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Abstract

Recently much effort has been invested in using convolutional neural network (CNN) mod-

els trained on 3D structural images of protein-ligand complexes to distinguish binding from

non-binding ligands for virtual screening. However, the dearth of reliable protein-ligand x-ray

structures and binding affinity data has required the use of constructed datasets for the train-

ing and evaluation of CNN molecular recognition models. Here, we outline various sources

of bias in one such widely-used dataset, the Directory of Useful Decoys: Enhanced (DUD-

E). We have constructed and performed tests to investigate whether CNN models devel-

oped using DUD-E are properly learning the underlying physics of molecular recognition, as

intended, or are instead learning biases inherent in the dataset itself. We find that superior

enrichment efficiency in CNN models can be attributed to the analogue and decoy bias hid-

den in the DUD-E dataset rather than successful generalization of the pattern of protein-

ligand interactions. Comparing additional deep learning models trained on PDBbind data-

sets, we found that their enrichment performances using DUD-E are not superior to the per-

formance of the docking program AutoDock Vina. Together, these results suggest that

biases that could be present in constructed datasets should be thoroughly evaluated before

applying them to machine learning based methodology development.

Introduction

Virtual screening plays an essential role in lead identification in the early stages of drug discov-

ery [1,2]. Accurate lead identification can dramatically reduce the time and costs associated

with experimental assays. Therefore, developing computational tools that can identify lead

compounds with pharmacological activity against a selected protein target has been a long-

standing goal for computational chemists. A number of structure-based docking tools that aim
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to predict ligand binding poses and binding affinities have been developed and have enjoyed

moderate success over the last three decades [3–12].

Inspired by the success that deep learning has achieved in speech and image recognition

[13–18], many groups have sought to apply deep learning methodology to protein-ligand

binding prediction [19–27]. Of these, the grid-based CNN approach has been reported to have

promising performance [21,25–27]. The approach constructs a 3D grid of atom type densities

from the protein-ligand structure in the binding site. When training a virtual screening model,

these grids are fed into the model, which automatically optimizes its parameters to minimize a

loss function whose value reflects the model’s ability to distinguish between binding and non-

binding compounds in the training set.

While CNN algorithms have existed for some time [28,29], the recent resurgence and suc-

cess of CNN-based methods has widely been attributed to increased computational power and

the development of large, highly-curated datasets [18]. It is generally believed that in order to

implement CNN-based models in virtual screening, large and diverse training sets and inde-

pendent test sets are required to effectively train and objectively evaluate the models [30].

The Database of Useful Decoys-Enhanced (DUD-E) contains a large number of experimen-

tally verified actives and property-matched decoys and has been widely utilized to train and

test machine learning models and compare their performance with that of simple docking

tools [23–25,31–37]. In many CNN-based virtual screening studies, it is typical to see models

achieve an area under the receiver operating characteristic (ROC) curve (AUC) greater than

0.9 for many targets from DUD-E [22,25,27]. Although some studies have indicated that

DUD-E may have limited chemical space and issues with analogue bias and bias resulting

from the decoy compound selection criteria [38,39], it has not been clearly elucidated how

these potential biases affect CNN model development and performance.

A perceived advantage of CNN-based virtual screening approaches over more traditional

approaches such as physics-based empirical scoring is that, rather than requiring manual tun-

ing of weights and terms of a scoring function, CNN models can automatically learn the fea-

tures that determine binding affinity between a ligand and its protein target. However, the

main disadvantage of complex machine learning models such as CNN is that it is unclear what

features of a dataset the model is prioritizing in making its binding assessments. In a tradi-

tional parameterized scoring function, each term has a physically-meaningful interpretation

(H-bond and hydrophobic contacts, ligand desolvation, etc.) and the importance of each term

can be assessed by their relative weights. In machine learning approaches, there are no such

easily-interpretable terms, and it is difficult to assess what the models are actually learning.

To investigate the causes that lead to the high performance of CNN-based virtual screening,

we define three sources of information that the models can learn from. 1) Protein-ligand

interactions: It is widely believed that the physics that govern molecular recognition will apply

to novel targets and drug candidates. A hope for the machine learning-based approach is that

models will learn the essential physics of molecular interactions and therefore be applicable to

new targets and the exploration of a novel ligand chemical space. 2) Analogue bias: Binders of

the same target, homologous targets, or targets with similar functionality are thought to be cor-

related in chemical space. Models that learn these correlations could be applied to find addi-

tional compounds that are similar to existing known binders of such targets. 3) Decoy bias:

For each target in DUD-E, decoys were selected by the authors with the criteria that the decoy

ligands have similar physical properties to the actives but differ topologically. However, this

might lead to the decoys being distinguishable from the actives by patterns resulting from the

selection criteria. A model that learns such patterns can distinguish decoys from actives only

when the decoys fit the biased feature pattern and would likely not be applicable to the pro-

spective identification of novel compounds.
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In the following work, we carefully construct training and test set combinations that are

designed to isolate or minimize the contributions of each of these biases. We find that the high

performance of CNN models trained on DUD-E is not attributable to having learned the fea-

tures of protein-ligand interactions but rather to analogue and decoy bias inherent in the

DUD-E dataset. We show that it is incorrect to infer that a model has successfully learned pro-

tein-ligand interactions solely on the basis of its high performance on a test set. Due to the hid-

den biases in the DUD-E dataset that we describe in this work, one should be very cautious

when using DUD-E for machine learning based methodology development.

Methods

Preparation of model input data

The CNN model requires as input ligands posed in a protein-binding pocket with each ligand

marked as active or inactive. In this work, we used the complete set of proteins from the

DUD-E dataset, which is one of the most widely-used datasets used to develop and validate vir-

tual screening approaches. The dataset consists of 102 targets, each of which has a group of

experimentally-tested active molecules and property-matched decoys. In total, it contains

22,886 actives and over a million decoys [37].

