
BioMed CentralBMC Genomics

ss
Open AcceResearch article
Comparative genomic analysis and evolution of the T cell receptor 
loci in the opossum Monodelphis domestica
Zuly E Parra, Michelle L Baker, Jennifer Hathaway, April M Lopez, 
Jonathan Trujillo, Alana Sharp and Robert D Miller*

Address: Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM 87131, 
USA

Email: Zuly E Parra - zulyep@unm.edu; Michelle L Baker - mlbaker@unm.edu; Jennifer Hathaway - jjm@unm.edu; 
April M Lopez - amlopez9@gmail.com; Jonathan Trujillo - jonathan-trujillo@uiowa.edu; Alana Sharp - asharp@unm.edu; 
Robert D Miller* - rdmiller@unm.edu

* Corresponding author    

Abstract
Background: All jawed-vertebrates have four T cell receptor (TCR) chains: alpha (TRA), beta
(TRB), gamma (TRG) and delta (TRD). Marsupials appear unique by having an additional TCR: mu
(TRM). The evolutionary origin of TRM and its relationship to other TCR remain obscure, and is
confounded by previous results that support TRM being a hybrid between a TCR and
immunoglobulin locus. The availability of the first marsupial genome sequence allows investigation
of these evolutionary relationships.

Results: The organization of the conventional TCR loci, encoding the TRA, TRB, TRG and TRD
chains, in the opossum Monodelphis domestica are highly conserved with and of similar complexity
to that of eutherians (placental mammals). There is a high degree of conserved synteny in the
genomic regions encoding the conventional TCR across mammals and birds. In contrast the
chromosomal region containing TRM is not well conserved across mammals. None of the
conventional TCR loci contain variable region gene segments with homology to those found in
TRM; rather TRM variable genes are most similar to that of immunoglobulin heavy chain genes.

Conclusion: Complete genomic analyses of the opossum TCR loci continue to support an origin
of TRM as a hybrid between a TCR and immunoglobulin locus. None of the conventional TCR loci
contain evidence that such a recombination event occurred, rather they demonstrate a high degree
of stability across distantly related mammals. TRM, therefore, appears to be derived from receptor
genes no longer extant in placental mammals. These analyses provide the first genomic scale
structural detail of marsupial TCR genes, a lineage of mammals used as models of early
development and human disease.

Background
The hallmarks of the vertebrate adaptive immune system
are antigen specific receptors, the T cell receptors (TCR)
and immunoglobulins (Ig) encoded by genes that

undergo somatic DNA recombination to generate diverse
binding specificities. The TCR are expressed by thymus-
derived lymphocytes (T cells) that play a major role in reg-
ulation and effector functions of immune responses. Each
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T cell expresses a unique TCR that binds a specific antigen
resulting in the activation of an immune response [1,2].
TCR are heterodimers comprised of either alpha (TRA)
and beta (TRB) or gamma (TRG) and delta (TRD) combi-
nations, respectively. These two combinations define the
two major lineages of T cells: αβT cells and γδT cells [3,2].
αβT cells typically recognize peptide antigens presented
on major histocompatibility complex (MHC) encoded
molecules. In contrast γδT cells have been shown to be
either MHC restricted or in some cases, similar to Ig, able
to bind free antigen [4]. Ig are expressed by antibody
forming cells (B cells), which produce both a membrane
bound form of Ig that comprises the B cell receptor (BCR)
and a soluble form that is free antibody. Like TCR, Ig are
made up of two different chain types, a heavy (IgH) and
light (IgL) chain. TCR and Ig chains both contain variable
domains that bind the antigen and membrane-proximal
constant (C) domains. It is the variable domains that are
encoded by gene segments that undergo somatic recombi-
nation to generate diversity in binding specificity. The
gene segments encoding the variable domains of TRA,
TRG and IgL chains are the variable (V) and joining (J)
gene segments, while the variable domains of TRB, TRD
and IgH chains are encoded by exons assembled from V,
diversity (D) and J gene segments [5]. Recombination of
these gene segments takes place in the thymus for devel-
oping T cells and adult bone-marrow for developing B
cells [5].

Of the immunoglobulin superfamily (IgSF) members, the
TCR and Ig are each other's nearest relatives, however
there are dissimilarities to their genetic structure and evo-
lutionary history [6,7]. For example all jawed-vertebrates
appear to contain the same four homologous TCR iso-
types: TRA, TRB, TRG, and TRD [8]. In contrast there is
variability in the number and class of Ig isotypes in differ-
ent vertebrate lineages [9,10]. In addition the organiza-
tion of TCR loci appears to be more conserved than Ig. For
example, in cartilaginous fish most Ig loci are organized as
multiple, unlinked clusters of [V-(D)-J-C], limiting the
combinatorial usage of their gene segments [11].
Whereas, in bony fish and tetrapods the majority of Ig loci
are organized in the translocon style of Vn-(D)n-Jn-Cn
[11]. TCR loci tend to be organized in the translocon style
in all lineages. These differences between TCR and Ig
genes are likely the result of dissimilar selection forces on
the two different antigen receptor systems and have made
determining the evolutionary relationship of the TCR and
Ig chains to each other unclear [12].

The relationship between Ig and TCR is further muddled
by the recent discoveries in marsupials and sharks of TCR
loci that appear to be hybrids between ancestral Ig and
TCR loci [13,14]. In marsupials, a mammalian lineage
that diverged from eutherians (placental mammals) 186

to 193 million years ago (MYA), a new fifth TCR chain,
named TCR mu (TRM) has been identified [14,15].
Unlike the conventional TCR, TRM has a tandem cluster
organization and its origins appear to have involved a
recombination between and ancestral TCR locus, most
likely a TRD and IgH. TRM appears analogous to an unu-
sual shark TCR called NAR-TCR, which utilizes the C
regions of TRD and upstream Ig-like V regions [13]. Both
TRM and NAR-TCR are expressed in an atypical TCR iso-
form that contains double variable domains. Marsupial
TRM and shark NAR-TCR, however, are not orthologous
but rather the product of convergent evolution generating
common features [14]. Nonetheless the presence of TCR
with these features in both marsupials and cartilaginous
fish, make it likely analogous TCR will be found in other
vertebrate lineages and illustrate a level of plasticity in
TCR evolution heretofore unrealized.

The availability of the first completely sequenced marsu-
pial genome provides the opportunity to investigate the
evolutionary origins of TRM and its relationship to the
conventional TCR in mammals [16]. Towards this aim we
have determined the complete genomic organization,
content and evolution of the loci encoding both the con-
ventional TCRs (TRA, TRB, TRG and TRD) and the
recently discovered TRM locus in the opossum Monodel-
phis domestica. In addition, these analyses provide a level
of detail for the TCR genes of a marsupial that has only
been available for a limited number of eutherians such as
human and mouse.

