN

ð5Þ

Substituting (4) into (5), we can get:

ress~

P
i[TmE

P
mw0

Poisson(m; riLi)

NTmEzNTmN {
P

i[TmE

Poisson(0; riLi){
P

i[TmN

(1{P̂P1)
ni

30or50ends (1{P̂P2)
ni

middle

ð6Þ

Step 3. Using the current ress and P̂P1,P̂P2, to assign an essential

probability score to each individual gene in the TM dataset.

Step 4. Ranking these essential probability scores in TmEs set

and using the expected number of essential genes in that dataset as

the cutoff, the top genes are considered as PETmEs. Similarly,

ranking the essential probability scores in TmNs dataset and using

the expected number of essentials in that dataset as the cutoff, the

top genes are considered as the PETmNs, so our filtered essential

dataset should be the combination of the PETmEs and PETmNs.

Step 5. Updating the current essential dataset S Essð Þ using this

filtered essential dataset and the remaining genes to update the

current non-essential dataset S Non{essð Þ.
Step 6. Going back to the Step 1 until the result converges.

In our model, the initial P1 and P2 were randomly assigned

between 0 and 1, and updated during the iteration process until

converge.

5. Experimental Validation in P. aeruginosa PAO1
To verify our predictions, we conducted allelic exchange

experiments on the seven chosen genes: PA4238, PA0723,

PA0985, PA2954, PA2143, PA3746 and PA4260. First, using

genomic DNA from strain PAO1 as template and standard PCR

techniques, we cloned the PCR fragments containing the desired

genes and 1 kb of flanking DNA into pUC19. We next inserted a

non-polar aacC1 (GmR) cassette from pUCGM [54] into the target

gene in the same transcriptional orientation to ensure that there was

no polar effects on the downstream genes. The inserted fragments

were then subcloned into the gene replacement vector, pEX100T,

and the resultant constructs were conjugated into PAO1 with

selection for GmR. Transconjugates were resolved on LB agar

containing 7% sucrose as a counter-selectable marker. Isogenic

mutants were confirmed initially by PCR and then Southern blot.

Complementation was both via single copy using the unique attB

locus as well as via stable plasmids (details in Text S1).
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