Most of the actives in DUD-E do not have crystal binding poses. We generated poses for all

the actives and decoys in the training and test sets using the smina implementation of Auto-

Dock Vina [10,40]. All compounds are docked against the reference receptor within an 8 Å
cubic box centered around a reference ligand. The docked data can be found at http://bits.csb.

pitt.edu/files/docked_dude.tar. In this study, only the top-ranking pose as scored by Vina for

each active and decoy was used as input for the CNN model.

Training and test set preparation

Training and test subsets of the DUD-E dataset were constructed in several different ways.

Single target CNN model. To build the single target CNN model, for each target, we ran-

domly selected half of the actives for training and used the remaining half for model evalua-

tion. To reduce the training time and partially compensate for the imbalance in the number of

actives and decoys, for each target, we randomly selected 1000 decoys and used 500 for train-

ing and 500 for testing. See Fig 1A.

Multi-target CNN model. To build the multi-target CNN model, we trained on a subset of

protein targets and tested on the remaining protein targets. The models were trained on half of

the actives and 500 randomly-selected decoys for each target in the training subset. See Fig 1B.

Actives as decoys dataset. The Actives as Decoys (AD) dataset was designed to minimize

the decoy bias introduced by the selection criteria in the construction of the DUD-E dataset.

Instead of using the DUD-E decoys, the AD (actives as decoys) dataset uses the active com-

pounds of other proteins as the decoys for each target. The DUD-E dataset is composed of 102

targets each of which has a set of active and inactive compounds. For each protein target, we

docked (using Vina) all of the active compounds from the other 101 DUD-E proteins to that

target. For example, for target AA2AR we took the actives of each of the other 101 proteins

from the DUD-E dataset (ABL1, ACE, ACES, . . .) and docked them to AA2AR. For each of

the 101 proteins, we rank-ordered their respective actives based on their predicted binding

affinity (returned by Vina) to the target (AA2AR in this case) and chose the top 50 com-

pounds. We compiled these compounds to create a decoy dataset for the target (AA2AR in

this case). If the number of actives for a protein was less than 50, then all compounds were

used. The AD dataset for all 102 targets can be downloaded here (www.lehman.edu/faculty/

tkurtzman/files/102_targets_AD_dataset.tar).
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Model training

CNN model. Our CNN models were defined and trained by the Caffe deep learning

framework; the model architecture is as previously described [41]. The source code can be

found at https://github.com/gnina/gnina. Briefly, the binding complex is transformed into a

grid of atomic densities. The grid is 24 Å per side and composed of 48 � 48 � 48 voxels in 0.5 Å
resolution centered on the ligand binding site. Each voxel has 39 channels in total: 35 channels

of atom density information corresponding to 16 protein atom types, 19 ligand atom types (S1

Table), and, optionally, 4 channels for water thermodynamic information computed by GIST

[42]. Water thermodynamic information was not part of the originally published CNN model.

It was added here to explore whether adding solvation effects to the protein-ligand system

improves the performance of the CNN model. We built three kinds of CNN models: 1) recep-

tor-ligand-water model, 2) receptor-ligand model and 3) ligand-only model, distinguished by

the binding information used for model training. The receptor-ligand-water model uses all 39

channels of information, and the receptor-ligand model uses just the information from the 35

atomic densities. In the ligand-only model, the original receptor is replaced by a single dummy

atom; therefore, the atomic density values from the 16 receptor channels all equal zero, and

only the 19 channels from the ligand are used. As illustrated in Fig 2, the input tensor that con-

sists of a specific number of channels plus a label of 1 denoting an active compound or 0 for an

Fig 1. Data preparation for model training and testing. The training set and test set for (A) the singe target CNN

model and (B) multi-target CNN model. Blue denotes actives and yellow denotes decoys.

https://doi.org/10.1371/journal.pone.0220113.g001

Fig 2. The architecture of the CNN model. Each unit consists of three layers, Pooling, Convolutional and ReLU. The

yellow bar labeled FL is the fully connected layer. Further details about the CNN model hyperparameters can be found

in reference [41].

https://doi.org/10.1371/journal.pone.0220113.g002
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inactive compound is then fed to the model, which consists of three units of Pooling (2�2�2 fil-

ter)- Convolutional (3�3�3 filter)-ReLU layers and a single fully-connected layer that outputs

the binding prediction. During training, we used a learning rate of 0.01, a momentum of 0.9,

an inverse learning rate decay with power = 1 and gamma = 0.001, and a weight decay of

0.001. In each training iteration, we used balanced actives and decoys with a batch size of 10

for 2000 iterations. We manually checked that all models qualitatively converged at the end of

the training. The protocol for training the CNN model can be found here (https://www.

protocols.io/view/train-cnn-model-using-gnina-3rngm5e).

K-nearest neighbors (KNN) model. KNN classification predicts a ligand’s label (binder

or nonbinder) based on the majority vote of its K nearest neighbors in a defined feature space.

Here, the input for the KNN model were “RDKit” fingerprints (2D) generated by the RDKit

python package (http://www.rdkit.org, version 2018.09.1). The bit size for the “RDKit” finger-

prints is 2048, and the script that was used to output the fingerprints can be found at https://

github.com/dkoes/qsar-tools/blob/master/outputfingerprints.py. To compare the KNN mod-

el’s performance with that of the ligand-only CNN model, the same training and test sets were

used for each target. The python scripts we used for training KNN models can be found here:

https://github.com/dkoes/qsar-tools.

Grid inhomogeneous solvation theory (GIST)-based water analysis. To investigate

whether adding water information to the protein-ligand binding complex could improve the

accuracy of binding prediction, we applied GIST from AmberTools to map out the water proper-

ties by analyzing the water trajectory produced by molecular dynamic (MD) simulation [42,43].