Results and Discussion
TRA/D locus
Previous physical mapping of the TCR loci in the opos-
sum revealed that the TRA and TRD were co-localized on
chromosome 1p [17]. Analysis of the opossum whole
genome sequence confirmed that the TRD genes are clus-
tered within the TRA locus resembling the organization of
TRA/D observed in eutherians and birds (Figure 1) [18-
20]. In opossum, the TRA/D locus spans approximately
1.3 Mb, making it intermediate in size compared to that
of human at 1 Mb and mouse at 1.65 Mb [21,22]. To
investigate the degree of genomic conservation in this
region we identified the genes syntenic to opossum TRA/
D locus and compared these to the available genomic data
for mouse, human, cow and chicken using the current
ENSEMBL databases for each species [23]. At the 5' end of
the opossum TRA/D locus are the methyl-transferase like
3 (METTL3), zinc finger protein (SALL2) and several
olfactory receptor (OR) loci that have conserved synteny
in human, mouse, and cow, but not chicken (Figure 1 and
Additional file 1). However these genes are not immedi-
ately flanking the cow TRA/D locus. Also conserved at the
5' end of the TRA/D locus in opossum, human, and
mouse are TRA V genes (TRAV) interspersed with the OR
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Map of the opossum TRA/TRD locusFigure 1
Map of the opossum TRA/TRD locus. TRAV (red), TRDV (yellow), TRDJ (light green), TRAJ (dark green) and TRDD (orange) gene 
segments are shown numbered by their location in order across the locus. TRV segments are designated with the subgroup 
number followed by a period and a designated number according to their location. TRA segments that were also found 
expressed with TRDC, and therefore TRA/DV, have diagonal yellow stripes. TRDC (light blue) and TRAC (dark blue) are also 
indicated. Transcriptional orientation is indicated by the direction of the arrow on each segment. Presumptive pseudogenes are 
indicated with a ψ. Syntenic genes discussed in the text are indicated in gray.
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loci. In opossum and mouse there is only one TRAV seg-
ment interspersed with the OR, whereas in human there
are two at this location (Figure 1) [22]. These TRAV gene
segments (opossum TRAV1, mouse TRAV1, and human
TRAV1.1 and 1.2) appear orthologous in phylogenetic
analyses forming their own distinct group (group B) in a
tree of TRAV and TRDV sequences (Figure 2). The 3' end
of the TRA/D locus appears to be the most conserved
across species since many of the loci have conserved syn-
teny in both mammals and birds. The opossum has two
copies of the defender against cell death gene 1 (DAD1) also
found at the 3' end of the human, mouse, cow and
chicken TRA/D loci. In those eutherian mammals exam-
ined the position of the abhydrolase domain-containing pro-
tein 4 gene (ABHD4) is also conserved (Figure 1 and
Additional file 1). The opossum TRDV6 gene segment fur-
ther illustrates the conservation of the TRA/D locus across
mammals. This gene segment is in an inverted orientation
and located downstream of the TRD C (TRDC). A clear
ortholog of TRDV6 is found in both human and mouse
with the same location and reading orientation and these
gene segments from all three species fall into the same
phylogenetic clade (see below, Figure 2). These results all
support the overall organization of the mammalian TRA/
D loci and their flanking genomic regions being highly
conserved over a span of at least 186 My and as long as
300 My in some cases [15,24].

Overall the organization and complexity of gene segments
within the opossum TRA/D locus is similar to that of
human and mouse. There are 74 total V segments (TRAV
plus TRDV) in opossum, a number intermediate to that of
human and mouse (Table 1). In human and mouse the V

Phylogenetic tree of the TRAV, TRDV and TRA/DV gene seg-ments from mammalian and avian species using the neighbor joining methodFigure 2
Phylogenetic tree of the TRAV, TRDV and TRA/DV gene seg-
ments from mammalian and avian species using the neighbor 
joining method. Opossum TRV sequences are indicated in 
bold. Mammalian gene segments that are known to be 
expressed as TRA/DV are indicated with an asterisk. TRV 
genes fall into eight groups (A-H, indicated with braces) 
which indicate the evolutionary relationship of these genes. 
Branch supports are indicated as the percentage of trees 
based on 1000 bootstrap replicates.
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Table 1: Number of TRV, TRD, TRJ and TRC genes found in 
human, mouse and opossum. The numbers of functional genes 
are indicated in parenthesis.

Species\TCR Human† Mouse† Opossum

TRAV* 54 (44–47) 98 (73–84) 68 (56)
TRAJ 61 (50) 60 (38) 53 (53)
TRAC 1 (1) 1 (1) 1 (1)
TRDV 3 (3) 6 (5) 6 (4)

TRA/DV 5 10 20
TRDD 3 2 2
TRDJ 4 (4) 2 (2) 6 (5)
TRDC 1 (1) 1 (1) 1 (1)
TRBV 64–67 (40–48) 35 (21–22) 36 (27)
TRBD 2 2 4 (3?)
TRBJ 14 (12–13) 14 (11) 18 (18)
TRBC 2 (2) 2 (2) 4 (4)
TRGV 12–15 (4–6) 7 (7) 9 (9)
TRGJ 5 (5) 4 (4) 7 (5)
TRGC 2 (2) 4 (3) 1 (1)

* Include the TRAV that are TRA/D.
† [21]
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gene segments are either TRAV or TRDV, in other words
used in TRA or TRD chains respectively, or in some cases
specific V segments have been found expressed in either
TRA or TRD chains and have been designated TRA/DV.
The category a particular V segment falls into is histori-
cally defined by a number of criteria. One criterion is
nucleotide similarity to V segments defined already in
other species; by this criterion there are 68 opossum TRAV
and six TRDV segments when compared with human and
mouse. These two groups, with a single exception, are spa-
tially separated in the TRA/D locus with the TRAV seg-
ments at the 5' end and the TRDV at the 3' end of the
locus. The exception is a single TRDV segment (TRDV1)
interspersed with the TRAV segments (Figure 1). Of the 68
TRAV and 6 TRDV, 12 and 2 respectively appear to be
pseudogenes due to absence of a complete open reading
frame (ORF) (Figure 1, Table 1). This is a ratio of func-
tional to non-functional gene segments comparable to
human and mouse (Table 1).

To determine which of the 74 V gene segments are also
used as TRA/DV we performed RT-PCR on 23 day old thy-
mus RNA using combinations of primer pairs specific for
each of the V segment subgroups (see below) paired with
either TRA or TRD C regions (TRAC and TRDC respec-
tively) (not shown). This age was chosen as an early age
where the thymus is fully mature [25]. Nineteen of the
TRAV segments and all four of the functional TRDV seg-
ments were found expressed with both TRAC and TRDC
resulting in a total of 23 apparent TRA/DV segments (Fig-
ure 1 and Table 1). The number of opossum TRA/DV may
be an underestimate since it is possible some TRAV may
be rarely expressed with TRDC or may appear at different
times during development than was examined. Alterna-
tively this number could be an overestimate as well, since
it is possible that some combinations are negatively
selected in the thymus and not used in the periphery.
Either way this appears to be a comparatively high
number of TRA/DV segments in the opossum relative to
human and mouse (Table 1).