Protein structures were downloaded from the Protein Databank [44] and proteins were prepared

using the default parameters in the Maestro Protein Preparation Wizard (Schrödinger) [45]. As

we were interested in the solvation of the binding sites, membranes were not modeled for trans-

membrane proteins as they were distal to the active site. The MD simulations were conducted

with Amber16 using the ff14SB forcefield [46–48]. A subset of prepared apo-proteins, listed in

Fig 3, were placed in a box of OPC water such that all protein atoms were at least 10 Å from the

periodic boundary of the box. The equilibration run consisted of two minimizations of up to

20,000 cycles followed by a 240 ps run at constant volume where the temperature of the simula-

tions was raised from 0 to 300 K and protein heavy atoms were harmonically restrained with a

force constant of 100 kcal/mol•Å2. Next, we performed an additional equilibration MD run of

20 ns under NPT conditions with the 100 kcal/mol•Å2 gradually reduced to 2.5 kcal/mol•Å2 in

the first 10 ns and held constant for the last 10 ns. Production simulations were then performed

for 100 ns in NVT conditions at 300 K, with heavy atom restraints of 2.5 kcal/mol•Å2. The 100

ns trajectories were then processed by AmberTools cpptraj-GIST with a grid spacing of 0.5 Å3,

centered on the ligand binding sites to produce solvation thermodynamic maps. The resulting

GIST maps of the solute-water enthalpy (Esw), water-water enthalpy (Eww), translational entropy

(TStrans), and orientational entropy (TSorient) were added as the 4 additional channels to the orig-

inal 35 protein-ligand channels to train the protein-ligand-water models.

Results

Adding water information does not improve the performance of the

protein-ligand CNN model

Using the single target CNN model approach, we independently trained the protein-ligand

and protein-ligand-water CNN models on 10 targets from the DUD-E dataset. Originally, we

hypothesized that adding water information channels could improve virtual screening perfor-

mance as shown in previous work by Balius et al., in which adding water energy terms to scor-

ing functions improved the virtual screening performance of DOCK3.7 [5]. As shown in Fig 3,
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the receptor-ligand CNN model achieved high enrichment efficiency (0.98 ± 0.02), which is

consistent with the results from other studies using the CNN approach [25,27]. Given that the

AUC in the protein-ligand models was already high, adding the water channels resulted in no

detectable increase in the test set AUC.

Performances of the receptor-ligand and ligand-only CNN models are

equivalent

Given the high AUC achieved by receptor-ligand models, we were interested in whether these

models have successfully learned from the protein-ligand molecular interactions or were

instead learning from ligand bias. To test this, we built two single-target CNN models for each

DUD-E target: the receptor-ligand model and the ligand-only model. The receptor-ligand

model was trained on the receptor-ligand 3D binding pose, while in the ligand-only model,

each receptor structure was replaced by a single identical dummy atom. The model was there-

fore trained by the ligand binding pose alone without any meaningful receptor information.

Strikingly, as shown in Fig 4, the AUC values achieved by the receptor-ligand model and

Fig 3. The performance of receptor-ligand and receptor-ligand-water CNN models in 10 DUD-E targets.

https://doi.org/10.1371/journal.pone.0220113.g003

Fig 4. Correlation between the performance of the receptor-ligand CNN model and ligand-only CNN model. The

receptor-ligand CNN model was trained on receptor-ligand 3D binding poses, and the ligand-only CNN model was

trained on ligand binding poses alone. Each blue dot is a target from DUD-E; there are 102 targets in total.

https://doi.org/10.1371/journal.pone.0220113.g004
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ligand-only model were highly correlated (R2 = 0.98, slope K = 0.99). Both the receptor-ligand

model and ligand-only model achieved an average AUC of 0.98, with AUC greater than 0.9 for

all 102 DUD-E targets. The average absolute difference in the AUC values of the two types of

models for the 102 targets was 0.001. This suggests that the CNN algorithm can determine a

set of parameters to accurately distinguish the actives from the decoys for a specific target

regardless of whether the receptor structure is provided or not.

The receptor-ligand model does not learn from protein structure

information

Given the ligand model’s high performance, we were interested in determining how much

the receptor structure contributed to the receptor-ligand model’s performance. To test this,

we used the same receptor-ligand model trained as above on the receptor and ligand infor-

mation and then tested it on two datasets. The first dataset input all the appropriate struc-

tural information into the channels for both the receptor and ligand. The second testing

dataset used all the ligand structure information but replaced the receptor structure informa-

tion with information for a single dummy atom, thereby providing no protein structure

information. The results of these tests are shown in Fig 5. Surprisingly, the receptor-ligand

models performed almost exactly the same regardless of whether information on the receptor

was provided in the test set. The average AUC for both datasets is 0.98, and the average abso-

lute AUC difference between the two testing sets is 0.0006, with the largest difference (0.027)

for FABP4. This strongly suggests that the receptor-ligand model is learning almost entirely

from the ligand information and not from receptor-ligand binding patterns. It is generally

thought that CNN algorithms will use all the information from the input to optimize the

model parameters. Strikingly, here, we show that for almost all targets, only the ligand infor-

mation was necessary for the receptor-ligand model to distinguish the actives and decoys,

meaning information provided about the receptors and receptor-ligand binding patterns

was not utilized.

To further investigate what the receptor-ligand CNN model had learned, we extracted the

weights of the 32 filters (3�3�3�35 dimension) from the first convolutional layer of the trained

AA2AR receptor-ligand CNN model. As shown in Fig 6A, in the trained model, the weights

placed on the receptor (atom type 0 to atom type 15) are much smaller than those placed on

the ligand (atom type 16 to atom type 34). Of note, given that in the CNN model there were

many layers through which values were transformed nonlinearly, we also compared the ligand

scores predicted by the AA2AR receptor-ligand model on the AA2AR ligands with or without

receptor information provided. As shown in Fig 6B, the predicted ligand scores were highly

correlated (R2 = 0.998) between the case when the receptor information was provided in the

test set and when it was not, which strongly suggested that the receptor-ligand CNN model did

not utilize the receptor information in making its predictions even though the receptor struc-

ture was provided during training. Similarly high correlation between ligand scores predicted

by receptor-ligand CNN models with or without receptor information provided in the test set

was observed for all 102 DUD-E targets (S1 Fig, R2 = 0.988).