V gene segments evolve by gene duplication and deletion
resulting in degrees of relatedness amongst segments [26].
These are defined as subgroups with the segments belong-
ing to the same subgroup by having 80% or greater nucle-
otide identity. By this criterion the current 68 TRAV
segments can be placed into 41 subgroups, where the
nucleotide identity between subgroups ranges from 32.1
to 79.5%. The six TRDV gene segments were sufficiently
different, with nucleotide identity ranging from 33.6 to
61.9%, that each belonged to its own distinct subgroup.
Phylogenetic analyses using TRAV and TRDV segments
were performed to elucidate their evolutionary related-
ness. Opossum sequences were compared with sequences
from human, mouse, rabbit, cow, sheep, and chicken

using the same dataset as used by Su et al. [27] to define
the major phylogenetic groups (Figure 2). Eight groups of
V gene segments (designated A through H) with bootstrap
values greater than 89% emerged from the inclusion of
the marsupial sequences (Figure 2). All eight contain
opossum sequences (Figure 2). Four of these, groups A
through D, were defined previously and only included
TRAV or TRAV/D [27]. However, the addition of opossum
sequences revealed four new V groups (E through H) not
previously recognized or requiring reevaluation. Group E
contains TRAV, TRDV and TRA/DV sequences; groups F
and G only TRDV sequences; and group H TRAV and TRA/
DV sequences. The addition of the opossum sequences to
this analysis substantiate the statement that all these sub-
groups were present in the common ancestor of amniotes
and that some species have lost segments that belong to
different subgroups [27].

These analyses also allow us to evaluate the evolution of
mammalian V segments that can be utilized with either
TRA or TRD chains over a larger time-span than has been
available previously. TRA/DV sequences clearly belong to
different groups rather than forming a monophyletic clus-
ter (Figure 2) and, as observed for human and mouse,
TRA/DV regions are dispersed throughout the opossum
TRA/D locus, although most are located towards the 3'
end of the locus (Figure 1). Considering that αβ and γδT
cells recognize potentially very different antigens these
results continue to support the high level of plasticity in V
gene utilization at this locus.

The number and complexity of D and J gene segments in
the opossum TRA/D locus is also comparable to that of
human and mouse (Figure 1, Table 1). Encoding TRD
chains are at least two D and six J gene segments (TRDD
and TRDJ respectively), all of which are located upstream
of a single TRDC. There are at least 53 TRAJ segments
located between the TRDC and TRAC all of which appear
to be functional by the criteria defined above for the V
gene segments (Figure 1, Table 1).

The opossum TRAC and TRDC regions are encoded by
three exons (Figure 3A, 3B) that, as reported previously,
encode residues conserved in other species [28,29]. For
both TRAC and TRDC, exon 1 encodes an IgSF domain,
which contains two cysteine residues that form the intra-
chain disulfide bond. Exon 2 encodes the connecting pep-
tide (Cp) containing the cysteine residue involved in the
inter-chain disulfide bond. Exon 3 encodes the transmem-
brane (Tm) and a short cytoplasmic (Ct) region (Figure
3A, 3B). In the TM region of both TRA and TRD there are
two hydrophilic residues (lysine and arginine) that are
conserved in other species and that are important for
interaction with other dimers from the TCR complex [30].
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There are five potential N-glycosylation sites in the opos-
sum TRAC and two in the TRDC [28,29].

TRB locus
TRB has been physically mapped to chromosome 8q in
the opossum [17]. The opossum TRB locus spans 400 kb
making it smaller in size than its human and mouse
homologues that are about 650 kb each (Figure 4)
[31,22]. Genes syntenic the opossum TRB locus are also
conserved across human, mouse, cow and chicken. These
include the trypsinogen genes (TRY) found at the 5' and 3'
ends of the TRB locus and intermixed between the TRBV
and TRBC gene segments (Figure 4) [22]. The mono-oxy-
genase DBH-like 2 (DBHL) is found at the 5' end of the
locus in the opossum, similar to human, mouse, and cow,
but not in chicken. Genes such as kell blood group glycopro-
tein (Kel) and ephrin type-b receptor 6 precursor (EPHB6)
found at the 3' end of the opossum TRB locus have con-
served synteny in mammals and chicken (Figure 4). As

with TRA/D, the TRB locus organization is highly con-
served between opossum and eutherians. This is further
illustrated by a TRBV segment (TRBV28 in opossum)
located at the 3' end of the locus that is in the reverse ori-
entation relative to the other gene segments. A clear ortho-
logue of this gene segment is present in human (TRBV30)
and mouse (TRBV31) making this an ancient arrangement
(Figure 4 and group F in Figure 5).

There are 36 opossum TRBV segments (Figure 4, Table 1)
and these can be grouped in 28 subgroups based on nucle-
otide identity with the value between subgroups ranging
from 38.5 to 68.5%. Compared with other TCR, the TRB
locus in eutherians appears to contain a higher number of
V pseudogenes, where 19% and 34% of TRBV are pseudo-
genes in human and mouse, respectively. This pattern
appears to hold for the opossum since nine of the 36
TRBV segments (25%) appear to be pseudogenes (Table
1).

Exon and intron organization of the opossum TRC genesFigure 3
Exon and intron organization of the opossum TRC genes. Numbers above and below indicate the length of the exons and 
introns in base pairs, respectively. Indicated in white circles are the donor splice sites and in black the acceptor splice sites. A: 
TRAC; B: TRDC; C: TRBC1; D: TRBC2; E: TRBC3; F: TRBC4; G: TRGC.
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Phylogenetic analyses of the TRBV regions from different
mammals and chicken reveal that the opossum TRBV
regions are very diverse with six groups (A to F) identified
(Figure 5). Human, mouse and opossum TRBV sequences
are found in all six groups, supporting their presence
before the divergence of marsupial and eutherian mam-
mals (Figure 5) [27]. Three sequences chickenB1S1,

mouseB2 and opossumB20 did not cluster with any other
sequence, nor with each other, and therefore not included
within any of the groups.

As in human and mouse, the opossum TRB D, J, and C
genes are organized in tandem cassettes. The human and
mouse TRB locus contains two of such D-J-C cassettes

Map of the opossum TRB locusFigure 4
Map of the opossum TRB locus. TRBV (red), TRBD (orange), TRBJ (green) and TRBC (blue) are indicated. Transcriptional orienta-
tion, pseudogenes, and syntenic genes discussed in the text are indicated as in Figure 1.
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while the opossum has four (Figures 3C–3F and 4). In the
opossum, each cassette contains a single TRBD, four or
five TRBJ, and a single TRBC. All four cassettes appear to
be functional and TRBJ gene segments from each have
been found in TRB transcripts (data not shown).

The four opossum TRBC regions are very similar to each
other at the nucleotide level and in intron – exon organi-
zation. Each TRBC region is encoded by four exons (Figure
3C–F). Exon 1 encodes the immunoglobulin domain
which contains two conserved cysteines residues impor-
tant for the intra chain disulfide bond formation. There
are three potential N-glycosylation sites in exon 1. Exon 1
of TRBC1, TRBC2 and TRBC3 have 100% nucleotide iden-
tity and TRBC4 differs by only a single non-synonymous
nucleotide substitution (K10E) that encodes a lysine
(AAA) instead of the glutamate (GAA). Exon 2 encodes
the Cp and it contains a conserved cysteine residue used
for the inter chain disulfide bond (Figure 3C–F). The Cp
from the four opossum TRB share more than 82.6%
nucleotide identity. Exon 3 encodes the Tm region and
contains a lysine residue involved in the interaction with
the CD3 complex. The Tm regions are much conserved
among the four opossum TRBC, sharing greater than
85.1% nucleotide identity. Exon 4 encodes the cytoplas-
mic region and it also includes 3' untranslated region.

Due to the high degree of sequence similarity among the
four cassettes described above it is difficult to fully recon-
struct the duplication events that led to the current
arrangement in the opossum. However, cassettes 2 and 3
share two characteristics indicating they are derived from
a relatively recent tandem duplication. First of all, both
cassettes are nearly identical in nucleotide sequence over
a 12.8 kb region that extends from 4.8 kb upstream of a
non-functional copy of cyclin A2 including the gene seg-
ments TRBD, TRBJ to 100 bp downstream of TRBC (Addi-
tional file 2). Secondly both cassettes 2 and 3 have a cyclin
A2 gene 5' of the D-J-C gene segments, which is not
present in the other two cassettes (Figure 4). Cyclin A2 is
also associated with the cow TRB locus but is not in
human, mouse or chicken. This is consistent with the cyc-
lin A2 gene being inserted near the TRB D-J-C cassettes
prior to the divergence of marsupials and eutherians, with
subsequent loss in some eutherian species such as human
and mouse.

TRG locus
TRG has been physically mapped to chromosome 6q in
the opossum [17]. As in human and mouse the TRG locus
is the smallest and least complex of the three conventional
TCR loci. From the most 5' V to the 3' untranslated region
(UTR) of the single C region, the opossum TRG locus
spans only approximately 90 kb (Figure 6), smaller than
that in human (150 kb) and mouse (205 kb) [32,33]. The

Phylogenetic tree of the TRBV gene segments from mamma-lian and avian species using the neighbor joining methodFigure 5
Phylogenetic tree of the TRBV gene segments from mamma-
lian and avian species using the neighbor joining method. 
Opossum TRBV sequences are indicated in bold. The percent 
bootstrap values based on 1000 replications are indicated. 
Major phylogenetic groups (A-F) are indicated with braces.
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opossum TRG locus has a translocon organization, which
is different from that present in human and mouse (Figure
6). The human TRGV segments are upstream of two TRGJ-
TRGC cassettes, while in mouse there are four cassettes
that contain TRGV, TRGJ and TRGC gene segments
[34,33]. Even though the organization of V, J and C gene
segments appears different between human, mouse and
opossum, the genes flanking this locus are conserved
among these species (Figure 6). Amphiphysin (AMPH) and
the related to steroidogenic acute regulatory protein D3-N-ter-
minal like (STARD3NL) are found at the 5' and 3' end of
the TRG locus respectively (Figure 6)[22]. Both AMPH
and STARD3NL are also associated with the TRG locus in
cow and chicken, although their locations appear changed
when searching in their current assembled genomes [35].
In cows and sheep there are two TRG loci, TRG1 and TRG2
[36,37]. To determined if the opossum also has more than
one TRG locus we examined its genome thoroughly by
performing BLASTN searching of the entire MonDom5.0
assembly using the TRG cDNA and genomic sequences.
Only a single TRG locus was identified and this corre-
sponds to the locus we mapped previously to chromo-
some 6q (Figure 6) [17].

There are nine TRGV gene segments present in the opos-
sum and these are divided into four subgroups based on
nucleotide identity (Figure 7). All TRGV segments appear
to be functional, and have been found expressed in the
thymus (not shown). The number of TRGV segments is
similar to that in mouse where there are seven V segments,

all of which are functional. In human there are fourteen V
segments, but only six are functional (Table 1).

Previously, phylogenetic analyses of the mammalian and
avian TRGV segments revealed the presence of eight
ancient groups [38]. Addition of the opossum TRGV
sequences to these analyses revealed two additional
groups, group I and J. Group I contains human, mouse
and opossum TRGV4. Support for this group is low (Fig-
ure 7), however it is likely that these three sequences from
opossum, human and mouse are derived from the same
ancestral gene since they also have similar RSS sequences
(data not shown). The new group J contains only the
members of the opossum TRGV1 subgroup (Figure 7),
which is related to the previously defined group F that
contains sequences from human, rabbit, sheep and cow
[38]. This relationship is not well supported however, and
two groups may not have arisen from a common ancestral
gene segment (Figure 7). Opossum TRGV3 segments
group in a previously defined group A. The single member
of opossum TRGV2 subgroup does not clearly cluster with
any existing group (Figure 7).

There is only a single opossum TRGC region (Figure 3G
and 6) in contrast to four in mouse (three of which are
functional) and two in human (both functional) (Table
1). The opossum TRGC is encoded by three exons. Exon 1
encodes the immunoglobulin domain and contains a sin-
gle N-glycosylation site. An unusual characteristic
described previously in marsupials was the absence of the

Map of the opossum TRG locusFigure 6
Map of the opossum TRG locus. TRGV (red), TRGJ (green) and TRGC (blue) are indicated. All other designations are as in Figure 
1.
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second cysteine residue required for the formation of
intrachain disulfide bond in the TRGC region [38]. Exon

2 encodes the Cp and exon 3 encodes the Tm, Ct and
3'UTR regions (Figure 3G).

TRM locus
The TRM locus has been described so far only in marsupi-
als and is located on chromosome 3q in the opossum
[14]. Homologs to TRM have yet to be found in any euth-
erian mammal examined so far (results not shown). Pre-
vious analyses of the TRM locus were consistent with TRM
being a hybrid locus generated by recombination between
ancestral Ig and TCR genes [14]. To examine this hypoth-
esis further we analyzed the genes flanking the TRM locus
to look for any evidence of this recombination. On the
immediate centromeric, 5' side of TRM are three zinc fin-
ger protein genes of the C2H2 type (ZNF3) (Figure 8 and
Additional file 1). Unfortunately these share similarity to
human and mouse ZNF3 genes on several chromosomes
making orthology difficult to establish (data not shown).
On the telomeric, 3' side of TRM are genes encoding
Speckle type POZ-like protein (PCIF1-like) and Myelin Oli-
godendrocyte Glycoprotein (MOG). In both cases PCIF1 and
MOG have paralogous copies in the opossum genome
and the paralogue syntenic to TRM is the least similar to
the eutherian homologue. None of the genes flanking the
opossum TRM locus have conserved synteny in human
and mouse making it difficult to identify a region of the
eutherian genome that is homologous to the region of the
opossum genome containing TRM. In other words, and in
contrast to the conventional TCR, the chromosomal
region containing TRM is not well conserved in mam-
mals.