Performance of ligand fingerprint-based KNN models

The high AUC values achieved by the ligand-only CNN model indicated that, for each target,

the actives are easily distinguishable from the decoys. To test whether the actives could be dis-

tinguished from the decoys using a fingerprint-based feature space, for each target, we calcu-

lated ligand fingerprints using the RDKit python package with the default “RDKit”

fingerprints in 2048 bits. These fingerprints were then used to build ligand-KNN models

Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in virtual screening
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where internal cross-validation was used to select the best K values. We then tested these mod-

els using the same training and test sets as used for the ligand-trained CNN models. As shown

in Fig 7, for all 102 targets, the ligand-KNN models achieved AUC values greater than 0.82, 97

of which were greater than 0.90. It is noteworthy that a simple KNN model performed only

slightly worse than a ligand CNN model. In addition, the AUC values from the ligand-only

CNN models are moderately correlated (Pearson correlation R = 0.59, average absolute differ-

ence 0.02). For example, AUC values that were relatively lower compared to other targets in

the KNN models were generally also relatively lower in the CNN models. Further, 96 (94%)

targets have a best K equal to 1 or 2, indicating that simple nearest neighbor similarity is highly

effective on most DUD-E targets (Table 1). The high performance achieved by the KNN

model indicates that, for each target, the actives and decoys are clustered into two separable

clusters in the fingerprint-based high dimensional feature space. As the atom type features are

correlated to the fingerprint features, the correlated performance between the ligand-based

CNN model and KNN model indicates that the high performances of the ligand-only CNN

model are attributable to the high similarity among the actives or decoys and distinct separa-

tion of these two groups from each other in the feature space.

Fig 5. Performance of the receptor-ligand model for the same ligand test sets with and without receptor information. For

each target, red dots indicate performance when the receptor structure was provided in the test set, while blue triangles indicate

performance when the receptor structure was replaced by a single dummy atom. The x-axis displays each DUD-E target in the

same order as they appear in the DUD-E database (http://dude.docking.org/targets). The targets with even indices are not

labeled on the x-axis due to space limitations.

https://doi.org/10.1371/journal.pone.0220113.g005

Fig 6. The weights and predicted ligand scores of the AA2AR receptor-ligand CNN model. (A) The average weight

put on each atom type in the 32 filters from the first convolutional layer of the AA2AR receptor-ligand CNN model;

atom types 0–15 are from the receptor, and atom types 16–34 are from the ligand. (B) Correlation between scores

predicted by the AA2AR receptor-ligand CNN model on ligands with vs. without receptor information provided. R2 =

0.998.

https://doi.org/10.1371/journal.pone.0220113.g006
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Intra-target analogue bias and decoy bias

The high AUC values achieved by the ligand-only CNN model indicated that the actives could

be differentiated from the decoys based on the ligand information alone. One possible explana-

tion is that for each target, the actives are analogous, which may lead them to cluster together

in the high dimensional space defined by the input representation (analogue bias). In addition,

the decoy selection criteria may result in decoys that are easily distinguishable from the actives

even in absence of analogue bias (decoy bias). To explore the effects of these biases, we exam-

ined the distribution of prediction scores calculated by our ligand-trained CNN models for the

actives and decoys. The AA2AR testing set, which had an AUC of 0.98, is a representative

example. As shown in Fig 8A, the scores of most actives were higher than those of the decoys,

and most of the actives had prediction scores clustered very closely 1, while the majority of the

decoys had scores clustered very closely around 0. This score clustering phenomenon was

observed for all 102 targets, with the average predicted score for all actives and decoys across

all testing sets being 0.90 ± 0.24 and 0.04 ± 0.15, respectively (S2 Fig). Because only ligand

information was used to train these models, the highly-clustered nature of the prediction

scores for the actives and decoys around 1 and 0, respectively, suggests that the models are

learning ligand features that allow them to separate these two groups very well; these may

include both analogue and decoy bias.

It is well-accepted that a large training set is required for CNNs to detect patterns and

achieve reliable performance. Here, to determine the degree of distinguishability between the

actives and the decoys, for each DUD-E target, we randomly selected five actives and five

Fig 7. Performance of ligand-trained KNN and CNN models for 102 DUD-E targets.

https://doi.org/10.1371/journal.pone.0220113.g007

Table 1. The best-K value distribution for 102 ligand-trained KNN models.

K value Frequency Percentage

K = 1 79 77.45%

K = 2 17 16.67%

K = 3 4 3.92%

K = 4 0 0.00%

K = 5 2 1.96%

Total 102 100%

https://doi.org/10.1371/journal.pone.0220113.t001
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decoys from the previous training set to train the ligand model and then tested the model on

the same test set as before. In order to observe how the choice of ligands included in the train-

ing set affected the model’s performance, we repeated this procedure three times using differ-

ent actives and decoys to train the model each time. As shown in Fig 8B, although the training

sets were extremely small, the ligand CNN model still achieved high AUC values for many tar-

gets (S2 Table), which suggests that the five actives and five decoys in the training sets were

able to adequately capture the landscapes of the remaining actives and decoys. The varied stan-

dard deviations reflect different levels of analogue and decoy bias for each target. Targets with

low standard deviation are likely to have actives and decoys with highly distinguishable fea-

tures that can be easily extracted from an extremely limited training set, leading the model to

successfully separate actives from decoys.

Inter-target prediction of ligand-trained CNN models

To test a model’s capacity for generalization, many groups have used sequence similarity filters

to separate DUD-E targets into diverse training and testing sets. However, this is based on the

untested assumption that targets in DUD-E with low sequence similarity have distinct actives.