Previously we reported that the TRM V gene segments
appeared to be more similar to Ig V gene segments than
that of TCR [14]. This conclusion was drawn from an anal-
ysis of a limited number of available marsupial TCR V
gene segments at that time. Availability of the complete
TCR genomic sequences described above allows us to fur-
ther test this observation. TRM is organized in tandem
clusters where complete clusters contain two classes of V
segments: a single non-rearranged V gene segment
(TRMV) and an unusual V gene segment which is already
joined to D and J genes (TRMVj) in the germline DNA
[14]. The opossum has six such complete clusters. The
remaining two clusters are partial, lacking the TRMV and
TRMD gene segments (Figure 8) [14].

To investigate the evolutionary history of the individual
TRM clusters we compared the sequence and organization
of the six complete clusters (clusters 1, 2, 3, 4, 5, and 7)
and two partial clusters (clusters 6 and 8). These analyses
revealed three classes of clusters based on gene content
and nucleotide sequence identity. These three classes
likely represent the most ancient duplications of TRM
clusters. The lineages generated by these older duplica-

Phylogenetic tree of the TRGV gene segments from mamma-lian and avian species using the neighbor joining methodFigure 7
Phylogenetic tree of the TRGV gene segments from mamma-
lian and avian species using the neighbor joining method. 
Opossum TRGV sequences are indicated in bold. The percent 
bootstrap values based on 1000 replications are indicated. 
Major phylogenetic groups (A-J) are indicated with braces.
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tions are represented by clusters 1, 2 and 3, respectively.
Clusters 5 and 7 have similar gene content (three TRMD
segments) and share greater nucleotide sequence identity
to cluster 3 and represent more recent whole cluster dupli-
cations that would have followed the duplication of an
additional D segment in this lineage [14]. Clusters 4, 6,
and 8 contain two TRMD segments and share greatest
nucleotide sequence identity to cluster 2, representing
another round of more recent duplications. Cluster 1 is a
third class unto itself based on not sharing significant
sequence similarity to the others [14]. These results are
consistent with the current complement of TRM clusters
in opossum being the result of whole cluster duplications
followed by divergence of each cluster. These duplication
events have resulted in partial clusters cases and different
numbers of clusters in different marsupial species; bandi-
coots for example appear to have only two TRM clusters
[14,29].

Opossum TRMV and TRMVj each form distinct clades in
a phylogenetic analysis and share only 38 to 43.5% nucle-
otide identity to each other and are, therefore, from dis-
tinct subgroups (Figure 9A) [14]. Now having the
complete genomic sequence from the opossum, we
wished to compare the TRMV genes with V genes from the
conventional TCR and Ig loci. When TRMV and TRMVj
are compared to all conventional opossum TCR V gene
segments the similarity also remains low; nucleotide iden-
tity between TRM V genes and TRA, TRB, TRG, and TRD V
genes ranges from 27 to 43%. In other words, the TRA/D,
TRB, and TRG loci do not contain V segments from which
either TRMV or TRMVj appear to have been derived. The
greatest similarity for TRM V genes remains with the IgH
V gene segments (VH) with nucleotide identity ranging
from 34 to 51%. However, the clades of TRMV and TRMVj
remain outside those containing VH genes from a variety
of species (Figure 9A). In addition we compared the TRM

Map of the opossum TRM locusFigure 8
Map of the opossum TRM locus. TRMV regions are colored in red, TRMD in orange, TRMJ in green, TRMVj in yellow and TRMC 
in blue. Clusters are numbered starting at the 5' end with V, D, J gene segments and C regions numbered according to the clus-
ter to which they belong. All other designations are as in Figure 1.
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Phylogenetic analyses of TRMV to other V genes from TCR and Ig lociFigure 9
Phylogenetic analyses of TRMV to other V genes from TCR and Ig loci. A: The relationship of the V gene segments from IgH, 
IgL, NAR, TRA, TRD, TRB, TRD and TRM. Tree shown was generated using the neighbor joining method. Opossum TRM 
sequences are indicated in bold. Numbers at the nodes indicate the percent bootstrap values based on 1000 replicates. B: Phy-
logenetic tree showing the relationship of V gene segments from opossum TRM to IgH V gene segments from four distantly 
related marsupials. This analysis includes all the opossum IgH V genes which belong to three different subgroups (VH1–VH3). 
Available VH1 sequences from the brush-tail possum, tammar wallaby, Northern brown bandicoot and Virginia opossum were 
also used in the analysis. NAR-TCR was used as an outgroup. The tree was generated using the neighbor joining method with 
the Tajima-Nei model. Bootstrap values are indicated as in figure 9A.
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V genes to all the germline VH in opossum and four other
marsupial species (Tammar wallaby, Virginia opossum,
Brush-tail possum, and Northern Brown bandicoot) and
TRMV and IGHV continued to form distinct clades (Figure
9B). These results are consistent with a conclusion that,
indeed, TRMV are most related to IGHV, but not suffi-
ciently similar to extant marsupial IGHV to determine
from which they might have been derived.

In addition to the six functional TRMV gene segments
located within the TRM locus, there is a single TRMV
orphon gene (TRMV-OR2) located on opossum chromo-
some 2 in a region containing a number of flanking
sequences resembling long interspersed repeat elements
(LINE)(data not shown). TRM is the only of the TCR loci
in the opossum for which orphon V gene segments have
been found. TRMV-OR2 appears to be non-functional and
has no leader peptide, but it does contain a complete V
gene segment and the recombination signal sequence
(RSS). TRMV-OR2 is most similar to TRMV2 and TRMV4,
sharing 96 and 95% nucleotide identity, respectively. The
high degree of identity between these functional gene seg-
ments and the orphon is consistent with the latter being
the result of a relatively recent duplication event that,
based on the flanking LINE elements may have been due
to transposition [39]. TRMV-OR2 provides additional evi-
dence for the role of retroelements in both gene transloca-
tion in marsupials. A similar translocation was reported
previously for opossum MHC class I genes, where two
class I loci (UB and UC) had been translocated outside the
MHC region. UB and UC are similarly tightly flanked by
retroelements [40,41]. Furthermore, TRMV-OR2 may also
provide an additional connection between retroelements
and the evolution of TCR genes themselves in marsupials.
TRMVj is a variable region gene segment that appears to
have been generated by retro-transposition since it is lack-
ing an intron that all V gene segments have and is already
joined to the D and J gene segments in the germline [14].
Although highly speculative, it is possible that translo-
cated orphons such as TRMV-OR2 may have contributed
to the activation of local retroelement genes to allow their
co-expression when the TRM locus is actively transcribed.
This would have been a necessary step in the retro-trans-
location events that generated TRMVj.