Here, to determine the presence of analogue and/or decoy bias across DUD-E targets, we ran

each single-target ligand-trained CNN model against the ligands from all other 101 targets. As

shown in Fig 9A, high AUC values not only occurred within targets (diagonal line) but also

Fig 8. Actives and decoys are generally distinguishable for DUD-E targets. (A) The prediction score of actives and

decoys in AA2AR as a representative example; (B) Performance of ligand-trained CNN models trained on small sets of

five actives and five decoys. The dots represent mean values, and the bars represent standard deviation.

https://doi.org/10.1371/journal.pone.0220113.g008

Fig 9. Inter-target prediction performance of ligand-only CNN models. (A) Ligand-only CNN model tested on test sets

composed of actives and default decoys (B) Ligand-only CNN model tested on test sets composed of actives and AD decoys. The

target order is the same as in DUD-E.

https://doi.org/10.1371/journal.pone.0220113.g009
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commonly occurred across targets (AUC values are in S3 Table). For 74 targets, the actives

and decoys were accurately distinguished (AUC> 0.9) by one or more models trained on the

ligands of other targets (Fig 10). We chose a high AUC value threshold here to ensure that the

effects were not due to statistical fluctuations or noise. As expected, models trained by targets

within a similar functional category, even those with very low protein sequence similarity, are

likely to have high inter-target AUC values. This indicates the sequence similarity threshold is

not rigorous enough to exclude bias when constructing training and test sets. For example,

actives and decoys for TGFR1 (TGF-beta receptor 1, index = 92) were accurately distinguished

by 28 models trained by ligands from other targets (S4 Table). All of these 28 targets plus

TGFR1 belong to the category of phosphate-related enzymes, and 24 of them, including

TGFR1, are kinases. Of note, these comprise almost all of the 26 kinases present in the DUD-E

database. As shown in S5 Table, very few ligands are active against multiple non-isoform tar-

gets in the DUD-E. This excludes the possibility that such high inter-target AUC values

resulted from different targets having the same actives. This suggests that models trained on

kinase targets might have learned shared features of kinase substrates (analogue bias) that

makes them perform well for kinase targets in general. However, unexpectedly, high inter-tar-

get AUC values frequently occurred for targets that had neither sequence similarity nor shared

functionality. As an illustrative example in Table 2 shows that 11 models achieved high AUC

(greater than 0.9) values for COMT despite the fact that none of the corresponding targets

share significantly similar protein sequence (30%) or functionality with COMT. Inspired by

the AVE bias matrix reported by Wallach et al. [38], we calculated the four mean Fingerprint

(ECFP4)-based Tanimoto distances between the actives and decoys in the training sets with

the actives and decoys in the COMT testing set (training actives to COMT actives, training

decoys to COMT actives, training actives to COMT decoys, and training decoys to COMT

decoys). We found that these four were similar for all 11 targets and that they were all higher

than 0.87 (S3 Fig), which suggests that these high inter-target AUC values do not result from

analogue bias. Instead, the models have likely learned features that allow actives and decoys to

be easily distinguished (decoy bias).

The decoy bias in DUD-E results from the criteria for selecting decoys. To remove the con-

tribution of decoy bias to the high inter-target AUC, we constructed the Actives as Decoys

(AD) dataset and tested the ligand models on this dataset. As shown in Fig 9B, the number of

models yielding a high AUC for each target is significantly decreased (AUC values of AD data-

set are in S6 Table, AUC histogram distribution of two datasets is in S4 Fig), which indicates

that, for a specific target, models that are trained on the actives of other targets cannot distin-

guish the actives of that target from the actives of other targets. The fact that the ligand-only

CNN model performs well on the default DUD-E dataset but poorly on the AD dataset sug-

gests that, for each target, the ligand-only CNN model learned the biased feature pattern of

that target’s decoys, and the model will perform well on other targets if their decoys fit the

same biased feature pattern. The decreased performance on AD datasets also occurred when

using KNN models (S5 and S6 Figs).

To distinguish intra-target analogue bias, inter-target analogue bias, and decoy bias in the

performance of the ligand-only CNN model, we categorized the 102 � 102 AUCs (Fig 9) into

three groups: 1) A same target group (red in Fig 11), in which the models used for prediction

were trained and tested on the same target; 2) A similar function group, in which the models

used for prediction were trained on proteins with a similar function as the test set. The func-

tional groups for this were: kinases, proteases, GPCRs, and nuclear receptors. (blue data) 3) A

different functional group, in which the models used for prediction were trained by targets

with different functionality than the proteins in the test set (grey data). Table 3 shows the
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average AUC for these three groups and Fig 11 shows the AUC distribution for each group for

the both the DUD-E dataset and to the AD dataset.

The AUC values for the “same target group” were the highest on average for both the

DUD-E and AD datasets. We attribute this high performance regardless of dataset to intra-tar-

get analogue bias which is consistent with the conventional wisdom that ligands that bind to

the same target have chemical similarities. Similar results are seen in the blue curves which we

attribute to inter-target analogue bias which is consistent with general belief that compounds

that bind to proteins with similar function often have similar chemical features. As expected

the inter-target analogue bias is less than the intra-target analogue bias.

The average AUC values for all three groups are lower for the AD dataset than for the

DUD-E dataset (Table 3 and S7 Fig). We attribute these differences to the contribution of

decoy bias to the model performance as the AD dataset was designed to eliminate the decoy

bias that was introduced by the DUD-E decoy selection criteria. In this work, we proposed

Fig 10. Total number of inter-target models that achieved AUC>0.9 for each target in DUD-E. Targets are

partitioned into subsets based on biological families. Targets from a different subset (or non-isoform targets in the

"other" subset) are labelled “distinct targets” (blue). Targets in the same subset (except the “other” subset, unless an

isoform exists) are labelled “similar targets” (orange). Targets that do not have inter-target high AUC (>0.9) are not

shown.

https://doi.org/10.1371/journal.pone.0220113.g010

Table 2. Ligand-only CNN models that achieved high AUC (greater than 0.9) for COMT.

Test set Model trained by AUC Sequence similarity�

COMT (Methyltransferase) ADA (Adenosine deaminase) 0.934 11/21

CASP3 (Caspase-3) 0.952 No Match

CP3A4(Cytochrome P450) 0.901 8/23

DEF (Peptide Deformylase) 0.950 No Match

GRIA2(Glutamate receptor) 0.926 No Match

HIVINT (HIV integrase) 0.998 3/8

HMDH (HMG-CoA reductase) 0.930 11/33

HS90A (Hot shock protein) 0.994 5/14

INHA (Mycobacterium tuberculosis enoyl reductase) 0.964 8/32

PPARG (Peroxisome proliferator-activated receptor) 0.951 15/54

THB (Thyroid hormone receptor) 0.910 No Match

�From the NCBI BLASTp program using the default parameters. x/y is the sequence identity, where x is the number of identical amino acids in the local alignment and y

is the total number of amino acids in the local alignment. “No Match” means no alignment was possible for the two sequences. All 11 targets are not homologous to

COMT based on a 30% sequence similarity threshold.

https://doi.org/10.1371/journal.pone.0220113.t002
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that the CNN models could learn from three different sources: 1) protein-ligand interaction 2)

analogue bias and 3) decoy bias. Since the receptor information is absent from the ligand-only

model, it could not learn from the first source. The analogue bias and decoy bias were con-

trolled for in the “different function” group in the AD dataset, we therefore expect that the

model would perform randomly on this group, and, indeed, the average AUC for the “different

function” group in AD dataset was 0.500.

Multi-target CNN model

To investigate whether a CNN model trained on a subset of targets could be applied success-

fully to a new target, we trained the receptor-ligand and ligand-only CNN models on a training

set of ten targets (AA2AR, CXCR4, FA10, FABP4, GLCM, HIVPR, ITAL, KIT, KITH and

LCK) and then applied these two models to the remaining 92 DUD-E targets. As shown in Fig

12, the receptor-ligand and ligand-only CNN model showed similar performance (both with

AUC 0.80 ± 0.13) when tested on the remaining 92 targets. To investigate whether the receptor

information was utilized by the receptor-ligand model when trained by multiple targets, we

also applied the model to a testing set wherein the receptor was replaced by a dummy atom. As

shown in S8 Fig, the receptor information was not utilized in most cases. We also tested the

multi-target-trained ligand-only model and receptor-ligand model on AD datasets. As shown

in S9 and S10 Figs, the AUCs shifted downward for all targets, and the average performance

was similar to that of random chance.

Performance of CNN models trained on the PDBbind database

Apart from categorical prediction, many recent studies [19–21,26,41] have also showed that

deep learning models trained on the PDBbind [49] “refined” set can predict binding affinity in

the “core” set to a Pearson correlation coefficient of ~0.8 or root-mean square deviation

Fig 11. AUC distributions for the ligand-only CNN model (102�102 prediction) across three groups of targets. (A)

Results for models tested using the DUD-E dataset; (B) Results for models tested using the AD dataset. The

distributions are normalized such that the area under each distribution curve equals 1.

https://doi.org/10.1371/journal.pone.0220113.g011

Table 3. The mean and SD of the AUC values across three target groups.

Same Target Similar Function Different Function

DUD-E dataset Mean 0.983 0.835 0.618

SD 0.019 0.133 0.176

AD dataset Mean 0.927 0.682 0.500

SD 0.060 0.137 0.165

https://doi.org/10.1371/journal.pone.0220113.t003
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(RMSD) < 2 in terms of pKi or pKd. However, as Yang et al. [50] showed, sequence similarity

has a significant effect on the performance of machine learning-based scoring functions.

Therefore, the fact that the core set overlaps with the refined set even when the core set items

are removed from the refined set could make the reported performance over-optimistic. Here,

we tested two previously-trained open-source structure-based CNN models, the Gnina model

[41] and the Pafnucy model [21], on all 102 DUD-E targets and compared their performance

with that of Vina. Briefly, the Gnina model was trained by Hochuli et al. [41] on docked poses

from the PDBbind refined set; poses that were within 2 Å RMSD of the crystal structure were

assigned the same binding affinity as the crystal pose, while poses that had RMSD values

greater than 4 Å from the crystal structure were trained using a hinge loss that only penalized

over-prediction of the associated affinity. In contrast, the Pafnucy model was trained by Dziu-

binska et al. [21] on a “filtered refined set” of protein-ligand crystal structure data constructed

by removing the core set from the PDBbind refined set. Since the Pafnucy model was trained

on protein-ligand crystal structures that the ligands in DUD-E do not have, we fed both mod-

els with the top nine docked poses, as studies [6,51] have shown that the probability that a suc-

cessful pose RSMD (< 2 Å) is present within the top three poses is high (~80%). In each case,

the top ranked pose was used to score a given ligand. As shown in Fig 13, the performance of

these three models varies from target to target. As summarized in Table 4, Vina performed

comparably to Gnina, and they both performed better than Pafnucy.

Pose sensitivity

It is generally thought that models that can learn protein-ligand binding patterns will gain the

ability to generalize which can, in turn, lead to good prediction of actives for a wide range of

Fig 12. Comparison of the performance of multi-target trained receptor-ligand CNN model and ligand-only CNN

model. The two models were trained on 10 targets and tested on the remaining 92 targets. The receptor-ligand CNN

model was trained on receptor-ligand 3D binding poses, and the ligand-only mode was trained on ligand binding

poses alone. Each black dot represents a target.

https://doi.org/10.1371/journal.pone.0220113.g012
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targets. However, our results have shown that good prediction in a test set does not necessarily

mean the model has learned physical binding patterns. To further investigate whether the

open-source structure-based CNN models have learned meaningful features from binding pat-

terns, we tested Gnina and Pafnucy’s performance on Human blood coagulation Factor Xa

(FXa). FXa is a drug target for anti-coagulation therapy and a series of compounds with differ-

ent levels of binding affinity have been synthesized, which provides a dataset to assess the scor-

ing function’s sensitivity to ligand chemical components [52,53]. Among these compounds,

XLC (PDB ID: 1MQ5) and XLD (PDB ID: 1MQ6) are two chemically-similar ligands with

high-quality crystal structures, and their binding affinities were determined to 1 nM for XLC

and 7 pM for XLD, respectively [54]. To evaluate the pose sensitivities of Gnina and Pafnucy,

we re-docked each ligand to the binding pocket to generate 100 different poses with root mean

squared distance (RMSD) of heavy atoms ranging from 0.0–6.0 Å. As shown in Fig 14, for

Vina and Gnina, although the chemical components of the ligands are same, different binding

affinities were predicted. In contrast, for Pafnucy, except for the fact that the crystal poses were

predicted to have a different binding strength, all other poses were predicted to have nearly

identical affinity even when the RMSD was large. This may be because the Gnina model was

trained by sets of docked poses for each ligand, among which “crystal-like” poses were assigned

Fig 13. The AUC value distribution for Vina, Gnina and Pafnucy performed on all 102 DUD-E targets. Each black

dot represents a DUD-E target.

https://doi.org/10.1371/journal.pone.0220113.g013

Table 4. Summary of Vina, Gnina and Pafnucy performance on DUD-E targets.