Is TRM present in lineages other than marsupials?
The availability of a large number of vertebrate genome
sequences, with varying degrees of depth of sequence cov-
erage, provided the opportunity to search for TRM or
TRM-like genes in species other than marsupials. A search
of the available genomes using the BLAST algorithm and
opossum TRM sequences was unable to identify a homo-
logue in any of the eutherian species available. This search
included human, mouse, rabbit, dog, cat, cow, horse,
hedgehog, elephant and armadillo. The rabbit, cat, hedge-

hog, elephant and armadillo are low coverage genome
sequences ranging from 1.86× to 2×. While it is possible
that in any given species the TRM locus was missed in the
sequencing, it is unlikely that such a random gap would
have been consistently present in all the eutherian
genomes. Therefore we conclude that TRM is not likely
present in any eutherian lineage. We also searched the cur-
rent chicken and the anole lizard (Anolis carolinensis)
genomes in a similar manner and were unable to detect
clear TRM homologues. In the case of chicken and all the
eutherian genomes, the TRD homologues were identifia-
ble indicating that our search strategies are able to pick up
this conventional TCR locus. Furthermore, we were able
to identify a clear TRM homologue in the recently com-
pleted platypus genome sequence
(Ornithorhynchus_anatinus-5.0) available at GenBank.
Further characterization of the platypus TRM locus is
ongoing and beyond the scope of this paper. Nonetheless
identification of these genes in a monotreme, which are
separated from marsupials and eutherians by 217 to 231
MY [15], further supports that our search strategies should
be able to identify TRM homologues in other species.
These results are also consistent with TRM being present
early in the evolution of mammals and therefore likely
lost in the eutherian lineage.

Conclusion
First and foremost, we have described in detail the
genomic content and complexity of the T cell receptor loci
for the opossum Monodelphis domestica, the first such anal-
ysis available for a marsupial. The opossum is arguably
the most extensively studied marsupial species and is used
as a model of human disease and development. The opos-
sum, for example, is one of the few mammalian model
organisms that develop melanoma following exposure to
ultraviolet radiation providing a cancer model [42]. Addi-
tionally, opossums are a natural host and a reservoir of the
causative agent of Chagas disease, Trypanosoma cruzi [43].
Like all marsupials, opossums give birth to highly altricial
young also providing a model for early immune as well as
other anatomical system development. Further character-
ization of the immune system in the opossum, and T cell
immunobiology in particular, is important for better
understanding of these disease and developmental mod-
els. Complete characterization of the TCR genomics in
this species is one step in that direction.

In spite of detailed analyses of the opossum conventional
TCR loci, the origins of TRM remain enigmatic. The cur-
rent evidence support the following conclusions and
model for the origin of TRM: 1) There likely was a recom-
bination or insertion event between an IgH and TCR locus
(Figure 10); 2) The TCR locus involved was most likely
TRD or a TRD-like based on sequence similarity [14].
Unfortunately the highly conserved and stable organiza-
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tion of the TRA/D region across birds and mammals does
not provide clues as to how TRD might have participated
in the origins of TRM; 3) The IGH-TCR hybrid formed
likely underwent a whole or partial duplication event giv-

ing rise to multiple sets of V, D, and J elements one of
which remained unrearranged in the germline, the other
becoming germline joined either through direct RAG
mediated V(D)J recombination in the germline (left-hand

Diagram of possible scenarios for the origin of TRMFigure 10
Diagram of possible scenarios for the origin of TRM. Non-homologous recombination between ancient IgH and TCR loci gave 
rise to a hybrid locus. A duplication event of part of the hybrid locus presumably created and additional set of V, D and J gene 
segments. Subsequently two possible alternatives are given for the origin of TRMVj. Left panel: A V(D)J recombination in germ 
cells followed by deletion of the intron located within the sequence encoding the leader peptide. Right panel: A V(D)J recombi-
nation event occurs in somatic cells, followed by transcription and splicing, resulting in a complete mRNA transcript. This 
mRNA was reverse transcribed to DNA by a reverse transcriptase and it was inserted back into the genome by homologous 
recombination. V, D and J gene segments and C regions are color-coded as in previous figures. TRMV and TRMVj are distin-
guished as red or yellow color, respectively. The exon encoding leader peptide is indicated with an L.
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path in Figure 10) or through retrotransposition (right-
hand path in Figure 10). Ongoing analyses of the TRM
locus in the platypus may yield further insights into these
possible scenarios for the origins of this unusual TCR
chain.

Methods
Genome analyses
The opossum whole genome assembly MonDom5 was
used in this study and it is available at GenBank under the
accession number AAFR00000000[23]. The location for
all TCR gene segments in MonDom5 is provided in Addi-
tional file 3. For comparative purposes the current
genome assemblies from human (NCBI 36), mouse
(NCBI m37), cow (Btau_3.1) and chicken (WASHUC2),
rabbit (RABBIT), dog (CanFam2.0), cat (CAT), horse
(preEnsembl EquCab2), hedgehog (eriEur1), elephant
(BROAD E1), armadillo (ARMA) and the anole lizard
(AnoCar1.0) were searched for any evidence of TRM.
Genomes were analyzed using BLAST assembled genomes
tools [23,35].

RNA extraction
Opossum lymphoid tissues were collected and immedi-
ately processed to extract the RNA or stored in RNAlater®

(Ambion, Austin, TX) at 4°C for 24 hours and stored at -
80°C for use later. Whole RNA extraction was performed
using the Trizol RNA extraction protocol (Invitrogen,
Carlsbad, CA). Tissue was homogenized in 1 ml of Trizol®

Reagent per 100 mg until the tissue was completely dis-
persed. Phase separation was done using 200 µl of chloro-
form per 1 ml of Trizol. RNA was precipitated with 500 µl
of isopropanol per 1 ml of trizol, washed with 70% etha-
nol and resuspended in 50 to 100 µl of DEPC water.
DNase treatment to remove contaminating DNA has been
performed using Ambion's kit TURBO DNA-free
(Ambion, Austin, TX). Each sample was quantified using
the NanoDrop ND-1000 Spectrophotometer (NanoDrop
Technologies, Wilmington, DE).