Average AUC Frequency (AUC>0.8) Frequency (AUC>0.9)

Vina 0.725 24 3

Gnina 0.709 28 10

Pafnucy 0.632 12 0

https://doi.org/10.1371/journal.pone.0220113.t004
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good affinity while poses less similar to the crystal-like pose were assigned lower affinity. On

the other hand, the Pafnucy model was trained only by crystal poses, which may lead the

model to be insensitive to pose change. All three methods all failed to distinguish the affinity

difference between XLC and XLD, indicating accurate binding affinity prediction for similar

ligands remains a challenge.

Conclusions

In this study, we showed that the performance of protein-ligand CNN models is affected by

hidden biases in the DUD-E dataset. We showed that analogue biases are common both within

the sets of actives associated with each target (intra-target analogue bias) and across sets of

actives associated with different targets (inter-target analogue biases). We further provided evi-

dence for the existence of decoy bias likely resulting from the selection criteria used during

construction of the DUD-E dataset. Analogue bias and decoy bias allow CNN models to learn

entirely from the ligands even though protein structure information for the target is provided

during the training stage. We also tested additional CNN models trained by protein-ligand

crystal structure data from PDBbind. Although these models were reported to have good per-

formance in their test datasets, they did not outperform the docking program Autodock Vina

on average when tested using DUD-E. Our studies suggest that 1) DUD-E should be used with

extreme caution when applied to machine learning-based method development and ideally

should be avoided and 2) rigorous testing of a model’s response to different types of informa-

tion in training/test sets is essential to building a meaningful model.

Discussion

As deep learning methodologies have been increasingly applied to virtual screening, our study

suggests that caution should be taken as hidden bias may exist in datasets used to develop

these methods. We have shown evidence for both analogue and decoy bias in the DUD-E data-

set. Analogue bias most likely originates from the fact that ligands binding to a specific target

(or to a set of targets with similar functionality) are likely to have similar scaffolds, resulting in

similar topological features that are easily captured by CNN architectures. Decoy bias in

DUD-E was introduced by the criteria that were used to select the decoys for each target. For

example, in DUD-E, to control the false decoy rate, for each active, candidate decoy com-

pounds were sorted by the topological fingerprint-based Tanimoto Correlation, and the top

Fig 14. Pose sensitivity of Vina, Gnina and Pafnucy. The three models were tested on 100 re-docked poses of ligand

XLC (A) and ligand XLD (B). The red asterisk at the RMSD = 0 marks the experimental affinity. Vina predicts free

binding energy (ΔG) in kcal/mol; here, we estimated the Ki at 25 Celsius using the equation ΔG = RTlnKi, where R is

the gas constant (8.31 J/K�mol).

https://doi.org/10.1371/journal.pone.0220113.g014
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75% were removed, leaving only the 25% most dissimilar compounds as decoys for that active

[37]. Although these criteria minimize the false decoy rate, they also cause the decoys to be eas-

ily distinguishable from the actives by machine learning models. Also, Sieg et al. [55] recently

published an analysis of the molecular and physical properties of the actives and decoys from

DUD-E, which showed that certain properties are exclusive to one group or the other. For

example, compounds with molecular weight greater than 500 Da include actives only. They

also suggested these simple distinguishable features between actives and decoys allow machine

learning-based models to distinguish DUD-E actives from decoys on the basis of the ligands

themselves, which is consistent to our findings. Together, the biased basic properties of the

ligands and overly-conservative selection criteria may also result in overall separation of the

decoys and actives in the high-dimensional space constructed by the combination of all their

features such that models can distinguish the non-binders from binders in general but cannot

tell which target each binder associates with.

Besides bias, there are many additional obstacles that lie on the road to successfully applying

deep learning to virtual screening. One is data quality. In the image recognition domain,

humans can easily recognize images in any number of different contexts; for example, we per-

ceive automatically that two pictures of a cat in which the cat’s tail has shifted positions are still

both of a cat. As a result, humans can provide vast amounts of high-quality data to train image

recognition models. Unfortunately, without expert knowledge, we do not know whether a

small shift of a chemical group will affect a compound’s ability to bind to a target with the

same level of affinity. This introduces uncertainty into the quality of pose data that is fed into

binding prediction models when docked poses are used as training input. Another challenge is

data paucity. Current deep learning models can easily have more than 30 atom type channels,

significantly more than image recognition models, which only have three channels. The

increased dimensionality exacerbates the paucity of protein-ligand crystal structure informa-

tion, and the millions of parameters-much more than the current number of available data

points-encourages the model to simply memorize the entire set of data points, complicating

generalization to novel compounds [56]. In summary, low data quality and data paucity

together make it a very challenging task to develop a deep learning model for binding affinity

prediction that can generalize to new protein targets and different ligand scaffolds. Here, we

also showed that high performance in test sets is not enough to make the model generally

applicable, as hidden biases may exist in the training/testing datasets that can lead the model

astray. To ensure that models have learned meaningful features, we should test them by inter-

rogating their response to different types of training or testing information and ensuring their

sensitivity to ligand binding pose.

In this work we have introduced controls in datasets to test whether a model is learning

from protein-ligand interactions, analogue bias or decoy bias. By removing receptor informa-

tion from the test set for receptor-ligand models, we can determine how much the model is

learning from the receptor and hence from protein-ligand interactions. Similarly, testing on a

dataset that does not share decoy bias introduced by the decoy selection criteria (as we did

with the AD dataset) helps identify how much a model is learning from decoy bias. Inter-target

validation on test sets from which proteins that share homology and functional similarity with

training set proteins have been removed controls for real analogue bias and constructed decoy

bias. These tests should be expanded upon and refined in the future and be broadly applied to

machine learning outcomes to ensure that the machine learning black box is learning from

meaningful information that is generalizable to making prospective predictions on molecular

recognition. In this study, we highlighted the danger of attributing a model’s high performance

in a test set to successful generalization of binding interactions without rigorously validating

the model. Although many machine learning-based methods have been developed and tested
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on DUD-E [23–25,27,32,35], we clearly showed here that analogue bias and decoy bias are

widespread in DUD-E and, consequently, models may only learn the inherent bias in the data-

set rather than physically meaningful features. We hope this work can help our community

become more aware of the pitfalls of current databases and develop more robust and meaning-

ful deep learning models for drug discovery.
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47. Götz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC. Routine Microsecond Molecular

Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J Chem Theory Comput. 2012; 8

(5):1542–55. https://doi.org/10.1021/ct200909j PMID: 22582031

48. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: Improving the

Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J Chem Theory Comput. 2015;

11(8):3696–713. https://doi.org/10.1021/acs.jctc.5b00255 PMID: 26574453

Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in virtual screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0220113 August 20, 2019 21 / 22

https://doi.org/10.1021/acs.jcim.6b00740
http://www.ncbi.nlm.nih.gov/pubmed/28368587
https://doi.org/10.1016/j.compbiomed.2017.09.007
https://doi.org/10.1016/j.compbiomed.2017.09.007
http://www.ncbi.nlm.nih.gov/pubmed/28941550
https://doi.org/10.1021/ci100369f
http://www.ncbi.nlm.nih.gov/pubmed/21291174
https://doi.org/10.1021/acs.jcim.7b00153
http://www.ncbi.nlm.nih.gov/pubmed/28654262
https://doi.org/10.1021/acs.jcim.7b00017
http://www.ncbi.nlm.nih.gov/pubmed/28678484
https://doi.org/10.1186/1758-2946-5-17
http://www.ncbi.nlm.nih.gov/pubmed/23561266
https://doi.org/10.1021/ci300604z
https://doi.org/10.1021/ci300604z
http://www.ncbi.nlm.nih.gov/pubmed/23379370
https://doi.org/10.1016/j.jmgm.2018.06.005
http://www.ncbi.nlm.nih.gov/pubmed/29940506
https://doi.org/10.1093/nar/28.1.235
http://www.ncbi.nlm.nih.gov/pubmed/10592235
https://doi.org/10.1007/s10822-013-9644-8
http://www.ncbi.nlm.nih.gov/pubmed/23579614
https://doi.org/10.1021/ct400314y
http://www.ncbi.nlm.nih.gov/pubmed/26592383
https://doi.org/10.1021/ct200909j
http://www.ncbi.nlm.nih.gov/pubmed/22582031
https://doi.org/10.1021/acs.jctc.5b00255
http://www.ncbi.nlm.nih.gov/pubmed/26574453
https://doi.org/10.1371/journal.pone.0220113


49. Wang R, Fang X, Lu Y, Wang S. The PDBbind Database: Collection of Binding Affinities for Protein–

Ligand Complexes with Known Three-Dimensional Structures. J Med Chem. 2004; 47(12):2977–80.

https://doi.org/10.1021/jm030580l PMID: 15163179

50. Li Y, Yang J. Structural and Sequence Similarity Makes a Significant Impact on Machine-Learning-

Based Scoring Functions for Protein–Ligand Interactions. J Chem Inf Model. 2017; 57(4):1007–12.

https://doi.org/10.1021/acs.jcim.7b00049 PMID: 28358210

51. Wang Renxiao, Lu Yipin and, Wang S. Comparative Evaluation of 11 Scoring Functions for Molecular

Docking. 2003;

52. Young RJ, Borthwick AD, Brown D, Burns-Kurtis CL, Campbell M, Chan C, et al. Structure and property

based design of factor Xa inhibitors: Biaryl pyrrolidin-2-ones incorporating basic heterocyclic motifs.

Bioorg Med Chem Lett. 2008; 18(1):28–33. https://doi.org/10.1016/j.bmcl.2007.11.019 PMID:

18053714

53. Kleanthous S, Borthwick AD, Brown D, Burns-Kurtis CL, Campbell M, Chaudry L, et al. Structure and

property based design of factor Xa inhibitors: pyrrolidin-2-ones with monoaryl P4 motifs. Bioorg Med

Chem Lett. 2010; 20(2):618–22. https://doi.org/10.1016/j.bmcl.2009.11.077 PMID: 20006499

54. Adler Marc, Kochanny Monica J., Ye Bin, Rumennik Galina, Light David R., Biancalana Sara and, et al.

Crystal Structures of Two Potent Nonamidine Inhibitors Bound to Factor Xa†,‡. 2002;

55. Sieg J, Flachsenberg F, Rarey M. In Need of Bias Control: Evaluating Chemical Data for Machine

Learning in Structure-Based Virtual Screening.

56. Zhang C, Bengio S, Brain G, Hardt M, Recht B, Vinyals O, et al. Understanding Deep Learning Requires

Re-Thinking Generalization [Internet].

Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in virtual screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0220113 August 20, 2019 22 / 22

https://doi.org/10.1021/jm030580l
http://www.ncbi.nlm.nih.gov/pubmed/15163179
https://doi.org/10.1021/acs.jcim.7b00049
http://www.ncbi.nlm.nih.gov/pubmed/28358210
https://doi.org/10.1016/j.bmcl.2007.11.019
http://www.ncbi.nlm.nih.gov/pubmed/18053714
https://doi.org/10.1016/j.bmcl.2009.11.077
http://www.ncbi.nlm.nih.gov/pubmed/20006499
https://doi.org/10.1371/journal.pone.0220113