Reverse transcription, PCR and sequencing
Reverse transcription-polymerase chain reactions (RT-
PCR) were performed using GeneAmp RNA PCR Core Kit
(Applied Biosystems, Foster City, CA). Amplifications of
cDNAs were performed using AdvantageTM-HF 2 PCR
(BD Biosciences, CLONTECH Laboratories, Palo Alto,
California) with the conditions: 94°C for 1 minute, dena-
turation at 94°C for 30 seconds, annealing/extension
according to the melting temperature of the primers, and
a final extension period of 68°C for 5 minutes.

PCR products were cloned using TOPO TA Cloning® Kit
for sequencing (Invitrogen, Carlsbad, CA). Plasmids were
sequenced using BigDye Terminator Cycle Sequencing Kit
v3 (Applied Biosystems, Foster City, CA) in 10 µl reactions

and analyzed on an ABI Prism 3100 DNA automated
sequencer (PerkinElmer Life And Analytical Sciences Inc,
Wellesley, MA). Analyses of chromatograms were done
using the SequencherTM 4.6 program (Gene Codes Cor-
poration, Ann Arbor, MI).

Identification of TRV, TRD, TRJ, TRC genes
To determine the location, content and organization of
the TCR genes, the whole opossum genome was searched
using the BLAST algorithm. TRA, TRB, TRG, TRD and TRM
were located using sequences previously isolated
[28,29,38,14]. The V and J segments were located by sim-
ilarity to corresponding segments from other species and
by identifying the flanking conserved RSS.

Rapid amplification of 5' complementary DNA ends (5'
RACE) performed on opossum thymus mRNA was used
to identify novel, expressed V, D and J segments. In addi-
tion to using 5' RACE, PCR using primers that are specific
for each V family were also used in RT-PCR to amplify
cDNA containing VDJ recombinations that are underrep-
resented in the RACE PCR. Primers used to amplify the
conventional TCR are complementary to the most con-
served sequences of the V regions and have been paired
with primers located on the C regions (Additional file 4).
Sequences obtained by these means were compared with
the whole opossum genome using the BLAST algorithm to
identify novel TCR gene segments. This approach allowed
the identification of gene segments in six possible reading
frames, which also help to find gene segments located in
the reverse orientation and D segments that may be used
in multiple reading frames. The exon-intron organization
of V regions was determined using sequences obtained by
5' RACE.

Determination of the exon-intron organization in the C
regions was done using BLAST to compare available cDNA
sequences that encode complete TCR chains to the opos-
sum genomic sequences. Additionally, transcripts encod-
ing the C terminal end of TCR were obtained by 3' RACE
performed on thymus cDNA. Clones obtained by 3' RACE
PCR were used to identify the CP, TM and CT and 3'
untranslated regions (UTR) for each one of the TCR.
cDNA made using the Oligo dT primer was used to per-
form 3' RACE PCR. The Oligo dT primer supplies a prim-
ing site for the GeneRacerTM 3' PCR primers. Sequences
obtained by 3' RACE were aligned with the germline
sequences to determine the location, intron-exon bound-
aries and splice sites of these exons.

Nomenclature
Opossum gene segments were named following the IMGT
nomenclature established for human and mouse [44].
TRV segments were numbered according to their location,
from the 5' to 3' end of the locus. TRAJ segments were
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numbered from 3' to 5' according to a nomenclature pro-
posed by Koop et al. [45] and followed by IMGT. The
TRBD, TRBJ and TRBC found in four cassettes in the opos-
sum are numbered according to the cassette to which they
belong and the position of the cassette from 5' to 3' in the
locus.

Phylogenetic analyses
Nucleotide sequences that encode from FR1 through FR3
of the V regions identified from each one of the opossum
TCR loci were compared to TCR V sequences from other
species retrieved from GenBank. The sequences were
aligned using ClustalX [46] and BioEdit [47] programs.
Phylogenetic analyses were performed using MEGA ver-
sion 3.0 [48] for the distance methods (neighbor joining
and minimum evolution). Confidence values were
obtained from bootstrap analyses using 1000 replica-
tions.

The accession numbers for sequences used in the phyloge-
netic analyses are:

Figure 2
Human: A8.4: D13077; A3: X57534; A16: DQ097913;
A9.2: X57531; A40: DQ097942; A10: DQ097904; A27:
DQ341447; A25: DQ097923; A35: DQ097935; A22:
DQ097920; A20: X70305; A34: DQ097934; A30:
X58768; A41: DQ097943; A36/DV7: X61070; A17:
DQ097914; A6: X58747; A24: M17661; A21: U50404;
A23/DV6: D13071; A29/DV5: M17664; A1.1: X04939;
A26.1: L06886; A4: M17663; A38-2/DV8: D13074; A14:
S51029; D3: M23326; D1: AY357942; D2: S24406; A19:
Z46641; A2: DQ097917. Mouse: A9: M33586; A17:
X60319; A12.3: M38680; A6: M34200; A11: DQ340292;
A13: M38102; A4: L47342; A7: X56719; A14.3: L77149;
A5.4: M38681; A10: X57397; A3.1: X02967; A1: M22604;
A2: X03760; A21/DV12: M94080; A15-2/DV6-2:
M37599; D5: X12729; D4: M23545; TRADV16D:
M16118; D2.2: M37280. Rabbit: D4: 38120; 885:
M12885; D1: D26555; D5: D38121. Sheep: A622:
M55622; D1S1: Z12989; D6: AJ005908; D7: AJ809501;
D4: AJ005906; D2: AJ005904; D5: Z12995; D3S2:
Z12996; A35: U78035. Cow: 014: D90014; 013: D90013;
015: D90015; 011: D90011; 012: D90012; 017: D90017;
D113: D16113; 016: D90016; D116: D16116. Chicken:
611: GDU04611; 612: GDU04612; 613: GDU04613.

Figure 5
Human: B11.3: X58797; B7.2: U07975; B12.1: X07224;
B14: X06154; B17: U03115; B2: M64351; B27: U66061;
B25.1: L27610; B13: U03115; B4.3: X58812; B21.1:
L27608; B23: L27614; B5: X61439; B9: M27380; B3.1:
U07977; B15: U03115; B24.1: L27612; B10.3: U17047;
B28: U08314; B6.9: X61447; B19: U48260; B30: L06893;
B20.1: X72719; B29.1: M13847. Mouse: B14: AE000664;

B16: L29434; B3: AE000663; B21: X16691; B26: K02548;
B23: X59150; B24: M61184; B12: M30881; B2:
AE000663; B4: X56725; B17: AE000664; B29: X00696;
B10: X16694; B13.3: M15616; B19: AJ249821; B31:
X03277; B30: X16695; B20: M11859; B1: X01642. Rab-
bit: B8: BAA04245; B11: BAA04248; B9: BAA04246;
B7S1: BAA04241; B1: AAA31472; B5: BAA04239; B10:
BAA04247; B2: M13895; B6: BAA04240. Sheep: B6S1:
AAB88431; B8S1: AAB88433; B10S1: AAB88434; B1S5:
AAB88425; B7S1: AAB88432; B22S1: AAB88440; B3S1:
AAB88427; B13S1: PQ0068; B15S1: AAB88438; B12S1:
AAB88435; B17S1: AAB88439; B2S1: AAB88426; B4S1:
AAB88430. Cow: B126: PQ0062; B129: PQ0065; B125:
PQ0061; B122: JQ0473; B123: PQ0060; B124: PQ0059.
Chicken: B1S1: B36198; B2S2: AAA62753.

Figure 7
Human: G2: M13429; G3: S60779; G4: S60780; G2:
M27335. Mouse: G3: AF037352; G6: M13338; G4:
M13336; G7: AF037352; G1: Z22847. Rabbit: G1S2:
D38137; G1S3: D38138; G1S1: D38135; G1S4: D38139;
G2S1: D38142. Sheep: G6S1: Z13007; G2S1: Z12999;
G2S2: Z13000; G2S3: Z13001; G2S4: Z13002; G5S1:
Z13005; G5S2: Z13006; G1S1: Z12998; G3S1: Z13003;
G4S1: Z13004. Cow: G6: AY560834; G1S1: D16119;
G1S3: D16131; G5S11: D16126; G5S7: D16130; G5S6:
D16129; G5S16: D16133; G3S1: U73186; G3S2:
U73187; G4S1: U73188. Platypus: V3.1: AAY82120;
V3.2: AAY82094; V1.1: AAY82100; V1.2: AAY82093; V1.3:
AAY82109; V2.2: AAY82110; V2.3: AAY82114; V2.1:
AAY82119. Chicken: G3S8: U78235; G3S4: U78231;
G3S3: U78230; G2S7: U78225; G2S8: U78226; G2S9:
U78227; G1S4: U78212; G1S5: U78213; G1S3: U78210;
G1S8: U78216.

Figure 9A
IgH: Hsheep80: U80145; Hmouse21: M27021;
Hhuman47: X64147; Maxolot43: L20243; Hmouse69:
K01569; Hhuman14: X05714; Mxenopus84: M20484;
Hmouse70: M21470; Hhuman00: DQ454900;
HHlama75: AY544575; HHlama33: AY342133;
HHlama32: AJ629032; HHlama86: AF441486; Hpig94:
U15194; Hhuman62: U80162; Hopossum13: AF012113;
Hopossum24: AF012124; Hhuman86: M99686;
Hmouse65: M25465; Hmouse85: M31285; Hmouse01:
X03301; Mchicken48: M30348; Mzebrafish80:
AF281480; Mcatfish60: DQ230560; Mtrout03:
DQ831803; Mrockcod55: AF303555; Hwolffish86:
AY188786; Hsturgeon61: DQ257661; Wnurseshark50:
U51450; Wlungfish27: AF437727; Mnurseshark51:
M92851; Hhornshark49: X13449; Hsandbarshark57:
AY548357. NAR-TCR: TnarsharK88: DQ022688;
Tnarshark10: DQ022710; Tnarshark06: DQ022706.
NAR: Nwobbegong92: AF336092; Nwobbegong94:
AF336094; Nnurseshar03: AF447103; Nnurseshar81:
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AY114781. IgL: Khuman92: Y08392; Khuman98:
DQ915098; Ksheep10: X54110; Krabbit53: AF211353;
Krat09: U39609; Khorse11: X75611; Kopossum08:
AY074408; Lnurseshark44: GCU15144; Khamster65:
U17165; Khuman98: AY320598; Lmouse88: DQ986488;
Lray46: AB062646; Lseabream69: EF555069;
Lsturgeon42: AJ387842; Lsalmon17: AF273017;
Lseabass79: AJ291779; Ltrout60: X65260; Lhuman77:
AF216777; Lopossum81: AF049781; Lchicken67:
S65967; Lxenopus78: L76578; Lhuman69: Z73669. TRG:
TGhuman29: M13429; TGplatypus21: DQ011321;
TAmouse98: M34198; TArabbit85: M12885;
TGhuman79: S60779; TGcow86: U73186; TGrabbit42:
D38142; TGcow88: U73188. TRA/D: TAsalmon97:
EF467297; TAsalmon05: EF466505; TAfugu52:
AY198352; TAselfish71: AY198371; TAselfish49:
AY198349; TAcod44: AJ133844; TAfugu95: AB222395;
TDhalibut71: AB076071; TDfugu79: AB222479;
TAzebrafish50: AL592550; TADhuman96: Z14996;
TAsheep35: U78035; TDsheep03: AJ005903. TRB:
TBtrout23: OSU18123; TBseabream37: AM490437;
TBfugu32: AB222432; TBselfish13: AF324813;
TBopossum8.1: XM_001363148; TBmouse82:
DQ983582; TBsheep11: AF030011; TBrabbit19: D17419;
TBhuman04: M27904; TBsheep17: AF030017; TBcow29:
D90129; TBmouse16: M15616.

Figure 9B
Gray short-tailed opossum: IGHV1-1: AAC48826;
IGHV1-6: AAC48820; IGHV1-11: AAC48816; IGHV1-16:
AAC48836; IGHV1-23: AAC48846; IGHV2-1: AAC48849.
Remaining germline sequences are available at
AAFR00000000. Brush-tail possum: 70: AAL87470; 71:
AAL87471; 72: AAL87472; 73: AAL87473; 74: AAL87474;
76: AAL87476; 77: AAL87477; 78: AAL87478; 79:
AAL87479; 91: AAD41691; 92: AAD41692; 41:
AAT40441; 40: AAT40440; 44: AAT40444; 43: AAT40443;
42: AAT40442. Virginia opossum: P83 is an unpublished
sequence kindly provided by Dr. R. Riblet. Tammar Wal-
laby: sequences are unpublished but available upon
request. Northern Brown Bandicoot: Bandicoot58:
AY586158. Shark NTCR: AAY98815.

Dot plot analyses
Comparisons of the genomic sequence were performed
using the program Spin from the Staden Package [49]. Dot
matrix plots were generated to determine degrees of simi-
larity among cassettes for the TRB locus. The sequence
analyzed includes the four TRB cassettes with coding and
non-coding sequence from 3kb upstream of the most 5'
TRBD (TRBD1) segment to the most 3' TRBC (TRBC4)
segment, which comprises 51 kb. Although not shown,
similar comparisons were performed for the other TCR
loci.

Abbreviations
TCR: T cell receptor. TRA: T cell receptor alpha. TRB: T cell
receptor beta. TRG: T cell receptor gamma. TRD: T cell
receptor delta. TRM: T cell receptor mu. Ig: immunoglob-
ulin. V: variable gene segment. D: Diversity gene segment.
J: Joining gene segment. C: constant region. Tm: trans-
membrane region. Cp: connecting peptide. Ct: cytoplas-
mic region. RSS: recombination signal sequence. MHC:
major histocompatibility complex.
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